
1

Copyright © 2001 Stephen A. Edwards All rights reserved

The Verilog Language

Prof. Stephen A. Edwards

Copyright © 2001 Stephen A. Edwards All rights reserved

The Verilog Language

� Originally a modeling langua ge for a very efficient
event-driven dig ital logic simulator

� Later pushed into use as a specification language for
log ic synthesis

� Now, one of the two most commonly-used languages
in dig ital hardware design (VHDL is the other)

� Virtually every chip (FPGA, ASIC, etc.) is designed in
part using one of these two langu ages

� Combines structural and behavioral modeling styles

Copyright © 2001 Stephen A. Edwards All rights reserved

Multiplexer Buil t From Primitives

module mux(f, a, b, sel);
output f;
input a, b, sel;

and g1(f1, a, nsel),
g2(f2, b, sel);

or g3(f, f1, f2);
not g4(nsel, sel);

endmodu le a

b
sel

f

nsel f1

f2

g1

g2

g3
g4

Verilog programs
built from modules

Each module
has an interface

Module may
contain structure:
instances of
primitives and other
modules

Copyright © 2001 Stephen A. Edwards All rights reserved

Multiplexer Buil t From Primitives

module mux(f, a, b, sel);
output f;
input a, b, sel;

and g1(f1, a, nsel),
g2(f2, b, sel);

or g3(f, f1, f2);
not g4(nsel, sel);

endmodu le a

b
sel

f

nsel f1

f2

g1

g2

g3
g4

Identifiers not
explicitly
defined default
to wires

Copyright © 2001 Stephen A. Edwards All rights reserved

Multiplexer Buil t With Always

module mux(f, a, b, sel);
output f;
input a, b, sel;
reg f;

always @(a or b or sel)
 if (sel) f = a;
 else f = b;

endmodu le a

b
sel

f

Modules may contain
one or more always
blocks

Sensitivity list
contains signals
whose change
triggers the
execution of the
block

Copyright © 2001 Stephen A. Edwards All rights reserved

Multiplexer Buil t With Always

module mux(f, a, b, sel);
output f;
input a, b, sel;
reg f;

always @(a or b or sel)
 if (sel) f = a;
 else f = b;

endmodu le a

b
sel

f

A reg behaves like
memory: holds its value
until imperatively
assigned otherwise

Body of an always
block contains
traditional imperative
code

2

Copyright © 2001 Stephen A. Edwards All rights reserved

Mux with Continuou s Ass ignment

module mux(f, a, b, sel);
output f;
input a, b, sel;

assign f = sel ? a : b;

endmodu le

a

b
sel

f

LHS is always set to the
value on the RHS

Any change on the right
causes reevaluation

Copyright © 2001 Stephen A. Edwards All rights reserved

Mux with User-Defined Primitive

primitive mux(f, a, b, sel);
output f;
input a, b, sel;

table
 1?0 : 1;
 0?0 : 0;
 ?11 : 1;
 ?01 : 0;
 11? : 1;
 00? : 0;
endtable
endprimitive

a

b
sel

f

Behavior defined using a
truth table that includes
“don’t cares”

This is a less pessimistic
than others: when a & b
match, sel is ignored

(others produce X)

Copyright © 2001 Stephen A. Edwards All rights reserved

How Are Simulators Used?

� Testbench generates stimulus and checks r esponse
� Coup led to model of the sys tem
� Pair is run simultaneously

Testbench System Model

Stimulus

Response
Result
checker

Copyright © 2001 Stephen A. Edwards All rights reserved

Structural Modeling

� When Verilog was first developed (1984) most logic
simulators operated on netlists

� Netlist: list of gates and how they’re connected
� A natural representation of a dig ital logic ci rcuit

� Not the most convenient way to express test benches

Copyright © 2001 Stephen A. Edwards All rights reserved

Behavioral Modeling

� A much easier way to write testbenches
� Also goo d for more abstract models of circuits

• Easier to write
• Simulates faster

� More flexible
� Provides sequencing

� Verilog succeeded in part because it allowed bo th the
model and the testbench to be described together

Copyright © 2001 Stephen A. Edwards All rights reserved

How Verilog Is Used

� Virtually every ASIC is designed using either Verilog
or VHDL (a similar language)

� Behavioral modeling with some structural elements
� “ Synthesis subset”

• Can be translated us ing Synop sys ’ Design Compiler or
others into a netlist

� Design written in Verilog
� Simulated to death to check functionali ty
� Synthesized (netlist generated)
� Static timing analysis to check timing

3

Copyright © 2001 Stephen A. Edwards All rights reserved

Two Main Components of Verilog

� Concurrent, event-triggered processes (behavioral)
• Initial and Always blocks
• Imperative cod e that can perform standard data

manipulation tasks (ass ignment, if-then, case)
• Processes run until they delay for a period of time or

wait for a triggering event

� Structure (Plumbing)
• Verilog program build from modu les wi th I/O interfaces
• Modu les may contain i nstances of ot her modu les
• Modu les contain l ocal s ignals, etc.
• Modu le configuration is s tatic and all run c oncurrently

Copyright © 2001 Stephen A. Edwards All rights reserved

Two Main Data Types

� Nets represent connections between things
• Do not hol d their value
• Take their value from a driver such as a gate or other

modu le
• Canno t be ass igned in an initial or always block

� Regs represent data storage
• Behave exactly like memory in a computer
• Hold their value until explicitly ass igned in an initial or

always block
• Never conn ected to something
• Can be used to model latches, flip-flops, etc., but do

not correspond exactly
• Shared variables with all their attendant problems

Copyright © 2001 Stephen A. Edwards All rights reserved

Discrete-event Simulation

� Basic idea: only do work when something changes
� Centered around an event queue

• Contains events labeled wi th the simulated time at
which they are to be execut ed

� Basic simulation paradigm
• Execute every event for the current simulated time
• Doing this changes syst em state and m ay schedule

events in the future
• When there are no events left a t the current time

instance, advance simulated time soon est event i n the
queue

Copyright © 2001 Stephen A. Edwards All rights reserved

Four-valued Data

� Verilog ’s nets and registers hold four-valued data

� 0, 1
• Obvious

� Z
• Output of an und riven tri-state driver
• Models case where not hing is sett ing a wir e’s value

� X
• Models when the simulator can’t decide the value
• Initial state of registers
• When a wi re is being driven to 0 and 1 simul taneously
• Output of a gate wi th Z inpu ts

Copyright © 2001 Stephen A. Edwards All rights reserved

Four-valued Logic

� Logical operators work on three-valued logic

0 1 X Z

0 0 0 0 0

1 0 1 X X

X 0 X X X

Z 0 X X X

Output 0 if one input
is 0

Output X if both
inputs are gibberish

Copyright © 2001 Stephen A. Edwards All rights reserved

Structural Modeling

4

Copyright © 2001 Stephen A. Edwards All rights reserved

Nets and Registers

� Wires and registers can be bits, vectors, and arrays

wire a; // Simple wire

tri [15:0] dbus; // 16-bit tristate bus

tri #(5,4,8) b; // Wire with delay

reg [-1:4] vec; // Six-bit register

trireg (small) q; // Wire stores a small charge

integer imem[0:1023]; // Array of 1024 integers

reg [31:0] dcache[0:63]; // A 32-bit memory

Copyright © 2001 Stephen A. Edwards All rights reserved

Modu les and Instances

� Basic structure of a Verilog module:

module mymod(output1, output2, … input1, input2);

output output1;

output [3:0] outpu t2;

input inpu t1;

input [2:0] inpu t2;

…

endmodu le

Verilog convention
lists outputs first

Copyright © 2001 Stephen A. Edwards All rights reserved

Instantiating a Module

� Instances of

module mymod(y, a, b);

� look like

mymod mm1(y1, a1, b1); // Connect-by-position

mymod (y2, a1, b1),

 (y3, a2, b2); // Instance names omitted

mymod mm2(.a(a2), .b(b2), .y(c2)); // Connect-by-name
Copyright © 2001 Stephen A. Edwards All rights reserved

Gate-level Primitives

� Verilog provides the following:

and nand logical AND/NAND

or nor logical OR/NOR

xor xnor logical XOR/XNOR

buf not buffer/inverter

bufif0 notif0 Tristate with low enable

bifif1 notif1 Tristate with high enable

Copyright © 2001 Stephen A. Edwards All rights reserved

Delays on Primitive Instances

� Instances of primitives may include delays

buf b1(a, b); // Zero delay

buf #3 b2(c, d); // Delay of 3

buf #(4,5) b3(e, f); // Rise=4, fall=5

buf #(3:4:5) b4(g, h); // Min-typ-max

Copyright © 2001 Stephen A. Edwards All rights reserved

Switch-level Primitives

� Verilog also provides mechanisms for modeling
CMOS transistors that behave like switches

� A more detailed modeling scheme that can catch
some additional electrical problems when transistors
are used in this way

� Now, li tt le-used because circuits generally aren’t
built this way

� More seriously, model is not detailed enou gh to
catch many of the problems

� These circuits are usually simulated us ing SPICE-like
simulators based on nonlinear differential equation
solvers

5

Copyright © 2001 Stephen A. Edwards All rights reserved

User-Defined Primitives

� Way to define gates and sequential e lements using a
truth table

� Often simulate faster than using expressions,
collections of primitive gates, etc.

� Gives more control over behavior with X inputs
� Most often used for specifying custom gate libraries

Copyright © 2001 Stephen A. Edwards All rights reserved

A Carry Primitive

primitive carry(out, a, b, c);
output out;
input a, b, c;
table
 00? : 0;
 0?0 : 0;
 ?00 : 0;
 11? : 1;
 1?1 : 1;
 ?11 : 1;
endtable
endprimitive

Always have exactly
one output

Truth table may
include don’t-care (?)
entries

Copyright © 2001 Stephen A. Edwards All rights reserved

A Sequential Primitive

Primitive dff(q, clk, data);
output q; reg q;
input clk, data;
table
// clk data q new-q
 (01) 0 : ? : 0; // Latch a 0
 (01) 1 : ? : 1; // Latch a 1
 (0x) 1 : 1 : 1; // Hold when d and q b oth 1
 (0x) 0 : 0 : 0; // Hold when d and q b oth 0
 (?0) ? : ? : -; // Hold when clk falls
 ? (??) : ? : -; // Hold when clk stable
endtable
endprimitive

Copyright © 2001 Stephen A. Edwards All rights reserved

Continuou s Assignment

� Another way to describe combinational function
� Convenient for logical or datapath specifications

wire [8:0] sum;

wire [7:0] a, b;

wire carryin;

assign sum = a + b + carryin;

Define bus widths

Continuous
assignment:
permanently sets the
value of sum to be
a+b+carryin

Recomputed when a,
b, or carryin changes

Copyright © 2001 Stephen A. Edwards All rights reserved

Behavioral Modeling

Copyright © 2001 Stephen A. Edwards All rights reserved

Initial and Always Blocks

� Basic components for behavioral modeling

initial

 begin

 … imperative statements …

 end

Runs when simulation starts

Terminates when control
reaches the end

Good for providing stimulus

always

 begin

 … imperative statements …

 end

Runs when simulation starts

Restarts when control reaches
the end

Good for modeling/specifying
hardware

6

Copyright © 2001 Stephen A. Edwards All rights reserved

Initial and Always

� Run until they encounter a delay

initial begin
 #10 a = 1; b = 0;
 #10 a = 0; b = 1;
end

� or a wait for an event

always @(posedge clk) q = d;

always begin wait(i); a = 0; wait(~i); a = 1; end

Copyright © 2001 Stephen A. Edwards All rights reserved

Procedural Assignment

� Inside an initial or always block:

sum = a + b + cin;

� Just like in C: RHS evaluated and assigned to LHS
before next statement executes

� RHS may contain wires and regs
• Two poss ib le sources for data

� LHS must be a reg
• Primitives or cont. ass ignment may set wi re values

Copyright © 2001 Stephen A. Edwards All rights reserved

Imperative Statements

if (select == 1) y = a;

else y = b;

case (op)

 2’b00: y = a + b;

 2’b01: y = a – b;

 2’b10: y = a ^ b;

 default: y = ‘hxxxx;

endcase

Copyright © 2001 Stephen A. Edwards All rights reserved

For Loop s

� A increasing sequence of values on an outpu t

reg [3:0] i, output;

for (i = 0 ; i <= 15 ; i = i + 1) begin

 outpu t = i;

 #10;

end

Copyright © 2001 Stephen A. Edwards All rights reserved

While Loops

� A increasing sequence of values on an outpu t

reg [3:0] i, output;

i = 0;

while (I <= 15) begin

 outpu t = i;

 #10 i = i + 1;

end

Copyright © 2001 Stephen A. Edwards All rights reserved

Modeling A Flip-Flop With Always

� Very basic: an edge-sensitive flip-flop

reg q;

always @(posedge clk)

 q = d;

� q = d assignment runs when clock rises: exactly the
behavior you expect

7

Copyright © 2001 Stephen A. Edwards All rights reserved

Blocking vs. Nonblock ing

� Verilog has two types of procedural assignment

� Fundamental problem:
• In a sync hronou s sys tem, all flip-f lops sample

simultaneously
• In Verilog, always @(posedge clk) blocks run in some

und efined sequence

Copyright © 2001 Stephen A. Edwards All rights reserved

A Flawed Shift Register

� This doesn’t work as you’ d expect:

reg d1, d2, d3, d4;

always @(posedge clk) d2 = d1;

always @(posedge clk) d3 = d2;

always @(posedge clk) d4 = d3;

� These run in some order, but you don’t know which

Copyright © 2001 Stephen A. Edwards All rights reserved

Non-blocking Assignments

� This version does work:

reg d1, d2, d3, d4;

always @(posedge clk) d2 <= d1;

always @(posedge clk) d3 <= d2;

always @(posedge clk) d4 <= d3;

Nonblocking rule:

RHS evaluated when
assignment runs

LHS updated only after
all events for the current
instant have run

Copyright © 2001 Stephen A. Edwards All rights reserved

Nonb locking Can Behave Oddly

� A sequence of nonblocking assignments don’t
communicate

a = 1;

b = a;

c = b;

Blocking assignment:

a = b = c = 1

a <= 1;

b <= a;

c <= b;

Nonblocking assignment:

a = 1

b = old value of a

c = old value of b

Copyright © 2001 Stephen A. Edwards All rights reserved

Nonb locking Loo ks Like Latches

� RHS of nonb locking taken from latches
� RHS of block ing taken from wires

a = 1;

b = a;

c = b;

a <= 1;

b <= a;

c <= b;

1
a b c“ ”

a

b

c

1

“ ”

Copyright © 2001 Stephen A. Edwards All rights reserved

Building Behavioral Models

8

Copyright © 2001 Stephen A. Edwards All rights reserved

Modeling FSMs Behaviorally

� There are many ways to do it:

� Define the next-state log ic combinationally and
define the stat e-holding latches explicitly

� Define the behavior in a single always @(posedge clk)
block

� Variations on these themes

Copyright © 2001 Stephen A. Edwards All rights reserved

FSM with Combinational Log ic

module FSM(o, a, b, reset);
output o;
reg o;
input a, b, reset;
reg [1:0] state, nextState;

always @(a or b or state)
 case (state)
 2’b00: begin
 nextState = a ? 2’b00 : 2’b01;
 o = a & b;
 end
 2’b01: begin nextState = 2’b10; o = 0; end
 endcase

Combinational block
must be sensitive to
any change on any of
its inputs

(Implies state-holding
elements otherwise)

Output o is declared
a reg because it is
assigned
procedurally, not
because it holds state

Copyright © 2001 Stephen A. Edwards All rights reserved

FSM with Combinational Log ic

module FSM(o, a, b, reset);
…

always @(posedge clk or reset)
 if (reset)
 state <= 2’b00;
 else
 state <= nextState;

Latch implied by
sensitivity to the clock
or reset only

Copyright © 2001 Stephen A. Edwards All rights reserved

FSM from Combinational Logic

always @(a or b or state)
 case (state)
 2’b00: begin
 nextState = a ? 2’b00 : 2’b01;
 o = a & b;
 end
 2’b01: begin nextState = 2’b10; o = 0; end
 endcase

always @(posedge clk or reset)
 if (reset)
 state <= 2’b00;
 else
 state <= nextState;

This is a Mealy
machine because the
output is directly
affected by any
change on the input

Copyright © 2001 Stephen A. Edwards All rights reserved

FSM from a Sing le Always Block

module FSM(o, a, b);
output o; reg o;
input a, b;
reg [1:0] state;

always @(posedge clk or reset)
 if (reset) state <= 2’b00;
 else case (st ate)
 2’b00: begin
 state <= a ? 2’b00 : 2’b01;
 o <= a & b;
 end
 2’b01: begin state <= 2’b10; o <= 0; end
 endcase

Expresses Moore
machine behavior:

Outputs are latched

Inputs only sampled
at clock edges

Nonblocking
assignments used
throughout to ensure
coherency.

RHS refers to values
calculated in previous
clock cycle

Copyright © 2001 Stephen A. Edwards All rights reserved

Writing Testbenches

module test;
reg a, b, sel;

mux m(y, a, b, sel);

initial begin
 $monitor($time,, “ a = %b b=%b sel=%b y=%b” ,
 a, b, sel, y);
 a = 0; b= 0; sel = 0;
 #10 a = 1;
 #10 sel = 1;
 #10 b = 1;
end

Inputs to device
under test

Device under test

$monitor is a built-in
event driven “printf”

Stimulus generated by
sequence of
assignments and delays

9

Copyright © 2001 Stephen A. Edwards All rights reserved

Simulating Verilog

Copyright © 2001 Stephen A. Edwards All rights reserved

Simulation Behavior

� Scheduled using an event queue
� Non-preemptive, no priorities
� A process must explicitly request a context switch
� Events at a particular time unordered

� Scheduler runs each event at the current time,
poss ibly scheduling more as a result

Copyright © 2001 Stephen A. Edwards All rights reserved

Two Types of Events

� Evaluation events compute functions of inputs
� Update events change outp uts
� Spli t necessary for delays , nonblocking assignments,

etc.
Evaluation event
reads values of b and
c, adds them, and
schedules an update
eventa <= b + cUpdate event

writes new value
of a and
schedules any
evaluation events
that are sensitive
to a change on a

Copyright © 2001 Stephen A. Edwards All rights reserved

Simulation Behavior

� Concurrent processes (initial, always) run until they
stop at one of the foll owing

� #42
• Schedule process to resume 42 time units from now

� wait(cf & of)
• Resume when express ion “ cf & of” becomes true

� @(a or b or y)
• Resume when a, b, or y chang es

� @(posedge clk)
• Resume when clk changes from 0 to 1

Copyright © 2001 Stephen A. Edwards All rights reserved

Simulation Behavior

� Infinite loops are possible and t he simulator does not
check for them

� This runs forever: no context switch allowed, so
ready can never change

while (~ready)
 count = count + 1;

� Instead, use

wait(ready);

Copyright © 2001 Stephen A. Edwards All rights reserved

Simulation Behavior

� Race cond itions abou nd in Verilog

� These can execute in either order: f inal value of a
undefined:

always @(posedge clk) a = 0;

always @(posedge clk) a = 1;

10

Copyright © 2001 Stephen A. Edwards All rights reserved

Simulation Behavior

	 Semantics of the language closely tied to simulator
implementation

	 Context switching behavior convenient for simulation,
not always best way to model

	 Undefined execution order convenient for
implementing event queue

Copyright © 2001 Stephen A. Edwards All rights reserved

Compiled-Code Discrete-Event Sim.

	 Most modern simulators use this approach
	 Verilog program compiled into C
	 Each concurrent process (e.g., continuou s

assignment, always block) becomes one or more C
functions

	 Initial and always blocks spli t into multiple functions,
one per segment of code between a delay, a wait, or
event control (@)

	 Central, dynamic event queue invokes these
functions and advances simulation time

Copyright © 2001 Stephen A. Edwards All rights reserved

Verilog and Log ic Synthesis

Copyright © 2001 Stephen A. Edwards All rights reserved

Logic Synthesis

	 Verilog is used in two ways
• Model for discrete-event simulation
• Specification for a log ic synthesis sys tem

	 Logic synthesis conver ts a subs et of the Verilog
language into an efficient netlist

	 One of the major breakthroug hs in designing log ic
chips in the last 20 years

	 Most chips are designed using at least some log ic
synthesis

Copyright © 2001 Stephen A. Edwards All rights reserved

Logic Synthesis Tools

	 Mostly commercia l tools
• Very diff icult, complicated prog rams to wr ite well
• Limited market
• Commercial produ cts in $10k - $100k pricerange

	 Major vendors
• Synop sys Design Compiler, FPGA Express
• Cadence BuildGates
• Synplicity (FPGAs)
• Exemplar (FPGAs)

	 Academic too ls
• SIS (UC Berkeley)

Copyright © 2001 Stephen A. Edwards All rights reserved

Logic Synthesis

	 Takes place in two stages:

	 Translation of Verilog (or VHDL) source to a netlist
• Register inference

	 Optimization of the resulting netlist to improve speed
and area

• Most critical part of the process
• Algorithms very complicated and beyond the scope of

this class: Take Prof. Nowick’ s class for details

11

Copyright © 2001 Stephen A. Edwards All rights reserved

Logic Optimization

 Netlist optimization the critical enabling technology

 Takes a slow or large netlist and transforms it into

one that implements the same function m ore cheaply

 Typical operations
• Constant propagation
• Common subexpress ion elimination
• Function factoring

 Time-consuming operation
• Can take hou rs for large chips

Copyright © 2001 Stephen A. Edwards All rights reserved

Translating Verilog into Gates

 Parts of the language easy to translate
• Structural descriptions wi th prim it ives

� Already a netlist
• Continuou s assignment

� Expressions turn into li ttle datapaths

 Behavioral statements the bigger challenge

Copyright © 2001 Stephen A. Edwards All rights reserved

What Can Be Translated

 Structural definitions
• Everything

 Behavioral blocks
• Depends on sensitivity list
• Only when they have reasonable interpretation as

combinational log ic, edge, or level-sensitive latches
• Blocks sensit ive to bo th edges of the c lock, changes

on unrelated signals, changi ng sen sitiv ity li sts, etc.
canno t be synthesized

 User-defined primitives
• Primitives defined with truth tables
• Some seque ntial UDPs can’t be translated (not latches

or flip-flops)

Copyright © 2001 Stephen A. Edwards All rights reserved

What Isn’t Translated

 Initial blocks
• Used to set up initial state or describe finite testbench

stimuli
• Don’t have obvious hardware compone nt

 Delays
• May be in the Verilog source, but are simply igno red

 A variety of other obscure language features
• In general, things heavily dependent on discr ete-

event simulation semantics
• Certain “ disable” statements
• Pure events

Copyright © 2001 Stephen A. Edwards All rights reserved

Register Inference

 The main trick

 reg does not always equal latch

 Rule: Combinational if outputs always depend
exclusively on sensitivity list

 Sequential if outputs may also depend on previous
values

Copyright © 2001 Stephen A. Edwards All rights reserved

Register Inference

 Combinational:

reg y;
always @(a or b or sel)
 if (sel) y = a;
 else y = b;

 Sequential:

reg q;
always @(d or clk)
 if (clk) q = d;

Sensitive to changes
on all of the variables
it reads

Y is always assigned

q only assigned when
clk is 1

12

Copyright © 2001 Stephen A. Edwards All rights reserved

Register Inference

� A common mistake is not completely specifying a
case stat ement

� This implies a latch:

always @(a or b)

case ({a, b})

 2’b00 : f = 0;

 2’b01 : f = 1;

 2’b10 : f = 1;

endcase

f is not assigned
when {a,b} = 2b’11

Copyright © 2001 Stephen A. Edwards All rights reserved

Register Inference

� The solution is to always have a default case

always @(a or b)

case ({a, b})

 2’b00: f = 0;

 2’b01: f = 1;

 2’b10: f = 1;

 default: f = 0;

endcase

f is always assigned

Copyright © 2001 Stephen A. Edwards All rights reserved

Inferr ing Latches with Reset

� Latches and Flip-flops often have reset inputs
� Can be synchrono us or asyn chronous

� Asynchronous positive reset:

always @(posedge clk or posedge reset)

 if (reset)

 q <= 0;

 else q <= d;

Copyright © 2001 Stephen A. Edwards All rights reserved

Simulation-synthesis Mismatches

� Many possible sources of conflict

� Synthesis igno res delays (e.g., #10), but simulation
behavior can be affect ed by them

� Simulator models X explicitly, synthesis doesn’t
� Behaviors resulting from shared-variable-like

behavior of regs is not synthesized
• always @(posedge clk) a = 1;
• New value of a may be seen by other @(posedge clk)

statements in simulation, never in synthesis

Copyright © 2001 Stephen A. Edwards All rights reserved

Summary

Copyright © 2001 Stephen A. Edwards All rights reserved

Summary of Verilog

� Systems described hierarchically
• Modu les with interfaces
• Modu les contain i nstances of primit ives , other modu les
• Modu les contain in it ial and always blocks

� Based on discrete-event simulation semantics
• Concurrent process es wi th sensitivity lists
• Scheduler runs p arts of these processe s in response to

changes

13

Copyright © 2001 Stephen A. Edwards All rights reserved

Modeling Tools

 Switch-level primitives
• CMOS transistors as swi tches that move around

charge

 Gate-level primitives
• Boolean log ic gates

 User-defined primitives
• Gates and seque ntial el ements defined wi th truth

tables

 Continuou s assignment
• Modeling combinational log ic wi th express ions

 Initial and always blocks
• Procedural modeling of behavior

Copyright © 2001 Stephen A. Edwards All rights reserved

Langu age Features

 Nets (wires) for modeling interconnection
• Non state-holding
• Values set continuou sly

 Regs for behavioral modeling
• Behave exactly like memory for imperative modeling
• Do not always correspond to memory elements in

synthesized netlist

 Block ing vs. non block ing assignment
• Block ing b ehaves like normal “ C-like” ass ignment
• Nonb lock ing upd ates later for modeling synchronou s

behavior

Copyright © 2001 Stephen A. Edwards All rights reserved

Langu age Uses

 Event-driven simulation
• Event queue containi ng t hings to do at particu lar

simulated times
• Evaluate and upd ate events
• Compiled-code event-driven simulation f or speed

 Logic synthesis
• Translating Verilog (structural and behavioral) into

netlists
• Register inference: whether output is always upd ated
• Log ic optimization for cleaning up the result

Copyright © 2001 Stephen A. Edwards All rights reserved

Litt le-used Langua ge Features

 Switch-level modeling
• Much slower than gate or behavioral-leve l models
• Insuff icient detail for modeling m ost electrical

problems
• Delicate electrical problems simulated wi th a SPICE-

like differential equation simulator

 Delays
• Simulating circuits with delays does not improve

confidence enou gh
• Hard to get timing models acc urate enou gh
• Never sure you’ve simulated the worst case
• Static timing analys is has taken its place

Copyright © 2001 Stephen A. Edwards All rights reserved

Compared to VHDL

 Verilog and VHDL are comparable languages

 VHDL has a slightly wider scope

• System-level modeling
• Exposes even mo re discr ete-event machinery

 VHDL is better-behaved
• Fewer sources of nond eterminism (e.g., no shared

variables)

 VHDL is harder to simulate quickly

 VHDL has fewer built-in facilit ies for hardware

modeling

 VHDL is a much more verbose langu age

• Most examples don ’t fi t on slides
Copyright © 2001 Stephen A. Edwards All rights reserved

In Conclusion

 Verilog is a deeply flawed language
• Nond eterministic
• Often weird behavior due to d iscr ete-event semantics
• Vaguely defined synthesis sub set
• Many poss ible sources of simulation /synthesis

mismatch

 Verilog is widely used because it solves a problem
• Good simulation speed that continues to improve
• Designers use a well -behaved sub set of the langu age
• Makes a reasonable specif ication languag e for log ic

synthesis
• Log ic synthesis one of the great des ign automation

success stories

