
Abstract Syntax Trees
COMS W4115

Prof. Stephen A. Edwards
Spring 2002

Columbia University
Department of Computer Science

Parsing and Syntax Trees
Parsing decides if the program is part of the language.

Not that useful: we want more than a yes/no answer.

Like most, ANTLR parsers can include actions: pieces of
code that run when a rule is matched.

Top-down parsers: actions executed during parsing rules.

Bottom-up parsers: actions executed when rule is
“reduced.”

Actions
Simple languages can be interpreted with parser actions.

class CalcParser extends Parser;

expr returns [int r] { int a; r=0; }

: r=mexpr ("+" a=mexpr { r += a; })* EOF ;

mexpr returns [int r] { int a; r=0; }

: r=atom ("*" a=atom { r *= a; })* ;

atom returns [int r] { r=0; }

: i:INT

{ r = Integer.parseInt(i.getText()); } ;

Actions
In a top-down parser, actions are executed during the
matching routines.

Actions can appear anywhere within a rule: before, during,
or after a match.

rule { /* before */ }

: A { /* during */ } B

| C D { /* after */ } ;

Bottom-up parsers restricted to running actions only after
a rule has matched.

Implementing Actions
Nice thing about top-down parsing: grammar is essentially
imperative.

Action code simply interleaved with rule-matching.

Easy to understand what happens when.

Implementing Actions
expr returns [int r] { int a; r=0; }

: r=mexpr ("+" a=mexpr { r += a; })* EOF ;

public final int expr() { // What ANTLR builds

int r; int a; r=0;

r=mexpr();

while ((LA(1)==PLUS)) { // ()*

match(PLUS); // "+"

a=mexpr(); // a=mexpr

r += a; // { r += a; }

}

match(Token.EOF_TYPE);

return r;

}

Actions
Usually, actions build a data structure that represents the
program.

Separates parsing from translation.

Makes modification easier by minimizing interactions.

Allows parts of the program to be analyzed in different
orders.

Actions
Bottom-up parsers can only build bottom-up data
structures.

Children known first, parents later.

→ Constructor for any object can require knowledge of
children, but not of parent.

Context of an object only established later.

Top-down parsers can build both kinds of data structures.

What To Build?
Typically, an Abstract Syntax Tree that represents the
program.

Represents the syntax of the program almost exactly, but
easier for later passes to deal with.

Punctuation, whitespace, other irrelevant details omitted.

Abstract vs. Concrete Trees
Like scanning and parsing, objective is to discard
irrelevant details.

E.g., comma-separated lists are nice syntactically, but
later stages probably just want lists.

AST structure almost a direct translation of the grammar.

Abstract vs. Concrete Trees
expr : mexpr ("+" mexpr)* ;

mexpr : atom ("*" atom)* ;

atom : INT ;

3 + 5 * 4

expr

mexpr

atom

INT:3

”+” mexpr

atom

INT:5

”+” atom

INT:4

+

INT:3 *

INT:5 INT:4

Concrete Parse Tree Abstract Syntax Tree

Implementing ASTs
Most general implementation: ASTs are n-ary trees.

Each node holds a token and pointers to its first child and
next sibling:

Parent

Last Sibling Node Next Sibling

First Child

Example of AST structure

if

>

a b

-=

a b

-=

b a

if

> -= -=

a b a b b a

Typical AST Construction Operations
Create a new node

Append a subtree to the children at this node.

> -=

a b a b

+ -=

b a

=

> -= -=

a b a b b a

Comment on Generic ASTs
Is this general-purpose structure too general?

Not very object-oriented: whole program represented with
one type.

Alternative: Heterogeneous ASTs: one class per object.

class BinOp {

int operator; Expr left, right;

};

class IfThen {

Expr predicate; Stmt thenPart, elsePart;

};

Heterogeneous ASTs
Advantage: avoid switch statements when walking tree.

Disadvantage: each analysis requires another method.

class BinOp {

int operator; Expr left, right;

void typeCheck() { ... };

void constantProp() { ... };

void buildThreeAddr() { ... };

};

Analyses spread out across class files.

Classes become littered with analysis code, additional
annotations.

Comment on Generic ASTs
ANTLR offers a compromise:

It can automatically generate tree-walking code.

→ It generates the big switch statement.

Each analysis can have its own file.

Still have to modify each analysis if the AST changes.

→ Choose the AST structure carefully.

Building ASTs

The Obvious Way to Build ASTs
class ASTNode {

ASTNode(Token t) { ... }

void appendChild(ASTNode c) { ... }

void appendSibling(ASTNode C) { ... }

}

stmt returns [ASTNode n]

: ’if’ p=expr ’then’ t=stmt ’else’ e=stmt

{ n = new ASTNode(new Token("IF"));

n.appendChild(p);

n.appendChild(t);

n.appendChild(e); } ;

The Obvious Way
Putting code in actions that builds ASTs is traditional and
works just fine.

But it’s tedious.

Fortunately, ANTLR can automate this process.

Building an AST Automatically with
ANTLR
class TigerParser extends Parser;

options {

buildAST=true;

}

By default, each matched token becomes an AST node.

Each matched token or rule is made a sibling of the AST
for the rule.

After a token, ˆ makes the node a root of a subtree.

After a token, ! prevents an AST node from being built.

Automatic AST Construction
Running

class CalcParser extends Parser;

options { buildAST=true; }

expr : mexpr (’+’ mexpr)* EOF ;

mexpr : atom (’*’ atom)* ;

atom : INT ;

on

2*3+4*5+6

gives

2 * 3 + 4 * 5 + 6 EOF

AST Construction with Annotations
Running

class CalcParser extends Parser;

options { buildAST=true; }

expr : mexpr (’+’ˆ mexpr)* EOF! ;

mexpr : atom (’*’ˆ atom)* ;

atom : INT ;

on

2*3+4*5+6

gives

+

+ 6

* *

2 3 4 5

Choosing AST Structure

Designing an AST Structure
Sequences of things

Removing unnecessary punctuation

Additional grouping

How many token types?

Sequences of Things
Comma-separated lists are common

int gcd(int a, int b, int c)

args : "(" (arg ("," arg)*)? ")" ;

A concrete parse tree:

args

(,

,

arg

int a

arg

int b

arg

int c

)

Drawbacks:

Many unnecessary nodes

Branching suggests recursion

Harder for later routines to get
the data they want

Sequences of Things
Better to choose a simpler structure for the tree.

Punctuation irrelevant; build a simple list.

int gcd(int a, int b, int c)

args : "("! (arg (","! arg)*)? ")"!

{ #args = #([ARGS], args); } ;

ARGS

arg

int a

arg

int b

arg

int c

What’s going on here?
args : "("! (arg (","! arg)*)? ")"!

{ #args = #([ARGS], args); } ;

Rule generates a sequence of arg nodes.

Node generation supressed for punctuation (parens,
commas).

Action uses ANTLR’s terse syntax for building trees.

{ #args = #([ARGS] , args) ; } ;

“set the args tree to a new tree whose root is a node of
type ARGS and whose child is the old args tree”

What’s going on here?
(int a, int b, int c)

args : "("! (arg (","! arg)*)? ")"!

{ #args = #([ARGS], args); } ;

#args
arg arg arg

int a int b int c

#args ARGS

arg arg arg

int a int b int c

Removing Unnecessary Punctuation
Punctuation makes the syntax readable, unambiguous.

Information represented by structure of the AST

Things typically omitted from an AST

• Parentheses

Grouping and precedence/associativity overrides

• Separators (commas, semicolons)

Mark divisions between phrases

• Extra keywords

while-do, if-then-else (one is enough)

Additional Grouping
Tiger allows mutually recursive definitions only in
uninterrupted sequences:

let

function f1() = (f2()) /* OK */

function f2() = (...)

in ... end

let

function f1() = (f2()) /* Error */

var foo := 42 /* splits group */

function f2() = (...)

in ... end

Grouping
Convenient to group sequences of definitions in the AST.

Simplifies later static semantic checks.

let

function f1() = (...)

function f2() = (...)

var foo := 42

in ... end

defs

func

f1 . . .

func

f2 . . .

var

foo . . .

defs

funcs

func

f1 . . .

func

f2 . . .

vars

var

foo . . .

Grouping
Identifying and building sequences of definitions a little
tricky in ANTLR.

Obvious rules

defs : (funcs | vars | types)* ;

funcs : (func)+ ;

vars : (var)+ ;

types : (type)+ ;

are ambiguous: Maximum-length sequences or
minimum-length sequences?

Grouping
Hint: Use ANTLR’s greedy option to disambiguate this.

The greedy flag decides whether repeating a rule takes
precedence when an outer rule could also work.

string : (dots)* ;

dots : (".")+ ;

When faced with a period, the second rule can repeat
itself or exit.

The Greedy Option
Setting greedy true makes “dots” as long as possible

string : (dots)* ;

dots : (options greedy=true; : ".")+ ;

Setting greedy false makes each “dots” a single period

string : (dots)* ;

dots : (options greedy=false; : ".")+ ;

How Many Types of Tokens?
Since each token is a type plus some text, there is some
choice.

Generally, want each “different” construct to have a
different token type.

Different types make sense when each needs different
analysis.

Arithmetic operators usually not that different.

For the assignment, you need to build a node of type
“BINOP” for every binary operator. The text indicates the
actual operator.

Walking ASTs

Walking ASTs with ANTLR
ANTLR can build “tree parsers” as easily as token parsers.

Much simpler: tree structure is already resolved.

Simple recursive recursive walk on the tree.

Matches are sufficient, not exact.

(Cheaper to implement.)

#(A B) also matches the larger tree
#(A #(B C) D)

Walking ASTs with ANTLR
class CalcParser extends Parser

expr : mexpr ("+"ˆ mexpr)* ;

mexpr : atom ("*"ˆ atom)* ;

atom : INT | "(" expr ")" ;

class CalcWalker extends TreeParser

expr returns [int r]

{ int a,b; r=0; }

: #("+" a=expr b=expr) { r = a + b; }

| #("*" a=expr b=expr) { r = a * b; }

| i:INT { r = parseInt(i.getText()); }

;

Walking ASTs with ANTLR
class CalcWalker extends TreeParser

expr returns [int r]

{ int a,b; r=0; }

: #("+" a=expr b=expr) { r = a + b; }

| #("*" a=expr b=expr) { r = a * b; }

| i:INT { r = parseInt(i.getText()); }

;

This walker only has one rule: grammar had three.

Fine: only structure of tree matters.

Walking ASTs with ANTLR

: #("+" a=expr b=expr) { r = a + b; }

| #("*" a=expr b=expr) { r = a * b; }

| i:INT { r = parseInt(i.getText()); }

;

The highlighted line says

Match a tree #(...)

With the token "+" at the root

With two children matched by expr

(Store their results in a and b)

When this is matched, assign a + b to the result r.

Comments on walking ASTs
Tree grammars may seem to be ambiguous.

Does not matter: tree structure already known

Unlike proper parsers, tree parsers have only one token of
lookahead.

Must be possible to make a decision locally.

Has impact on choice of AST structure.

Comments on walking ASTs
Optional clauses can cause trouble.

Place them at the end.

stmt

: #("if" expr stmt (stmt)?) // OK

| #("do" (stmt)? expr) // Bad

;

First rule works: can easily decide if there is another child.

Second rule does not: not enough lookahead.

Comments on walking ASTs
Lists of undefined length can also cause trouble

funcdef

: #("func" ID (arg)* stmt)

;

Does not work because the tree walker does not look
ahead.

Solution: use a subtree

funcdef

: #("func" #("args" (arg)*) stmt)

;

The placeholder resolves the problem.

Walking ASTs with ANTLR
I have supplied an AST walker that will serve as the
specification for the Tiger AST.

The walker contains no actions, but will report a “syntax
error” if supplied with an erroneous tree.

The Tiger Language

The Tiger Language
The little language we’re going to compile for this class.

Taken from Appel, Modern Compiler Implementation in
Java.

Language reference manual on class web site: read it.

The Tiger Language
Little language with integers, strings, arrays, records, and
nested functions.

No statements: everything is an expression.

Very, very basic programs:

1

"Hello"

1+5*3

The let Expression
Things only get interesting with the let expression.

Syntax:

let declaration-list in expr-seq end

Idea: declarations in declaration-list are visible to the
expr-seq.

let

function sqr(x:int) = x * x

in

sqr(5)

end

Declarations
let

type intArray = array of int

type point = { x : int, y : int }

type dot = point

var pi := 31415

var zeros : intArray := intArray [10] of 0

function sqr(x:int) = x * x

function cube(x:int) : int = x * x * x

in

0

end

Comments
Comments begin and end as in C/Java: /* */

Comments may nest, so this is /*/**/ ignored */

Comments are often the hardest parts of a scanner.

Make sure to test them carefully.

Read the ANTLR documentation’s discussion of
comments.

String Constants
"Enclosed by double-quotes"

"May include escapes, e.g., newline \n"

"Other escapes: decimal ASCII \013"

"Multi-\

\line string constants"

ANTLR scanners can change text as it’s being scanned.

Use this to implement the escapes.

Grammar
Grammar given in the language reference manual is
ambiguous.

Enough additional rules are given (associativity,
precedence) to disambiguate it.

Doing this a big part of the assignment.

Grammatical Idiosyncrasies
The arithmetic operators + - * / associate left-to-right
as usual.

The comparison operators = <> < > <= >= do no
associate.

a < b = c is illegal, but (a < b) = c is.

Ambiguities?
The syntax for creating an empty array

type-id [expr] of expr

looks a lot like the syntax for subscripting

lvalue [expr]

Use ANTLR’s facilities for syntactic predicates for this.

stat: (list "=")=> list "=" list

| list

;

The first rule says “try to match a list followed by =. If this
works, proceed.”

The BINOP Challenge
Every binary operator should be represented with a the
single token type BINOP.

The text of this token distinguishes the operator.

Fortunately, you can change the type of a token without
changing its text:

ex: "foo" { #ex.setType(BINOP); } ;

Rewriting Trees with ANTLR

Rewriting Trees
Much of compiling is refining and simplifying:

Discarding unnecessary information

Reducing high-level things to low-level ones

How to implement this depends on the representation.

Trees are fairly natural: replace one or more children.

ANTLR tree walkers can do semi-automatically.

Rewriting Trees with ANTLR
In the parser, buildAST=true adds rules that
automatically builds an AST during parsing.

In a tree walker, buildAST=true adds code that
automatically makes a copy of the input tree.

This is actually useful because you can selectively disable
it and generate your own trees.

Rewriting Trees with ANTLR
An example: Replace x+0 with x.

First, make a copying TreeParser:

class FoldZeros extends TreeParser;

options {

buildAST = true;

}

expr

: #("+" expr expr)

| #("*" expr expr)

| INT

;

Rewriting Trees with ANTLR
Next, disable automatic rewriting for the + operator and
add a manual copy.

Adding ! before a subrule disables AST generation for
that subrule.

Tree generation is like that in parsers.

expr

:! #(PLUS left:expr right:expr)

{ #expr = #(PLUS, left, right); }

| #(STAR expr expr)

| i:INT

;

Rewriting Trees with ANTLR
Finally, check for the x+0 case.

expr

:! #(PLUS left:expr right:expr)

{

if (#right.getType()==INT &&

Integer.parseInt(#right.getText())==0)

#expr = #left;

else

#expr = #(PLUS, left, right);

}

| #(STAR expr expr)

| i:INT

;

Complete Example
class CalcTreeWalker extends TreeParser;

options { buildAST = true; }

expr

:! #(PLUS left:expr right:expr) {

if (#right.getType()==INT &&

Integer.parseInt(#right.getText())==0)

#expr = #left;

else #expr = #(PLUS, left, right);

}

| #(STAR expr expr)

| i:INT

;

Examples of Tree Rewriting
This was incomplete: should do 0+x case, too.

General constant folding: replace constant arithmetic
expressions with their results.

Must do this carefully: watch for overflow, imprecision.

Tricky to do correctly for integers, virtually impossible for
floating-point.

Cross-compilation problem: how do you know the
floating-point unit on your target machine behaves exactly
like the one where you’re compiling?

Examples of Tree Rewriting
Change logical operators && and || to if-then statements.

if (a && b && c || d && e) { ... }

if (a) {

if (b)

if (c)

goto Body;

} else if (d)

if (e) {

Body: ...

}

}

You’ll do this in the second assignment.

Examples of Tree Rewriting
Dismantle loops into gotos.

while (a < 3) {

printf("a is %d", a);

a++;

}

Becomes

goto Continue;

Again:

printf("a is %d", a);

a++;

Continue:

if (a < 3) goto Again;

