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Trends in Programming Language Design

Overview
— The most influential languages
— Trends in language design

— Design issues in the AWK programming language
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he Most Influential Programming
Languages of All Time

e Assembler

— 1950s
— Step up from machine language
— Available on virtually every machine
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he Most Influential Programming
Languages of All Time

e Fortran

— 1950s

— Created by a team led by John Backus of IBM
— Initial focus: scientific computing

— Influenced FlI, Fll, FIV, F77, F90, HPF, F95
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he Most Influential Programming
Languages of All Time

e Cobol

— 1950s
— Created by U.S. DOD

— Grace Murray Hopper influential in initial
development

— Initial focus : business data processing
— Influenced C68, C74, C85, PL/1

— The world’s most pop ular programming language
until the early 1990s
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he Most Influential Programming
Languages of All Time

o Lisp
— 1950s
— Created by John McCarthy
— Initial focus: symbol processing

— Influenced Scheme, Common Lisp, MacLisp,
Interlisp

— Dominant language for programming Al applications
for many years
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he Most Influential Programming
Languages of All Time

« Algol 60

— 1960

— Algol 60 Report introduced BNF as a notation for
describing the syntax of a language

— Initial focus: general purpose programming
— First block-structured language

— Influenced Algol 68, Pascal, Modula, Modula 2,
Oberon, Modula 3

— Revised Algol 60 Report: P. Naur, J. Backus, F.
Bauer, J. Green, C. Katz, J. McCarthy, A. Perlis, H.
Rutishauer, K. Samelson, B. Vauquois, J. Wegstein,
A. van Wijngaarden, M. Woodger
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he Most Influential Programming
Languages of All Time

e Basic
— Early 1960s

— Created by John Kemeny and Thomaz Kurtz of
Dartmouth

— Initial focus : a simple, easy-to-use imperative
language

— Influenced dozens of dia lects, most not ably Visual
Basic, probably the world’s most popu lar
programming language today
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he Most Influential Programming
Languages of All Time

e Simula 67

— 1967

— Created by Ole-Johan Dahl, Bjorn Myhrhaug and
Kristen Nygaard at the Norwegian Computing
Centre, Olso

— Algol 60 with classes and coroutines

— First object-oriented programming language
— Designed for discrete-event simulation

— Influenced C++, Smalltalk, Java
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he Most Influential Programming
Languages of All Time

e C
— 1970s

— C was created by Dennis Ritchie at Bell Labs initially
as a systems programming language for
Implementing UNIX

— C++ was created by Bjarne Stroustrup at Bell Labs in
the 1980s adding object orientationto C

— Influenced ANSI C, Java

— C/C++ has become the world’s most wi dely used
systems prog ramming language
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he Most Influential Programming
Languages of All Time

« ML
— 1970s
— Created by Robin Milner at University of Edinburgh
— Initial focus: meta-language for program verification

— One of the most widely used functional
programming languages

— Influenced Standard ML, Miranda, Haskell
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he Most Influential Programming
Languages of All Time

e Scripting Language s
— Typeless languag es for “glue programming”
— awk
— perl|
— sh
— tkli
— many more
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Other Influential Languages

e« ADA e PL/1

« APL * Postscript
e C# * Prolog

« HTML « SQL

e Java * Visicalc
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Contemporary Issues in Language Design

e Simplicity and expressiveness for productivity
 Robustness, safety and security

« Architecturally neutral and portable

* Internet savvy

e Concurrency

e Performance

* Object orientation

 Interoperability
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Overview of Awk

From The AWK Programming Language, by Alfred V.
Aho, Brian W. Kernighan and Peter J. Weinberger,
Addison We sley, 1988

“Awk is a conve nient and expressive progr amming
language that can be applied to a wide variety of
common com puting and data-processing tasks.”
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Awk Program

 Format of an awk program
pattern { action }
pattern { action }

pattern { aciton }

e Execution model
repeatedly
read input line
apply patterns
for each pattern that matches
execute associated action
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Example

Data file

Name Hours-worked

Bob 5
St ephen 0
Susan 10

Bob 6.5
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Hourly-rate
10
8
15
11



How much did each person earn during
their shift?

Name Hours-worked Hourly-rate
Bob 5 10
Stephen 0 8
Susan 10 15
Bob 6.5 11

Command |1 ne
awk ‘$2>0 {p rint $1,%$ 2 *$ 3 } data

AWK out put
Bob 50
Susan 150
Bob 71.5
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How many hours did Bob work?

Name Hours-worked Hourly-rate
Bob 5 10
Stephen 0 8
Susan 10 15
Bob 6.5 11

AWK program

$1 ~/Bob/ {hw +=$2 }
END { print “Bob worked “ hw “ hours” }

AWK out put
Bob worked 11.5 hours
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What are everyone’s wages?

Name Hours-worked Hourly-rate
Bob 5 10
Stephen 0 8
Susan 10 15
Bob 6.5 11

AWK program

{ wages[$1] += $2 * $3 }
END {for ( emp in wages)
print  emp “ earned $” wages[ emp) }
AwK out put

Stephen earned $0
Bob earned $121.5
Susan earned $150
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What are everyone’s wages, sorted by

name?

Name Hours-worked Hourly-rate
Bob 5 10
Stephen 0 8
Susan 10 15
Bob 6.5 11

AwKk program

{ wages[$1] += $2 * $3 }
END {for ( emp in wages)
print emp “earned $” wages|

AWK out put
Bob earned $121.5
Stephen earned $0
Susan earned $150
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Awk Patterns

* BEGIN

« END

e EXpression

* Regular expression
e Compound pattern
 Range pattern
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Awk Actions

e expressions

eprint/printf

i f ( expression) statement

I f ( expression) statement el se statement

wWhi | e ( expression) statement

o for( expression ; expression ; expression ) statement
«for( variablei n array ) statement

e do statement whil e ( expression)

e br eak/ conti nue/ next/exit/exit expression

« { statements }
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Some useful awk “one-liners”

* Print the total number of input lines
END { print NR }

e Print every line longer than 80 characters
length($0) > 80

* Print the last field of every input line
{ print $NF }

* Print the first two fields, in oppos ite order, of every line
{ print $2, $1 }

* Print in reverse order the fields o f every line
{for(i=NF;i>0;i=i1) printf  (“%s “, $I)
printt  (\n”) }
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