
1

Copyright © 2001 Stephen A. Edwards All rights reserved

SystemC

Prof. Stephen A. Edwards

Copyright © 2001 Stephen A. Edwards All rights reserved

Designing Big Digital Systems
� Even Verilog or VHDL’s behavioral modeling is not

high-level enough
� People generally use C or C++

Copyright © 2001 Stephen A. Edwards All rights reserved

Standard Methodology for ICs
� System-level designers write a C or C++ model

• Written in a stylized, hardware-like form
• Sometimes refined to be more hardware-like

� C/C++ model simulated to verify functionality
� Model given to Verilog/VHDL coders
� Verilog or VHDL specification written
� Models simulated together to test equivalence
� Verilog/VHDL model synthesized

Copyright © 2001 Stephen A. Edwards All rights reserved

Designing Big Digital Systems
� Every system company was doing this differently
� Every system company used its own simulation

library

� “ Throw the model over the wall” approach makes it
easy to introduce errors

� Problems:
• System designers don’t know Verilog or VHDL
• Verilog or VHDL coders don’t understand system

design

Copyright © 2001 Stephen A. Edwards All rights reserved

Idea of SystemC
� C and C++ are being used as ad-hoc modeling

languages
� Why not formalize their use?
� Why not interpret them as hardware specification

languages just as Verilog and VHDL were?

� SystemC developed at my former employer
Synopsys to do just this

Copyright © 2001 Stephen A. Edwards All rights reserved

What Is SystemC?
� A subset of C++ that models/specifies synchronous

digital hardware
� A collection of simulation libraries that can be used

to run a SystemC program
� A compiler that translates the “ synthesis subset” of

SystemC into a netlist

2

Copyright © 2001 Stephen A. Edwards All rights reserved

What Is SystemC?
� Language definition is publicly available

� Libraries are freely distributed

� Compiler is an expensive commercial product

� See www.systemc.org for more information

Copyright © 2001 Stephen A. Edwards All rights reserved

Quick Overview
� A SystemC program consists of module definitions

plus a top-level function that starts the simulation
� Modules contain processes (C++ methods) and

instances of other modules
� Ports on modules define their interface

• Rich set of port data types (hardware modeling, etc.)
� Signals in modules convey information between

instances
� Clocks are special signals that run periodically and

can trigger clocked processes
� Rich set of numeric types (fixed and arbitrary

precision numbers)

Copyright © 2001 Stephen A. Edwards All rights reserved

Modules
� Hierarchical entity
� Similar to Verilog’s module

� Actually a C++ class definition

� Simulation involves
• Creating objects of this class
• They connect themselves together
• Processes in these objects (methods) are called by the

scheduler to perform the simulation

Copyright © 2001 Stephen A. Edwards All rights reserved

Modules

SC_MODULE(mymod) {
/* port definitions */
/* signal definitions */
/* clock definitions */

/* storage and state variables */

/* process definitions */

SC_CTOR(mymod) {
/* Instances of processes and modules */

}
};

Copyright © 2001 Stephen A. Edwards All rights reserved

Ports
� Define the interface to each module
� Channels through which data is communicated
� Port consists of a direction

• input sc_in
• output sc_out
• bidirectional sc_inout

� and any C++ or SystemC type

Copyright © 2001 Stephen A. Edwards All rights reserved

Ports

SC_MODULE(mymod) {

sc_in<bool> load, read;

sc_inout<int> data;

sc_out<bool> full;

/* rest of the module */

};

3

Copyright © 2001 Stephen A. Edwards All rights reserved

Signals
� Convey information between modules within a

module
� Directionless: module ports define direction of data

transfer
� Type may be any C++ or built-in type

Copyright © 2001 Stephen A. Edwards All rights reserved

Signals

SC_MODULE(mymod) {

/* port definitions */

sc_signal<sc_uint<32> > s1, s2;

sc_signal<bool> reset;

/* … */

SC_CTOR(mymod) {

/* Instances of modules that connect to the signals */

}

};

Copyright © 2001 Stephen A. Edwards All rights reserved

Instances of Modules
� Each instance is a pointer to an object in the module

SC_MODULE(mod1) { … };
SC_MODULE(mod2) { … };
SC_MODULE(foo) {
mod1* m1;
mod2* m2;
sc_signal<int> a, b, c;
SC_CTOR(foo) {
m1 = new mod1(“ i1”); (*m1)(a, b, c);
m2 = new mod2(“ i2”); (*m2)(c, b);

}
};

Connect instance’s
ports to signals

Copyright © 2001 Stephen A. Edwards All rights reserved

Processes
� Only thing in SystemC that actually does anything

� Procedural code with the ability to suspend and
resume

� Methods of each module class

� Like Verilog’s initial blocks

Copyright © 2001 Stephen A. Edwards All rights reserved

Three Types of Processes
� METHOD

• Models combinational logic

� THREAD
• Models testbenches

� CTHREAD
• Models synchronous FSMs

Copyright © 2001 Stephen A. Edwards All rights reserved

METHOD Processes
� Triggered in response to changes on inputs

� Cannot store control state between invocations

� Designed to model blocks of combinational logic

4

Copyright © 2001 Stephen A. Edwards All rights reserved

METHOD Processes

SC_MODULE(onemethod) {
sc_in<bool> in;
sc_out<bool> out;

void inverter();

SC_CTOR(onemethod) {

SC_METHOD(inverter);
sensitive(in);

}
};

Process is simply a
method of this class

Instance of this
process created

and made sensitive
to an input

Copyright © 2001 Stephen A. Edwards All rights reserved

METHOD Processes
� Invoked once every time input “ in” changes

� Should not save state between invocations

� Runs to completion: should not contain infinite loops
• Not preempted

void onemethod::inverter() {
bool internal;
internal = in;
out = ~internal;

}

Read a value from the port

Write a value to an
output port

Copyright © 2001 Stephen A. Edwards All rights reserved

THREAD Processes
� Triggered in response to changes on inputs

� Can suspend itself and be reactivated
• Method calls wait to relinquish control
• Scheduler runs it again later

� Designed to model just about anything

Copyright © 2001 Stephen A. Edwards All rights reserved

THREAD Processes

SC_MODULE(onemethod) {
sc_in<bool> in;
sc_out<bool> out;

void toggler();

SC_CTOR(onemethod) {

SC_THREAD(toggler);
sensitive << in;

}

};

Process is simply a
method of this class

Instance of this
process created

alternate sensitivity
list notation

Copyright © 2001 Stephen A. Edwards All rights reserved

THREAD Processes
� Reawakened whenever an input changes

� State saved between invocations

� Infinite loops should contain a wait()

void onemethod::toggler() {
bool last = false;
for (;;) {
last = in; out = last; wait();
last = ~in; out = last; wait();

}
}

Relinquish control
until the next
change of a signal
on the sensitivity
list for this process

Copyright © 2001 Stephen A. Edwards All rights reserved

CTHREAD Processes
� Triggered in response to a single clock edge

� Can suspend itself and be reactivated
• Method calls wait to relinquish control
• Scheduler runs it again later

� Designed to model clocked digital hardware

5

Copyright © 2001 Stephen A. Edwards All rights reserved

CTHREAD Processes

SC_MODULE(onemethod) {
sc_in_clk clock;
sc_in<bool> trigger, in;
sc_out<bool> out;

void toggler();

SC_CTOR(onemethod) {

SC_CTHREAD(toggler, clock.pos());
}

};

Instance of this
process created and
relevant clock edge
assigned

Copyright © 2001 Stephen A. Edwards All rights reserved

CTHREAD Processes
� Reawakened at the edge of the clock
� State saved between invocations
� Infinite loops should contain a wait()

void onemethod::toggler() {
bool last = false;
for (;;) {
wait_until(trigger.delayed() == true);
last = in; out = last; wait();
last = ~in; out = last; wait();

}
}

Relinquish control
until the next clock
cycle

Relinquish control
until the next clock
cycle in which the
trigger input is 1

Copyright © 2001 Stephen A. Edwards All rights reserved

A CTHREAD for Complex Multiply
�������������
	��
���
�����
�
�������������
�
	����������
�����������
�������! #"�$%"��%"&�%'
�����
	
�
���������
�(�)"+*)'
����������������,-���
	���,.'

/�	����(��	��
�
�����1032��
4 	5��06'�'72��
�(8� �9(��:;$(9;�#'
<
 ��
�5032%'
*(8� �9;�(=�$(9(�%'
<
 ��
�5032%'

>
>

?
@ � @�A�B6C 0��
	��
���������
��������2��
?
@ � @�A�D�C�E3F6G 03��	��
�������%"�����	
��,.HI��	
�10J2�2K'

>
> '

Copyright © 2001 Stephen A. Edwards All rights reserved

Watching
� A CTHREAD process can be given reset-like behavior
� Limited version of Esterel’s abort

SC_MODULE(onemethod) {
sc_in_clk clock;
sc_in<bool> reset, in;

void toggler();

SC_CTOR(onemethod) {
SC_CTHREAD(toggler, clock.pos());
watching(reset.delayed() == true);

}
};

Process will be
restarted from the
beginning when
reset is true

Copyright © 2001 Stephen A. Edwards All rights reserved

Local Watching
� It’s hard, but the SystemC designers managed to put

a more flexible version of abort in the language

� Ugly syntax because they had to live with C++

� Like Esterel’s abort

� Only for SC_CTHREAD processes

Copyright © 2001 Stephen A. Edwards All rights reserved

Local Watching

void mymodule::myprocess() {

W_BEGIN
watching(reset.delayed() == true);

W_DO
/* … do something … */

W_ESCAPE
/* … code to handle the reset … */

W_END

}

6

Copyright © 2001 Stephen A. Edwards All rights reserved

SystemC Types
� SystemC programs may use any C++ type along with

any of the built-in ones for modeling systems

Copyright © 2001 Stephen A. Edwards All rights reserved

SystemC Built-in Types
� sc_bit, sc_logic

• Two- and four-valued single bit
� sc_int, sc_unint

• 1 to 64-bit signed and unsigned integers
� sc_bigint, sc_biguint

• arbitrary (fixed) width signed and unsigned integers
� sc_bv, sc_lv

• arbitrary width two- and four-valued vectors
� sc_fixed, sc_ufixed

• signed and unsigned fixed point numbers

Copyright © 2001 Stephen A. Edwards All rights reserved

Fixed and Floating Point Types
� Integers

• Precise
• Manipulation is fast and cheap
• Poor for modeling continuous real-world behavior

� Floating-point numbers
• Less precise
• Better approximation to real numbers
• Good for modeling continuous behavior
• Manipulation is slow and expensive

� Fixed-point numbers
• Worst of both worlds
• Used in many signal processing applications

Copyright © 2001 Stephen A. Edwards All rights reserved

Integers, Floating-point, Fixed-point

� Integer

� Fixed-point

� Floating-point ×××× 2

Decimal (“binary”)
point

Copyright © 2001 Stephen A. Edwards All rights reserved

Using Fixed-Point Numbers
� High-level models usually use floating-point for

convenience
� Fixed-point usually used in hardware implementation

because they’re much cheaper
� Problem: the behavior of the two are different

• How do you make sure your algorithm still works after
it’s been converted from floating-point to fixed-point?

� SystemC’s fixed-point number classes facilitate
simulating algorithms with fixed-point numbers

Copyright © 2001 Stephen A. Edwards All rights reserved

SystemC’s Fixed-Point Types
� sc_fixed<8, 1, SC_RND, SC_SAT> fpn;

� 8 is the total number of bits in the type
� 1 is the number of bits to the left of the decimal point
� SC_RND defines rounding behavior
� SC_SAT defines saturation behavior

7

Copyright © 2001 Stephen A. Edwards All rights reserved

Rounding
� What happens when your result doesn’t land exactly

on a representable number?

� Rounding mode makes the choice

Copyright © 2001 Stephen A. Edwards All rights reserved

SC_RND
� Round up at 0.5
� What you expect?

Copyright © 2001 Stephen A. Edwards All rights reserved

SC_RND_ZERO
� Round toward zero
� Less error accumulation

Copyright © 2001 Stephen A. Edwards All rights reserved

SC_TRN
� Truncate
� Easiest to implement

Copyright © 2001 Stephen A. Edwards All rights reserved

Overflow
� What happens if the result is too positive or too

negative to fit in the result?
� Saturation? Wrap-around?
� Different behavior appropriate for different

applications

Copyright © 2001 Stephen A. Edwards All rights reserved

SC_SAT
� Saturate
� Sometimes desired

8

Copyright © 2001 Stephen A. Edwards All rights reserved

SC_SAT_ZERO
� Set to zero
� Odd behavior

Copyright © 2001 Stephen A. Edwards All rights reserved

SC_WRAP
� Wraparound

� Easiest to implement

Copyright © 2001 Stephen A. Edwards All rights reserved

SystemC Semantics
� Cycle-based simulation semantics
� Resembles Verilog, but does not allow the modeling

of delays
� Designed to simulate quickly and resemble most

synchronous digital logic

Copyright © 2001 Stephen A. Edwards All rights reserved

Clocks
� The only thing in SystemC that has a notion of real

time

� Only interesting part is relative sequencing among
multiple clocks

� Triggers SC_CTHREAD processes
• or others if they decided to become sensitive to clocks

Copyright © 2001 Stephen A. Edwards All rights reserved

Clocks
� sc_clock clock1(“ myclock” , 20, 0.5, 2, false);

20

2

0.5 of 20

Initial value is false

Time Zero

Copyright © 2001 Stephen A. Edwards All rights reserved

SystemC 1.0 Scheduler
� Assign clocks new values

� Repeat until stable
• Update the outputs of triggered SC_CTHREAD

processes
• Run all SC_METHOD and SC_THREAD processes

whose inputs have changed

� Execute all triggered SC_CTHREAD methods. Their
outputs are saved until next time

9

Copyright © 2001 Stephen A. Edwards All rights reserved

Scheduling
� Clock updates outputs of SC_CTHREADs
� SC_METHODs and SC_THREADs respond to this

change and settle down
� Bodies of SC_CTHREADs compute the next state

Sync. Async. Clock

Copyright © 2001 Stephen A. Edwards All rights reserved

Why Clock Outputs?
� Why not allow Mealy-machine-like behavior in FSMs?

� Difficult to build large, fast systems predictably

� Easier when timing worries are per-FSM

� Synthesis tool assumes all inputs arrive at the
beginning of the clock period and do not have to be
ready

� Alternative would require knowledge of inter-FSM
timing

Copyright © 2001 Stephen A. Edwards All rights reserved

Implementing SystemC
� Main trick is implementing SC_THREAD and

SC_CTHREAD’s ability to call wait()

� Implementations use a lightweight threads package

/* … */

wait();

/* … */

Instructs thread package to save
current processor state (register,
stack, PC, etc.) so this method can
be resumed later

Copyright © 2001 Stephen A. Edwards All rights reserved

Implementing SystemC
� Other trick is wait_until()

wait_until(continue.delayed() == true);

� Expression builds an object that can check the
condition

� Instead of context switching back to the process,
scheduler calls this object and only runs the process
if the condition holds

Copyright © 2001 Stephen A. Edwards All rights reserved

Determinism in SystemC
� Easy to write deterministic programs in SystemC

• Don’t share variables among processes
• Communicate through signals
• Don’t try to store state in SC_METHODs

� Possible to introduce nondeterminism
• Share variables among SC_CTHREADs

� They are executed in nondeterministic order
• Hide state in SC_METHODs

� No control over how many times they are invoked
• Use nondeterministic features of C/C++

Copyright © 2001 Stephen A. Edwards All rights reserved

Synthesis Subset of SystemC
� At least two

� “ Behavioral” Subset
• Implicit state machines permitted
• Resource sharing, binding, and allocation done

automatically
• System determines how many adders you have

� Register-transfer-level Subset
• More like Verilog
• You write a “ +” , you get an adder
• State machines must be listed explicit ly

10

Copyright © 2001 Stephen A. Edwards All rights reserved

Do People Use SystemC?
� Not as many as use Verilog or VHDL
� Growing in popularity
� People recognize advantage of being able to share

models
� Most companies were doing something like it already
� Use someone else’s free libraries? Why not?

Copyright © 2001 Stephen A. Edwards All rights reserved

Conclusions
� C++ dialect for modeling digital systems
� Provides a simple form of concurrency

• Cooperative multitasking

� Modules
• Instances of other modules
• Processes

Copyright © 2001 Stephen A. Edwards All rights reserved

Conclusions
� SC_METHOD

• Designed for modeling purely functional behavior
• Sensitive to changes on inputs
• Does not save state between invocations

� SC_THREAD
• Designed to model anything
• Sensitive to changes
• May save variable, control state between invocations

� SC_CTHREAD
• Models clocked digital logic
• Sensitive to clock edges
• May save variable, control state between invocations

Copyright © 2001 Stephen A. Edwards All rights reserved

Conclusions
� Perhaps even more flawed than Verilog
� Verilog was a hardware modeling language forced

into specifying hardware
� SystemC forces C++, a software specification

language, into modeling and specifying hardware

� Will it work? Time will tell.

