
COMS W4115
Programming Languages and Translators

Programming Assignment 2: Static Semantics

Prof. Stephen A. Edwards Assigned February 20th, 2002
Columbia University Due 11:59 PM on March 15th, 2002

For this assignment, you will be adding static seman-
tic checking to your Tiger compiler. The lexer/parser
from the last assignment verified the program was
syntactically correct, but accepted many nonsensical
programs such as 1 + “foo”. A program that makes it
past this assignment should be correct, i.e., when im-
plemented should not have any type errors.

For a Tiger program to be sematically correct,

• Any identifier that is used must have been defined within
its scope.

• An identifier used as an lvalue must be a variable.

• The type of each identifier and sub-expression must be es-
tablished.

• For each operator (e.g.,-, *), the types of its operands must
match and conform to the rules for the operator.

• For each assignment, the type of the expression being as-
signed and the lvalue must match.

• For each function call, including those to the standard li-
brary, the identifier must refer to a function and the number
and type of arguments must match the declaration.

• For each record constructor, the given type must be a record
and the number, names, and types of each fields must
match.

• For each array constructor, the given type must be an array
and the expression for its initial value must match.

• The predicate expression in both theif andwhile state-
ments must return an integer.

• The thenandelseexpressions in an if-then-else must be of
the same type.

• The expression in anif-then expression must not return a
value.

• The expression in awhile-doexpression must not return a
value.

• The first and second expressions in afor expression must
be integer, but the third must not return a result.

• No explicit assignment may be made to afor loop index
variable.

• A breakexpression must appear within afor or while.

• An lvalue on the left side of a. field selector operator must
be a record. The identifier on the right must refer to a field
in that record.

• If a variable declaration specifies a type, it must match the
type of the expression.

• If a function declaration specifies a type, its body must re-
turn that type.

• If a function declaration does not specify a type, its body
must not return a type.

• It must not have circular type definitions, e.g.,

type a = b
type b = c
type c = a

There are probably other rules. Think about what it means for
each AST node to be correct.

1 Getting Started

Files for this assignment are in~cs4115/prog2 on theCUNIX

cluster. Copy this subdirectory and all its files into your account
to get started. Included are

• A skeleton semantic analysis phase,TigerSemant.g. This
assignment amounts to adding actions to the rules in this
file.

• A front-end that calls the lexer, parser, and static semantic
checker. (TC.java)

• A package with classes for symbol tables, a checking envi-
ronment, and Tiger types. (Semant).

• A working lexer and parser from the first assignment as
.class files.

To compile the example checker under bash,

1

$ CLASSPATH=~cs4115/antlr:.
$ export CLASSPATH
$ java antlr.Tool TigerSemant.g
$ javac TC.java
$ java TC
1 + 2
^D
$ java TC
1 + break
^D
1:operands of + must be integer
$

For the purposes of this assignment, feel free to use, modify,
or ignore any of the files I give you. However, we must be able
to compile your project using the procedure described below,
the “main” program must be the TC class, and it must return a
non-zero value when an error has occurred.

2 Philosophy of Static Semantics

Your job is to complete theAST walker I started for you in
TigerSemant.g. The basic idea of static semantics is, for each
AST node, to verify its children are correct (e.g., establish their
types), and then verify those types are consistent with the node.

Throughout the recursive walk, an environment of stacked
symbol tables is maintained that keeps track of what identifiers
are defined and their types. Thelet statement and its declara-
tions add and remove things from this environment, and rules
such as lvalue or a function call check this environment.

ANTLR is the most convenient way to write a node-
type-specific recursive traversal of an AST. See the supplied
TigerSemant.g for an example. This isTigerASTGram.g
from the last assignment with added rules.

A question that often arises is “do I check this here?” In gen-
eral, the answer is yes if it depends on your children but not on
your parents (e.g., the children of a + BINOP must be integers),
but no if it depends on your parents (e.g., an ID does not need to
verify it is an integer if it happens to be an operand of a +).

3 Deliverables

As before, use~cs4115/bin/submit_code to submit

• Your customizedTigerSemant.g file.

• A README file describing your semantic analyzer. I want
to hear how you dealt with

– Recursive function definitions.

– Recursive type definitions.

– Checking whetherbreak was properly nested.

– Testing your semantic analyzer

• A subdirectory called “tests” containing test problems.

• A file calledMEMBERS that contains a space-separated list
of the uni IDs of each of the members in your group.

Make sure we can build your semantic analyzer by running
ANTLR on TigerSemant.g and thenjavac on TC.java. We
do not want a Makefile.

lvalue returns [Type t]

{ Type a, b; t = env.getVoidType(); }

: i:ID

{ /* Verify ID is a variable, return its type */

Entry e = (Entry) env.vars.get(i.getText());

if (e == null)

semantError(i, "Undefined identifier " + i.getText());

if (!(e instanceof VarEntry))

semantError(i, i.getText() + " is not a variable");

VarEntry v = (VarEntry) e;

t = v.ty;

}

| #(FIELD a=lvalue ID)

{ /* Verify lvalue is of record type with ID as a field */ }

| #(SUBSCRIPT a=lvalue b=expr)

{ /* Verify lvalue is an array type and expr is an int */ }

;

expr returns [Type t]

{ Type a, b, c; t = env.getVoidType();}

: "nil" { t = env.getNilType(); }

| t=lvalue

| STRING { t = env.getStringType(); }

| NUMBER { t = env.getIntType(); }

| #(NEG a=expr

{ /* Verify expr is an int */

if (!(a instanceof Semant.INT))

semantError(#expr, "Negate operand not int");

t = env.getIntType();

}

)

| #(BINOP a=expr b=expr

{ /* Verify expr’s types match, more picky for non-equality. */

String op = #expr.getText();

if (op.equals("+") ||

op.equals("-") ||

op.equals("*") ||

op.equals("/")) {

if (!(a instanceof Semant.INT) ||

!(b instanceof Semant.INT))

semantError(#expr, op+" operands not int");

t = a;

} else {

semantError(#expr, "other operators unimplemented");

t = env.getVoidType();

}

}

)

| /* ... */

| #("let"

{ env.enterScope(); }

#(DECLS (#(DECLS (decl)+))*)

a=expr

{

env.leaveScope();

t = a;

}

)

;

decl

: #("var" i:ID (a=type | "nil" { a = null; }) b=expr

{ env.vars.put(i.getText(), new VarEntry(b)); }

)

;

Figure 1:A fragment ofTigerSemant.g showing partial rules.

2

