Professor Alfred V. Aho
Department of Computer Science
Columbia University

Trends In
Programming Language Design

16 October 2002

1 Al Aho

Trends in Programming Language Design

Overview
— The most influential languages
— Trends in language design

— Design issues in the AWK programming language

2 Al Aho

he Most Influential Programming
Languages of All Time

e Assembler

— 1950s
— Step up from machine language
— Available on virtually every machine

3 Al Aho

he Most Influential Programming
Languages of All Time

e Fortran

— 1950s

— Created by a team led by John Backus of IBM
— Initial focus: scientific computing

— Influenced FlI, Fll, FIV, F77, F90, HPF, F95

4 Al Aho

he Most Influential Programming
Languages of All Time

e Cobol

— 1950s
— Created by U.S. DOD

— Grace Murray Hopper influential in initial
development

— Initial focus : business data processing
— Influenced C68, C74, C85, PL/1

— The world’s most pop ular programming language
until the early 1990s

5 Al Aho

he Most Influential Programming
Languages of All Time

o Lisp
— 1950s
— Created by John McCarthy
— Initial focus: symbol processing

— Influenced Scheme, Common Lisp, MacLisp,
Interlisp

— Dominant language for programming Al applications
for many years

6 Al Aho

he Most Influential Programming
Languages of All Time

« Algol 60

— 1960

— Algol 60 Report introduced BNF as a notation for
describing the syntax of a language

— Initial focus: general purpose programming
— First block-structured language

— Influenced Algol 68, Pascal, Modula, Modula 2,
Oberon, Modula 3

— Revised Algol 60 Report: P. Naur, J. Backus, F.
Bauer, J. Green, C. Katz, J. McCarthy, A. Perlis, H.
Rutishauer, K. Samelson, B. Vauquois, J. Wegstein,
A. van Wijngaarden, M. Woodger

7 Al Aho

he Most Influential Programming
Languages of All Time

e Basic
— Early 1960s

— Created by John Kemeny and Thomaz Kurtz of
Dartmouth

— Initial focus : a simple, easy-to-use imperative
language

— Influenced dozens of dia lects, most not ably Visual
Basic, probably the world’s most popu lar
programming language today

8 Al Aho

he Most Influential Programming
Languages of All Time

e Simula 67

— 1967

— Created by Ole-Johan Dahl, Bjorn Myhrhaug and
Kristen Nygaard at the Norwegian Computing
Centre, Olso

— Algol 60 with classes and coroutines

— First object-oriented programming language
— Designed for discrete-event simulation

— Influenced C++, Smalltalk, Java

9 Al Aho

he Most Influential Programming
Languages of All Time

e C
— 1970s

— C was created by Dennis Ritchie at Bell Labs initially
as a systems programming language for
Implementing UNIX

— C++ was created by Bjarne Stroustrup at Bell Labs in
the 1980s adding object orientationto C

— Influenced ANSI C, Java

— C/C++ has become the world’s most wi dely used
systems prog ramming language

10 Al Aho

he Most Influential Programming
Languages of All Time

« ML
— 1970s
— Created by Robin Milner at University of Edinburgh
— Initial focus: meta-language for program verification

— One of the most widely used functional
programming languages

— Influenced Standard ML, Miranda, Haskell

11 Al Aho

he Most Influential Programming
Languages of All Time

e Scripting Language s
— Typeless languag es for “glue programming”
— awk
— perl|
— sh
— tkli
— many more

12 Al Aho

Other Influential Languages

e« ADA e PL/1

« APL * Postscript
e C# * Prolog

« HTML « SQL

e Java * Visicalc

13 Al Aho

Contemporary Issues in Language Design

e Simplicity and expressiveness for productivity
 Robustness, safety and security

« Architecturally neutral and portable

* Internet savvy

e Concurrency

e Performance

* Object orientation

 Interoperability

14 Al Aho

Overview of Awk

From The AWK Programming Language, by Alfred V.
Aho, Brian W. Kernighan and Peter J. Weinberger,
Addison We sley, 1988

“Awk is a conve nient and expressive progr amming
language that can be applied to a wide variety of
common com puting and data-processing tasks.”

15 Al Aho

Awk Program

 Format of an awk program
pattern { action }
pattern { action }

pattern { aciton }

e Execution model
repeatedly
read input line
apply patterns
for each pattern that matches
execute associated action

16 Al Aho

Example

Data file

Name Hours-worked

Bob 5
St ephen 0
Susan 10

Bob 6.5

17 Al Aho

Hourly-rate
10
8
15
11

How much did each person earn during
their shift?

Name Hours-worked Hourly-rate
Bob 5 10
Stephen 0 8
Susan 10 15
Bob 6.5 11

Command |1 ne
awk ‘$2>0 {p rint $1,%$ 2 *$ 3 } data

AWK out put
Bob 50
Susan 150
Bob 71.5

18 Al Aho

How many hours did Bob work?

Name Hours-worked Hourly-rate
Bob 5 10
Stephen 0 8
Susan 10 15
Bob 6.5 11

AWK program

$1 ~/Bob/ {hw +=$2 }
END { print “Bob worked “ hw “ hours” }

AWK out put
Bob worked 11.5 hours

19 Al Aho

What are everyone’s wages?

Name Hours-worked Hourly-rate
Bob 5 10
Stephen 0 8
Susan 10 15
Bob 6.5 11

AWK program

{ wages[$1] += $2 * $3 }
END {for (emp in wages)
print emp “ earned $” wages[emp) }
AwK out put

Stephen earned $0
Bob earned $121.5
Susan earned $150

20 Al Aho

What are everyone’s wages, sorted by

name?

Name Hours-worked Hourly-rate
Bob 5 10
Stephen 0 8
Susan 10 15
Bob 6.5 11

AwKk program

{ wages[$1] += $2 * $3 }
END {for (emp in wages)
print emp “earned $” wages|

AWK out put
Bob earned $121.5
Stephen earned $0
Susan earned $150

21 Al Aho

emp| | “sort” }

Awk Patterns

* BEGIN

« END

e EXpression

* Regular expression
e Compound pattern
 Range pattern

22 Al Aho

Awk Actions

e expressions

eprint/printf

i f (expression) statement

I f (expression) statement el se statement

wWhi | e (expression) statement

o for(expression ; expression ; expression) statement
«for(variablei n array) statement

e do statement whil e (expression)

e br eak/ conti nue/ next/exit/exit expression

« { statements }

23 Al Aho

Some useful awk “one-liners”

* Print the total number of input lines
END { print NR }

e Print every line longer than 80 characters
length($0) > 80

* Print the last field of every input line
{ print $NF }

* Print the first two fields, in oppos ite order, of every line
{ print $2, $1 }

* Print in reverse order the fields o f every line
{for(i=NF;i>0;i=i1) printf (“%s “, $I)
printt (\n”) }

24 Al Aho

