
Names, Scope, and Bindings
COMS W4115

Prof. Stephen A. Edwards
Spring 2002

Columbia University
Department of Computer Science

What’s In a Name?
Name: way to refer to something else

variables, functions, namespaces, objects, types

if (a < 3) {

int bar = baz(a + 2);

int a = 10;

}

Names, Objects, and Bindings

Object1 Object2

Object3

Object4 Name1

Name2

Name3

Name4

binding

binding

binding

binding

Names, Objects, and Bindings

Object1 Object2

Object3

Object4 Name1

Name2

Name3

Name4

binding

binding

binding

binding

When are objects created and destroyed?

When are names created and destroyed?

When are bindings created and destroyed?

Object Lifetimes
When are objects created and destroyed?

Object Lifetimes
The objects considered here are regions in memory.

Three principal storage allocation mechanisms:

1. Static

Objects created when program is compliled, persists
throughout run

2. Stack

Objects created/destroyed in last-in, first-out order.
Usually associated with function calls.

3. Heap

Objects created/deleted in any order, possibly with
automatic garbage collection.

Static Objects
class Example {

public static final int a = 3;

public void hello() {

System.out.println("Hello");

}

}

Static class variable

Code for hello method

String constant “hello”

Information about Example class.

Static Objects
Advantages:

Zero-cost memory management

Often faster access (address a constant)

No out-of-memory danger

Disadvantages:

Size and number must be known beforehand

Wasteful if sharing is possible

Stack-Allocated Objects
Natural for supporting recursion.

Idea: some objects persist from when a procedure is
called to when it returns.

Naturally implemented with a stack: linear array of
memory that grows and shrinks at only one boundary.

Each invocation of a procedure gets its own frame
(activation record) where it stores its own local variables
and bookkeeping information.

Activation Records

argument 2

argument 1

return address ← frame pointer

old frame pointer

local variables

temporaries/arguments

← stack pointer

↓ growth of stack

Activation Records
Return Address

Frame Pointer

x
A’s variables

Return Address

Frame Pointer

y
B’s variables

Return Address

Frame Pointer

z
C’s variables

int A() {

int x;

B();

}

int B() {

int y;

C();

}

int C() {

int z;

}

Stack-Based Langauges
The FORTH language is stack-based. Very easy to
implement cheaply on small processors.

The PostScript language is also stack-based.

Programs are written in Reverse Polish Notation:

2 3 * 4 5 * + . (. is print top-of-stack)

26 OK

FORTH
: CHANGE 0 ;
: QUARTERS 25 * + ;
: DIMES 10 * + ;
: NICKELS 5 * + ;
: PENNIES + ;
: INTO 25 /MOD CR . ." QUARTERS"

10 /MOD CR . ." DIMES"
5 /MOD CR . ." NICKELS"

CR . ." PENNIES" ;
CHANGE 3 QUARTERS 6 DIMES 10 NICKELS
112 PENNIES INTO
11 QUARTERS
2 DIMES
0 NICKELS
2 PENNIES

FORTH
Definitions are stored on a stack. FORGET discards the
given definition and all that came after.

: FOO ." Stephen" ;

: BAR ." Nina" ;

: FOO ." Edwards" ;

FOO Edwards

BAR Nina

FORGET FOO (Forgets most-recent FOO)

FOO Stephen

BAR Nina

FORGET FOO (Forgets FOO and BAR)

FOO FOO ?

BAR BAR ?

Heap-Allocated Storage
Static works when you know everything beforehand and
always need it.

Stack enables, but also requires, recursive behavior.

A heap is a region of memory where blocks can be
allocated and deallocated in any order.

(These heaps are different than those in, e.g., heapsort)

Dynamic Storage Allocation in C
struct point { int x, y; };
int play_with_points(int n)
{

struct point *points;
points = malloc(n * sizeof(struct point));
int i;
for (i = 0 ; i < n ; i++) {

points[i].x = random();
points[i].y = random();

}

/* do something with the array */

free(points);
}

Dynamic Storage Allocation

↓ free()

↓ malloc()

Dynamic Storage Allocation
Rules:

Each allocated block contiguous (no holes)

Blocks stay fixed once allocated

malloc()

Find an area large enough for requested block

Mark memory as allocated

free()

Mark the block as unallocated

Simple Dynamic Storage Allocation
Maintaining information about free memory

Simplest: Linked list

The algorithm for locating a suitable block

Simplest: First-fit

The algorithm for freeing an allocated block

Simplest: Coalesce adjacent free blocks

Dynamic Storage Allocation

S N S S N

↓ malloc()

S S N S S N

Simple Dynamic Storage Allocation

S S N S S N

↓ free()

S S N

Dynamic Storage Allocation
Many, many other approaches.

Other “fit” algorithms

Segregation of objects by size

More clever data structures

Heap Variants
Memory pools: Differently-managed heap areas

Stack-based pool: only free whole pool at once

Nice for build-once data structures

Single-size-object pool:

Fit, allocation, etc. much faster

Good for object-oriented programs

Fragmentation
malloc() seven times give

free() four times gives

malloc() ?

Need more memory; can’t use fragmented memory.

Fragmentation and Handles
Standard CS solution: Add another layer of indirection.

Always reference memory through “handles.”

ha hb hc

*a *b *c
↓ compact

ha hb hc

*a *b *c

The original
Macintosh did
this to save
memory.

Automatic Garbage Collection
Remove the need for explicit deallocation.

System periodically identifies reachable memory and
frees unreachable memory.

Reference counting one approach.

Mark-and-sweep another: cures fragmentation.

Used in Java, functional languages, etc.

Automatic Garbage Collection
Challenges:

How do you identify all reachable memory?

(Start from program variables, walk all data structures.)

Circular structures defy reference counting:

A B

Neither is reachable, yet both have non-zero reference
counts.

Garbage collectors often conservative: don’t try to collect
everything, just that which is definitely garbage.

Object Lifetimes in Tiger
From the Tiger LRM:

A variable lasts throughout its scope.

A record or array variable persists from the time it is
created to the termination of the program, even after
control has left the scope of its definition.

⇒ Normal variables are stacked; arrays and records are
put on a heap but never freed.

Tiger has no statically-allocated variables.

Code for each function is allocated statically.

Scope
When are names created, visible, and destroyed?

Scope
The scope of a name is the textual region in the program
in which the binding is active.

Static scoping: active names only a function of program
text.

Dynamic scoping: active names a function of run-time
behavior.

Scope: Why Bother?
Scope is not necessary. Languages such as assembly
have exactly one scope: the whole program.

Reason: Information hiding and modularity.

Goal of any language is to make the programmer’s job
simpler.

One way: keep things isolated.

Make each thing only affect a limited area.

Make it hard to break something far away.

Basic Static Scope
Usually, a name begins life where it is declared and ends
at the end of its block.

void foo()
{

int k;

}

Hiding a Definition
Nested scopes can hide earlier definitions, giving a hole.

void foo()

{

int x;

while (a < 10) {

int x;

}

}

Static Scoping in Java
public void example() {

// x, y, z not visible

int x;
// x visible

for (int y = 1 ; y < 10 ; y++) {
// x, y visible

int z;
// x, y, z visible

}

// x visible
}

Nested Subroutines in Pascal

procedure mergesort;

var N : integer;

procedure split;

var I : integer;

begin .. end

procedure merge;

var J : integer;

begin .. end

begin .. end

Nested Subroutines in Pascal
procedure A;

procedure B;

procedure C;

begin .. end

procedure D;

begin C end

begin D end

procedure E;

begin B end

begin E end

A

E

B

D

C

Scope in Tiger
The let expression defines scopes:

let
var x := 8

in

end

Scope in Tiger
Scopes can nest to produce holes

let
var x := 8

in

let

var x := 10
in

end

end

Scope in Tiger
Mutual recursion possible because of odd scoping rules.

Scope of f1, f2, and f3:

let
function f0() = (...)
var x := 8
function f1() = (...)

function f2() = (...)

function f3() = (...)

in

end

Nested Functions in Tiger
Static (lexical) scope like Pascal

let

var a := 3

function f1() = (a := a + 1)

in

let

var a := 4

function f2() = (f1())

in

f2()

end

end

Dynamic Scoping in TeX
% \x, \y undefined

{

% \x, \y undefined

\def \x 1

% \x defined, \y undefined

\ifnum \a < 5

\def \y 2

\fi

% \x defined, \y may be undefined

}

% \x, \y undefined

Static vs. Dynamic Scope
program example;
var a : integer; (* Outer a *)

procedure seta; begin a := 1 end

procedure locala;
var a : integer; (* Inner a *)
begin seta end

begin
a := 2;
if (readln() = ’b’) locala
else seta;
writeln(a)

end

Static vs. Dynamic Scope
Most languages now use static scoping.

Easier to understand, harder to break programs.

Advantage of dynamic scoping: ability to change
environment.

A way to surreptitious pass additional parameters.

Application of Dynamic Scoping
program messages;

var message : string;

procedure complain;

writeln(message);

procedure problem1;

var message : string;

message := "Out of memory"; complain

procedure problem2;

var message : string;

message := "Out of time"; complain

Forward Declarations
Languages such as C, C++, and Pascal require forward
declarations for mutually-recursive references.

int foo();

int bar() { ... foo(); ... }

int foo() { ... bar(); ... }

Partial side-effect of compiler implementations. Allows
single-pass compilation.

Open vs. Closed Scopes
An open scope begins life including the symbols in its
outer scope.

Example: blocks in Java

{ int x;

for (;;) { /* x visible here */ }

}

A closed scope begins life devoid of symbols.

Example: structures in C.

struct foo {

int x; float y;

}

Overloading
What if there is more than one object for a name?

Overloading versus Aliases
Overloading: two objects, one name

Alias: one object, two names

In C++

int foo(int x) { ... }

int foo(float x) { ... } // foo overloaded

void bar()

{

int x, *y;

y = &x; // Two names for x: x and *y

}

Examples of Overloading
Most languages overload arithmetic operators:

1 + 2 // Integer operation

3.1415 + 3e-4 // Floating-point operation

Resolved by checking the type of the operands.

Context must provide enough hints to resolve the
ambiguity.

Function Name Overloading
C++ and Java allow functions/methods to be overloaded.

int foo();

int foo(int a); // OK: different # of args

float foo(); // Error: only return type

int foo(float a); // OK: different arg types

Useful when doing the same thing many different ways:

int add(int a, int b);

float add(float a, float b);

void print(int a);

void print(float a);

void print(char *s);

Function Overloading in C++
Complex rules because of promotions:

int i; long int l;

l + i

Integer promoted to long integer to do addition.

3.14159 + 2

Integer is promoted to double; addition is done as double.

Function Overloading in C++
1. Match trying trivial conversions

int a[] to int *a, T to const T, etc.

2. Match trying promotions

bool to int, float to double, etc.

3. Match using standard conversions

int to double, double to int

4. Match using user-defined conversions

operator int() const { return v; }

5. Match using the elipsis ...

Two matches at the same (lowest) level is ambiguous.

Overloading in Tiger
The binary operators < > >= <= are overloaded:
operands may be either both integer or both string.

The binary operators = <> are also overloaded. Numeric,
string, or “pointer equality” for arrays and records.

let

type ia = array of integer

var i1 := ia [5] of 0

var i2 := ia [5] of 0

var i3 := i1

in

i1 = i2, i2 = i3, i1 = i3

end

Symbol Tables
How does a compiler implement scope rules?

Symbol Tables
Basic mechanism for relating symbols to their definitions
in a compiler.

Eventually need to know many things about a symbol:

• Whether it is defined in the current scope. “Undefined
symbol”

• Whether its defined type matches its use.
1 + "hello"

• Where its object is stored (statically allocated, on
stack).

Symbol Tables
Implemented as a collection of dictionaries in which each
symbol is placed.

Two operations: insert adds a binding to a table and
lookup locates the binding for a name.

Symbol tables are created and filled, but never destroyed.

Symbol Tables
There are three namespaces in Tiger:

• functions and variables

• types

• record names

Symbol Tables in Tiger

parent

n

x

sqr

parent

int

stringparent

ia
let

var n := 8

var x := 3

function sqr(a:int)

= a * a

type ia = array of int

in

n := sqr(x)

end

Implementing Symbol Tables
Many different ways:

• linked-list

• hash table

• binary tree

Hash tables are faster, but linked lists will be good enough
for our simple compiler.

Symbol Table Lookup
Basic operation is to find the entry for a given symbol.

In our implementation, each symbol table is a scope.

Each symbol table has a pointer to its parent scope.

Lookup: if symbol in current table, return it, otherwise look
in parent.

Static Semantic Checking
Main application of symbol tables.

A taste of things to come:

Enter each declaration into its symbol table.

Check that each symbol used is actually defined in the
symbol table.

Check its type. . . (next time)

Binding Time
When are bindings created and destroyed?

Binding Time
When a name is connected to an object.

Bound when Examples

language designed if else

language implemented data widths

Program written foo bar

compiled static addresses, code

linked relative addresses

loaded shared objects

run heap-allocated objects

Binding Time and Efficiency
Earlier binding time⇒ more efficiency, less flexibility

Compiled code more efficient than interpreted because
most decisions about what to execute made beforehand.
switch (statement) {

case add:

r = a + b;

break;

case sub:

r = a - b;

break;

/* ... */

}

add %o1, %o2, %o3

Binding Time and Efficiency
Dynamic method dispatch in OO languages:

class Box : Shape {

public void draw() { ... }

}

class Circle : Shape {

public void draw() { ... }

}

Shape s;

s.draw(); /* Bound at run time */

Binding Time and Efficiency
Interpreters better if language has the ability to create new
programs on-the-fly.

Example: Ousterhout’s Tcl language.

Scripting language originally interpreted, later
byte-compiled.

Everything’s a string.

set a 1

set b 2

puts "$a + $b = [expr $a + $b]"

Binding Time and Efficiency
Tcl’s eval runs its argument as a command.

Can be used to build new control structures.

proc ifforall {list pred ifstmt} {

foreach i $list {

if [expr $pred] { eval $ifstmt }

}

}

ifforall {0 1 2} {$i % 2 == 0} {

puts "$i even"

}

0 even

2 even

Binding Times in Tiger
Keywords bound at language design time.

Identifiers bound at program writing time.

Function code, stack offsets, types bound at compile time.

Records and array addresses bound at runtime.

Little dynamic behavior

Binding Reference Environments
What happens when you take a snapshot of a subroutine?

References to Subroutines
In many languages, you can create a reference to a
subroutine and call it later. E.g., in C,

int foo(int x, int y) { /* ... */ }

void bar()

{

int (*f)(int, int) = foo;

(*f)(2, 3); /* invoke foo */

}

Where does its environment come from?

References to Subroutines
C is simple: no function nestion; only environment is the
omnipresent global one. But what if there were?

typedef int (*ifunc)();

ifunc foo() {

int a = 1;

int bar() { return a; } /* not C */

return bar;

}

int main() {

ifunc f = foo(); /* returns bar */

return (*f)(); /* call bar. a? */

}

Shallow vs. Deep binding

static dynamic

shallow 1 2

deep 1 1

typedef int (*ifunc)();

ifunc foo() {

int a = 1;

int bar() { return a; }

return bar;

}

int main() {

ifunc f = foo();

int a = 2;

return (*f)();

}

Shallow vs. Deep binding

static

shallow 2

deep 1

main()

a(1,q)

i = 1, p = q

b reference

a(2,b)

i = 2, p = b

b

void a(int i, void (*p)()) {

void b() { printf("%d", i); }

if (i=1) a(2,b) else (*p)();

}

void q() {}

int main() {

a(1,q);

}

Shallow vs. Deep Binding
Tiger does not have function types; problem avoided.

C does not have nested subroutines; problem avoided.

Modula-2 only allows outermost procedures to be passed
as parameters (like C’s solution).

Pascal has lexical scoping with nested subroutines, but
does not allow function pointers to be returned.

Ada 83 prohibits passing subroutines as parameters.

