SDL

Prof. Stephen A. Edwards

Copyright © 2001 Stephen A. Edwards Al rights reserved

Three Components in SDL Systems

- System
- Collection of concurrently-running blocks
- Blocks communicate through ex plicit channels
- Represents distributed, communicating computers

- Block
- Collection of concurrently-running processes or
collection of blocks
- Blocks communicate through ex plicit channels
- Represents a single processor

- Process
- Extended finite-state machine

Copyright © 2001 Stephen A. Edwards Al rights reserved

Vending Machine System

Channels system VendingMachine
list the
signals they
/ may convey
Coin5, §
Coin10, [}
Coin25 S 2
o «
= Q
/v Pay = g
Channels o
may have a e
name

Copyright © 2001 Stephen A. Edwards All rights reserved

The Most Generic Name Yet

- SDL = Specification and Description Language
- Grew out of the European telecommunications world

- Good for describing protocols implemented on
distributed systems

- Both textual and formal graphical syntax

Copyright © 2001 Stephen A. Edwards Al rights reserved

Vending Machine System

system VendingMachine

Blocks have

aname

May be \\’
instances of

atype of
block

anroje|q
SaJEN\\ JSRBUBLUAN

Copyright © 2001 Stephen A. Edwards Al rights reserved

Vending Machine System

system VendingMachine
Channels
may be
/bidirectional
Coins, =
Coin10, Etmus’l]
Coin25 o [Completg | 2
o > «
o o @
Pay < Exists, -~
o | paid, || =
\ CoinErr @
w

Copyright © 2001 Stephen A. Edwards Al rights reserved

Vending Machine System

system VendingMachine
Disp,
Overpay, | | Button,
Empty Undo
Coin5, s Coke,
Coin10, Eit:]t';:,; § Pepsi,
Coin25 g D Sprite
. y e rExists 8 -
Coins, Pay = > s
! Paid,
C0|_nlO, CoinErr %
Coin25 Change ~ »

Copyright © 2001 Stephen A. Edwards Al rights reserved

SDL Communication

- Processes, blocks, and systems communicate
through signals conveyed through channels

- Signal is a message corresponding to an event, e.g.,
- Ring
- HangUp
- Dial

Copyright © 2001 Stephen A. Edwards Al rights reserved

Signals Have Addresses

- Signals may include the address of the process that
sent them

- This is useful for distinguishing among multiple
instances of a single process

- Each process may correspond to, say, a different call
in progress
- Which call just hung up?

Copyright © 2001 Stephen A. Edwards All rights reserved

Communication in SDL

Copyright © 2001 Stephen A. Edwards Al rights reserved

SDL Signals

- Pure signals have no value
- Ring
- Hangup

- Valued signals also convey data
. dial(digit)

- SDL’s type system for values fairly complex

Copyright © 2001 Stephen A. Edwards Al rights reserved

SDL Communication

- Communication within a block (computer) is
assumed instantaneous
- Assumed quick becau se it's all on the same processor

& »
< »

- Communication between blocks has un controllable
delays
- Assumed slow because it is done across long
distances

R
<

Y

Copyright © 2001 Stephen A. Edwards Al rights reserved

SDL Channels

Signals travel between blocks and processes
through channels

Channel: point-to-point connection that defines
which signals may travel along it

A signal may traverse many channels before
reaching its destination

Copyright © 2001 Stephen A. Edwards Al rights reserved

SDL Processes

Each process is afinite-state machine

Each process has a single input signal queue

Execution: remove next signal from queue and react
- Make decisions

- Emit more signals

. Compute the next state

Processes may be created and terminate while
system is running

Copyright © 2001 Stephen A. Edwards Al rights reserved

SDL Process States

At a particular state,

A signal is removed from the queue

If a transition defined for the signal in current state,
- Run the transition

- Transmit signals

- Update internal variables

- Choose anext state

If no transition defined for the signal in current state,
- Discard the signal
- Leave the state unchange d

Copyright © 2001 Stephen A. Edwards All rights reserved

SDL Processes

Copyright © 2001 Stephen A. Edwards Al rights reserved

SDL Processes

Textual form Graphical form

state Idle;
input Coin(C); m
task x := value(C); -
nextstate Paid;
input Choice;

nextstate Idle;

endstate Idle;

Copyright © 2001 Stephen A. Edwards Al rights reserved

The State Symbol

- Can denote both a current and a next state

- Line leaving leads to rules for a current state

- Arrow entering means a next state

Copyright © 2001 Stephen A. Edwards Al rights reserved

The Start Symbol

- Denotes where the execution of a process begins
- Nameless state

Copyright © 2001 Stephen A. Edwards Al rights reserved

Received Signals

- Complete Valid Input Signal Set
- Set of all signals that the process will ever accept
- An error occurs if a signal outside this set is received

- In any state, only certain signals may have a
transition

- Avalid signal that has no transition is simply discarded
without changing the state

- The “implicit transition”

Copyright © 2001 Stephen A. Edwards Al rights reserved

The Save Symbol

- Single process input queue totally orders the
sequence of events that arrive at a process

- What if two events arrive from different processes at
more-or-less the same time?

\»O/

- The save symbol can be used to dictate the order in
which signals that arrive out of order are processed

Copyright © 2001 Stephen A. Edwards All rights reserved

The Receive Symbol

- Appears immediately after a state

- Indicates which signal triggers each transition

I I 1
| Coin< |Choice< | Clear<
| | |

-)
Y

Lead to diagrams for each transition

Copyright © 2001 Stephen A. Edwards Al rights reserved

The Save Symbol

- Likereceive, but instead pushes the signal back in
the queue

A “Choice”

signal that
arrives in

this state

will be
Coin f c|earf Choice deferred to
the next

- Designed for handling signals that arrive out of order

Copyright © 2001 Stephen A. Edwards Al rights reserved

The Output Symbol

- Send a signal to another process

- Which channel to send it on usually follows from its

type

Copyright © 2001 Stephen A. Edwards Al rights reserved

Local Variables

- An SDL process has local variables it can manipulate

- Partially shared variables
- Only the owning process may write a variable
- Other processes may be allowed to read a variable

- Variables are declared in atext annotation

dcl x Integer;

Copyright © 2001 Stephen A. Edwards Al rights reserved

Task Symbol

- Assignment of variable to value of expression

|
X := value(C) + 3.14159 del x Real;
[

- Informal text
- Produces an incomplete specification
- Intended to be later refined

‘Release a can’

Copyright © 2001 Stephen A. Edwards Al rights reserved

Process Creation Symbol

- A transition can cause another process to start

CallHandler

- Communication channels stay fixed

- Processes marked with initial and maximum number
of copies that can be running

[CallHandler(0,63)]

Copyright © 2001 Stephen A. Edwards All rights reserved

SDL Sorts

- Each variable is of a particular “sort” (type)
- Possible values (e.g., integer numbers)
. Operators on those values (e.g., +, *)
. Literals (e.g., “zero”, “1",“2")

- Built-in sorts: integer, Boolean, real, character, and
string

- Can be combined in structures, arrays, enumerations,
and sets

Copyright © 2001 Stephen A. Edwards Al rights reserved

The Decision Symbol

- A two-way branch that can check a condition

- Can be an expression or informal

(false) (true)

(‘no’) ves’
‘Is anybody awake?’ (yes)

Copyright © 2001 Stephen A. Edwards Al rights reserved

Process Creation

- Intended useis in a “server” style
- A new connection (call, interaction, etc.) appears

- A new server is created to handle this particular
interaction

- It terminates when it has completed the task (e.g., the
user hangs up the phone

- Maximum number of processes usually for resource
constraints

- Can’t handle more than 64 simultaneous calls withou't
exhausting process or resources

Copyright © 2001 Stephen A. Edwards Al rights reserved

Process Creation

- Process is always running

CallHandler(

- Process starts dormant. At most one instance of the
process ever runs

CallHandler(0,1)

- As many as 64 copies of the process can be running

CallHandler|

4)

Copyright © 2001 Stephen A. Edwards Al rights reserved

Timers
Timer must
be declared =
like a) .
variable Timer T;
- o e e

[expires, it
sends a
set (now+10, T) | |‘Where s my money?’| signal to the

I process

Timer is set

to go off ata

particular

time

Copyright © 2001 Stephen A. Edwards Al rights reserved

Implementation

- Event-driven programming

- Each process is an infinite loop
for () {

event = get_next_event();
dispatch_handler(event, current_stat e);

Copyright © 2001 Stephen A. Edwards All rights reserved

Process Termination

- A process can only terminate itself

‘Utter final words’

Copyright © 2001 Stephen A. Edwards Al rights reserved

Implementing an SDL system

Copyright © 2001 Stephen A. Edwards Al rights reserved

Implementation

- Typical implementation:

- Code for each signal/current state pair becomes a
separate function

- Pointers to all of these functions placed in a big table
and called by main dispatcher

- No handler for a signal in a particular state: signal
discarded and machine remains in the same state

Copyright © 2001 Stephen A. Edwards Al rights reserved

Implementing Input Queues

- Each process has a single input queue from which it
consumes signals

Signals
waiting to be
consumed

Process

i

Copyright © 2001 Stephen A. Edwards Al rights reserved

Implementing the Save Operator

- Search though signals in the queue starting at the
head

- Consume the first one not in the save set

- Implications:
- Input queue is not a FIFO

- Need the ability to delete signals in the middle of the
queue

- Suggests alinked-list implementation

- Fussy to make it work with a circular buffer

Copyright © 2001 Stephen A. Edwards Al rights reserved

Implementing Timers

- Process starts atimer by signaling “set” to the timer
- Timer signals queue to delete any unconsumed
Timeout signals
- Process stops atimer by signaling “reset” to the
timer
. Timer signals queue to delete any pending Timeout
signals
- When timer expires, it send a “Timeout” signal to the
queue
- Timeout behaves like a normal signal

- When Timeout signal cons umed, queu e sign als timer,
which then shuts off.

Copyright © 2001 Stephen A. Edwards All rights reserved

Implementing the Save Operator

- Signals at the beginning of the queue in the current
state's save set are ignored

e |<C /[~//[%]

A '

Process C:l
|
|
|

Signals in
the state's
save set

>||>||w

Copyright © 2001 Stephen A. Edwards Al rights reserved

Implementing Timers

- In effect, a timer creates a process that feeds a
“timeout” signal to the process

Timeout

[Consumed]

i [Remove]
Timer

-

Process

Process
Set,
Reset

Copyright © 2001 Stephen A. Edwards Al rights reserved

Implementing Communication

- Channels have FIFO behavior

- A signal can’t overtake another if they're traveling
along the same channel

- Channels have nondeterministic delay

- Signals sent along two parallel chann els may arrive in
any order

Copyright © 2001 Stephen A. Edwards Al rights reserved

Implementing Viewed Variables

- If process A reveals its variable v, then process B
may view the value of process A’s variable v

- Conceptually, this is handled by a view process that
maintains all viewed variables

- Revealers send updates to the view process
- Viewers send requests to view process
Update Request

Process A Process A

Response

Copyright © 2001 Stephen A. Edwards Al rights reserved

Explicit Nondeterminis m

- Spontaneous transition

- Process may nond eterministically proceed down the
“none” branch, even if a signal is wa iting

[€ [roned

- Nodeterminstic value:

X := any Integer

- Nondeterminstic choice:

Copyright © 2001 Stephen A. Edwards Al rights reserved

How SDL is used

- Telelogic’s Tau system
- Graphical SDL system entry
- Simulation of SDL systems
- Automatic code gen eration

- Automatic code generation facilities not usually used
for production
- Code quality insufficient?

- Used mostly for system simulation

- Much like Matlab is used for specifying and simulating
signal processing algorithms

Copyright © 2001 Stephen A. Edwards All rights reserved

Nond eterminism

- Fundamentally nond eterministic because of implicit
signal merge

- When two processes send signals to a third process
at a single time, they arrive in some und efined order

- State machines usually sensitive to signal arrival
order

- Save construct provides a way to handle some cases

Copyright © 2001 Stephen A. Edwards Al rights reserved

How SDL is used

- Originally intended as a system specification
- Meant to be interpreted by people, not automatically

- Sufficiently formal to enable mathematical reasoning
about its behavior

- Intended to be more precise that English text or ad-
hoc graphical specifications (flowcharts, etc.)

- Still its main use

Copyright © 2001 Stephen A. Edwards Al rights reserved

Summary

- SDL designed for specifying telecommunications
protocols

- Not designed as a programming or modeling
language per se

- Intended more as an improvement over English of
specifying desired behavior

- System designers would devise specification, then
hand it to implementers, who would perform their
task manually

Copyright © 2001 Stephen A. Edwards Al rights reserved

Summary

- Describes distributed systems composed of
computers running concurrent processes

- Communication channels have FIFO behavior

- Each channel marked with the signals (messages)
that may travel along it

- Processes are extended finite-state machines
- Each has a single input signal queue

Copyright © 2001 Stephen A. Edwards Al rights reserved

Summary

- Is this used?
- Intelecom, fairly widely
- Outside, not as much

- A specification language
- Not designed to be implemented automatically

- At least one automatic system exists, mostly used for
simulation

- Not a modeling langauge
- Can't say anything about what actual delays are

Copyright © 2001 Stephen A. Edwards Al rights reserved

Summary

- Graphical and textual syntax

. Graphical syntax based on block diagrams and
flowcharts

. Textual syntax looks a little like Pascal

- Fundamentally nond eterministic

- Nond eterminstic delays through communication
channels

- Implicit merge at the input to each process

- Save construct give some ability to handle out-of-order

arrivals due to nond eterminism
- Some explicitly nond eterministic constructs

Copyright © 2001 Stephen A. Edwards Al rights reserved

Most Important Points

- Computational model:
. Concurrent process es

- Processes are finite-state machines described using
flowcharts that may manipulate variables

- Each process h as a singl e input queue that collects
signals from every process

- Explicit listing of what signals may travel through
what channels

Copyright © 2001 Stephen A. Edwards Al rights reserved

