What's an Operating System?

Real-Time Operating Systems = Provides environment for executing programs

= Process abstraction for multitasking/concurrency
Prof. Stephen A. Edwards - Scheduling
= Hardware abstraction layer (device drivers)

= Filesystems
= Communication

= We will focus on concurrent, real-time issues

Copyright © 2001 Stephen A. Edwards All rights reserved Copyright © 2001 Stephen A. Edwards All rights reserved
Do | Need One? Cyclic Executive
= Not always = Advantages

- Simple implementation
- Low overhead

= Simplest approach: cyclic executive . Very predictable
loop = Disadvantages
do part of task 1 . Can't handle sporadic events

- Everything must operate in lockstep

do part of task 2 . Code must be scheduled manually

do part of task 3

end loop
Copyright © 2001 Stephen A. Edwards Al rights reserved Copyright © 2001 Stephen A. Edwards Al rights reserved
Interrupts Handling an Interrupt

= Some events can’t wait for next loop iteration

. Communication channels 1 [’)\‘r%rgnr]:rln
. Transient events execution 3. Processor
2. Interrupt state saved 4. Interrupt routine
= A solution: Cyclic executive plus interrupt routines 'occursp runs
= Interrupt: environmental event that demands 6. Processor
attention . L . state restored W .
. Example: “byte arrived” interrupt on serial channel 5. Interrupt routine
- Normal terminates
))) program
= Interrupt routine: piece of code executed in response execution
to an interrupt resumes

Copyright © 2001 Stephen A. Edwards All rights reserved Copyright © 2001 Stephen A. Edwards All rights reserved

Interrupt Service Routines

= Most interrupt routines:

= Copy peripheral data into a buffer
= [ndicate to other code that data has arrived
= Acknowledge the interrupt (tell hardware)

= Longer reaction to interrupt performed outside
interrupt routine

= E.g. causes a process to start or resume running

Copyright © 2001 Stephen A. Edwards All rights reserved

Drawbacks of CE + Interrupts

= Main loop still running in lockstep

= Programmer responsible for scheduling
= Scheduling static

= Sporadic events handled slowly

Copyright © 2001 Stephen A. Edwards All rights reserved

Concurrency Provided by OS

= Basic philosophy:

Let the operating system handle scheduling,
and let the programmer handle function

= Scheduling and function usually orthogonal

= Changing the algorithm would require a change in
scheduling

= First, a little history

Copyright © 2001 Stephen A. Edwards All rights reserved

Cyclic Executive Plus Interrupts

= Works fine for many signal processing applications
= 56001 has direct hardware support for this style

= Insanely cheap, predictable interrupt handler:

- When interrupt occurs, execute a single user-specified
instruction

- This typically copies peripheral data into a circular
buffer

- No context switch, no environment save, no delay

Copyright © 2001 Stephen A. Edwards All rights reserved

Cooperative Multitasking

= A cheap alternative

= Non-preemptive

= Processes responsible for relinquishing control
= Examples: Original Windows, Macintosh

= A process had to periodically call get_next_event() to
let other processes proceed

= Drawbacks:
- Programmer had to ensure this was called frequently
- An errant program would lock up the whole system

= Alternative: preemptive multitasking

Copyright © 2001 Stephen A. Edwards All rights reserved

Batch Operating Systems

= Original computers ran in batch mode:
- Submit job & its input
- Job runs to completion
- Collect output
- Submit next job

= Processor cycles very expensive at the time
= Jobs involved reading, writing data to/from tapes

= Cycles were being spent waiting for the tape!

Copyright © 2001 Stephen A. Edwards All rights reserved

Timesharing Operating Systems Real-Time Is Not Fair

= Solution = Main goal of an RTOS scheduler: meeting deadlines
- Store multiple batch jobs in memory at once

« When one is waiting for the tape, run the other one . .
= If you have five homework assignments and only one

o . . is due in an hour, you work on that one
= Basic idea of timesharing systems

.)) . = Fairness does not help you meet deadlines
= Fairness primary goal of timesharing schedulers

- Let no one process consume all the resources
- Make sure every process gets “equal” running time

Copyright © 2001 Stephen A. Edwards All rights reserved Copyright © 2001 Stephen A. Edwards All rights reserved

Priority-based Scheduling Typical RTOS Task Model

= Typical RTOS based on fixed-priority = Each task a triplet: (execution time, period, deadline)

preemptive scheduler = Usually, deadline = period

= Can be initiated any time during the period
= Assign each process a priority

= At any time, scheduler runs highest priority £ i i
process ready to run Initiation xfi%‘e'on Deadline

—]
= Process runs to completion unless preempted L | > Time
Period
Copyright © 2001 Stephen A. Edwards Al rights reserved Copyright © 2001 Stephen A. Edwards Al rights reserved

Priority-based Preemptive

Example: Fly-by-wire Avionics Scheduling

= Hard real-time system with multirate behavior = Always run the highest-priority runnable process
Sensors Signal Control laws Actuating Actuators
Conditioning

- e R
Pitch control 1 kH !
- Al — —

Aileron 2 .
u == L

Elevator

1 kHz

Copyright © 2001 Stephen A. Edwards All rights reserved Copyright © 2001 Stephen A. Edwards All rights reserved

Priority-Based Preempting
Scheduling

= Multiple processes at the same priority level?
= A few solutions
- Simply prohibit: Each process has unique priority

- Time-slice processes at the same priority
= Extra context-switch overhead
= No starvation dangers at that level

- Processes at the same priority never preempt the other
= More efficient
= Still meets deadlines if possible

Copyright © 2001 Stephen A. Edwards All rights reserved

Key RMS Result

= Rate-monotonic scheduling is optimal:
If there is fixed-priority schedule that

meets all deadlines, then RMS will
produce a feasible schedule

= Task sets do not always have a schedule

= Simple example: P1 = (10, 20, 20) P2 = (5, 9, 9)
- Requires more than 100% processor utilization

Copyright © 2001 Stephen A. Edwards All rights reserved

When Is There an RMS Schedule?

= Key metric is processor utilization: sum of compute
time divided by period for each process:

U=Zci/pi

= No schedule can possibly exist if U>1
- No processor can be running 110% of the time

= Fundamental result:
. RMS schedule always exists if U< n (2 V" - 1)

- Proof based on case analysis (P1 finishes before P2)

Copyright © 2001 Stephen A. Edwards All rights reserved

Rate-Monotonic Scheduling

= Common way to assign priorities
= Result from Liu & Layland, 1973 (JACM)
= Simple to understand and implement:

Processes with shorter period
given higher priority

= Eg. Period Priority
10 1 (highest)
12 2
15 3
20 4 (lowest)

Copyright © 2001 Stephen A. Edwards All rights reserved

RMS Missing a Deadline

= pl=(10,20,20) p2 = (15,30,30) utilization is 100%

|:| |:| Would have met the
|:| |:| deadline if p2 = (10,30,30),

T utilization reduced 83%
P2 misses first deadline

Copyright © 2001 Stephen A. Edwards All rights reserved

When Is There an RMS Schedule?

n Bound for U

1 100% Trivial: one process
2 83% Two process case
3 78%

4 76%

o0 69% Asymptotic bound

Copyright © 2001 Stephen A. Edwards All rights reserved

When Is There an RMS Schedule?
= Asymptotic result:

If the required processor utilization is under
69%, RMS will give a valid schedule

= Converse is not true. Instead:

If the required processor utilization is over 69%,
RMS might still give a valid schedule, but there
is no guarantee

Copyright © 2001 Stephen A. Edwards All rights reserved

EDF Meeting a Deadline

= pl=(10,20,20) p2 = (15,30,30) utilization is 100%

P2 takes priority because its
deadline is sooner

Copyright © 2001 Stephen A. Edwards All rights reserved

Static Scheduling More Prevalent

= RMA only guarantees feasibility at 69% utilization,
EDF guarantees it at 100%

= EDF is complicated enough to have unacceptable
overhead

= More complicated than RMA: harder to analyze

= Less predictable: can’t guarantee which process
runs when

Copyright © 2001 Stephen A. Edwards All rights reserved

EDF Scheduling

= RMS assumes fixed priorities
= Can you do better with dynamically-chosen

priorities?

= Earliest deadline first:

Processes with soonest deadline
given highest priority

Copyright © 2001 Stephen A. Edwards All rights reserved

Key EDF Result
= Earliest deadline first scheduling is optimal:
If adynamic priority schedule exists,

EDF will produce a feasible schedule

= Earliest deadline first scheduling is efficient:

A dynamic priority schedule exists if and
only if utilization is no greater than 100%

Copyright © 2001 Stephen A. Edwards All rights reserved

Priority Inversion

= RMS and EDF assume no process interaction

= Often a gross oversimplification

= Consider the following scenario:

1| 1 |

'y A A

Process 1 tries to acquire lock for resource
Process 1 preempts Process 2
Process 2 acquires lock on resource
Process 2 begins running
Copyright © 2001 Stephen A. Edwards All rights reserved

Priority Inversion

= Lower-priority process effectively blocks a higher-
priority one

= Lower-priority process’s ownership of lock prevents
higher-priority process from running

= Nasty: makes high-priority process runtime
unpredictable

Copyright © 2001 Stephen A. Edwards All rights reserved

Priority Inheritance

= Solution to priority inversion

= Temporarily increase process’s priority when it
acquires alock

= Level to increase: highest priority of any process that
might want to acquire same lock
- l.e., high enough to prevent it from being preempted

= Danger: Low-priority process acquires lock, gets
high priority and hogs the processor
« So much for RMS

Copyright © 2001 Stephen A. Edwards All rights reserved

Summary

= Cyclic executive
- Way to avoid an RTOS
- Adding interrupts helps somewhat

= Interrupt handlers

- Gather data, acknowledge interrupt as quickly as
possible

= Cooperative multitasking
- But programs don’t like to cooperate

Copyright © 2001 Stephen A. Edwards All rights reserved

Nastier Example
= Higher priority process blocked indefinitely

Process 2 delays process 3's release of lock

L I 1

w NP

-

Process 1 tries to acquire lock and is blocked
Process 1 preempts Process 2

Process 2 preempts Process 3
Process 3 acquires lock on resource

Process 3 begins running
Copyright © 2001 Stephen A. Edwards All rights reserved

Priority Inheritance

= Basic rule: low-priority processes should acquire
high-priority locks only briefly

= An example of why concurrent systems are so hard
to analyze

= RMS gives a strong result

= No equivalent result when locks and priority
inheritance is used

Copyright © 2001 Stephen A. Edwards All rights reserved

Summary

= Preemptive Priority-Based Multitasking
- Deadlines, not fairness, the goal of RTOSes

= Rate-monotonic analysis
- Shorter periods get higher priorities
- Guaranteed at 69% utilization, may work higher

= Earliest deadline first scheduling
- Dynamic priority scheme
- Optimal, guaranteed when utilization 100% or less

Copyright © 2001 Stephen A. Edwards All rights reserved

Summary

= Priority Inversion

- Low-priority process acquires lock, blocks higher-
priority process

- Priority inheritance temporarily raises process priority

- Difficult to analyze

Copyright © 2001 Stephen A. Edwards All rights reserved

