
A Domain-Specific Language for Device

Drivers

Christopher Conway

30 October 2002



What’s wrong with device drivers?

• Drivers usually run in supervisor mode. They are critical

code.

• Chou, et al.: Drivers account for 70-90% of bugs in the

Linux kernel and have an error rate 7x that of the rest of the

kernel.

• So more robust drivers would go a long way to making a

more robust operating system. Just ask Microsoft: VAULT,

SLAM.



VAULT
Deline and Fändrich

Type guards statically enforce use protocols.

void fclose(tracked(F) FILE f) [-F];

int main(...) {
tracked(F) FILE f ; // there is a key F protecting FILE f

...

flose(f) ; // the key is deleted by fclose

/* any use of f from this point is invalid */

}

Problem: defining these use protocols is difficult and tricky.



GAL
Thibault, Marlet and Consel

Domain-specific language for X Windows video drivers.

mode HighRes := HTotal > 800;

enable HighRes sequence is

Control[5] <= 1;

Pros: Small code (90% smaller than C), fast

But: Not a general solution



Devil
Mérillon, et al.

A device specification is transformed into C macros.

variable nicState = write CommandReg[1..0] :

{

START => ’10’,

STOP => ’01’,

CURRENT => ’00’

};

Called from the driver in C:

dev_ns8390 *ns8390 = new_ns8390(GFP_KERNEL, ioaddr);

set_nicState(ns8390, STOP);



Pros:

• Cleanly separates device interface from use.

• Reduces potential errors from misuse of device.

Cons:

• No type safety.

• No code simplification

• Doesn’t attack the heart of the problem: operating system

interaction



My Language

• Type safe: maps device registers to high-level types.

• Simple: directly supports the semantics of device drivers.

• Platform-independent: the compiler handles the details of

the operating systems’ device driver protocols.

• Useful: captures the behavior of a broad class of devices,

makes programming drivers easier.


