General Language Issues

Review for Midterm

Prof. Stephen A. Edwards

Copyright © 2001 Stephen A. Edwards Al rights reserved

Syntax, Semantics, and Models of Computation

Specification versus Modeling
Concurrency: Two things at once

Nondeterminsm: Unpredictability

Types of communication: Memory, broadcasting

Hierarchy

Copyright © 2001 Stephen A. Edwards Al rights reserved

Specification and Modeling

How do you want to use the program?

Specification languages say “build this,

please”

Modeling languages allow you to
describe something that does or
will exist

Distinction a function of the model
and the language’s semantics

Copyright © 2001 Stephen A. Edwards Al rights reserved

r

Copernican Model
of the Solar System

What Have We Covered?

= General Language Issues

= Assembly Languages

= C++

Copyright © 2001 Stephen A. Edwards Al rights reserved

Models of Computation

= All languages we have studied thus far use the same
model of computation:
- Imperative program operating on a memory space

Fetch an instruction

Read its operands

Perform the action

Save the results

Go on to the next instruction

Copyright © 2001 Stephen A. Edwards Al rights reserved

Nondeterminism

= You simply cannot predict what will happen
= No statistical distribution, no expected behavior

= |t may not work, work for the moment and fail, or
always work

= You saw this in the homework assignment

= Nondeterministic language allows nondeterministic
programs

Copyright © 2001 Stephen A. Edwards All rights reserved

Assembly Languages CISC Assembly Language

= Program a sequence of instructions = Designed for humans to write
= Embodies the Von Neumann model of computation:
= fetch, read, execute, store = Often fewer, special-purpose registers
= Single instruction can perform a lot of work
= Instructions consist of opcode and operands = Two-address instructions (sourcel, source2/dest)
= Registers and addressing modes = Difficultto pipeline
= Difficult compiler target (hard to model)

Copyright © 2001 Stephen A. Edwards Al rights reserved Copyright © 2001 Stephen A. Edwards Al rights reserved
RISC Assembly Language Main DSP Application
= Simple, more orthogonal = Finite Impulse Response filter (FIR)
= Three-operand instructions (sourcel, source2, dest) = Can be used for lowpass, highpass, bandpass, etc.
= More, uniformly-accessible registers = Basic DSP operation

= Many have delayed branch instructions
= For each sample, computes
j MyLabel 3
add R1, R2, R3 % Executed after the jump instruction Yo = Z a Xpai
sub R2, R3, R4 % Not executed i=0

= g, ... 3 are filter coefficients
= X, andy, are the nth input and output sample

Copyright © 2001 Stephen A. Edwards Al rights reserved Copyright © 2001 Stephen A. Edwards Al rights reserved
Traditional DSP Architectures VLIW Architectures
= Multiply-accumulate operation central = Next step on the path toward more instruction-level
parallelism

= Small number of special-purpose registers
] L I = More orthogonal: more costly, but more flexible than
= Stripped-down datapath to maximize speed, minimize traditional DSPs
cost, power

= Difficult to program automatically * Bigger register banks

- . . . = Simple RISC-like instructions issued in parallel
= Specialized instruction-level parallelism

« Architecture heavily specialized to application = Multiple, slightly differentiated computational units

domain
- Complex addressing modes = Virtually impossible to program by hand
- MAC instruction

. Limited zero-overhead loops * Reasonable compiler target

Copyright © 2001 Stephen A. Edwards Al rights reserved Copyright © 2001 Stephen A. Edwards All rights reserved

The C Language

= High-level assembly for systems programming
= Originally used to develop the Unix operating system

= Pragmatic language as a result

= Stack-frame based mechanism for recursion,
automatic variables

= Low-level model of memory inherited from typeless
BCPL

= Influenced its view of arrays, pointers

Copyright © 2001 Stephen A. Edwards Al rights reserved

C Types

= Based on processor’s natural types
= (Actually, a PDP-11's natural types)

= Integers
= Floating-point numbers
= Bytes (characters)

= Funny declarator syntax
- int (*f)(doub le, int)

Copyright © 2001 Stephen A. Edwards Al rights reserved

Dynamic Memory Management

= Malloc() and free() system calls
= Maintains a “free list” of available storage

= Malloc() locates suitable storage, or requests more
from OS if necessary

= Free() release its given area to free list, updates the
data structure

= Can be slow and unpredictable

= Time/space overhead

Copyright © 2001 Stephen A. Edwards Al rights reserved

C Programs

Collection of Functions

- Recursive

- Automatic (local) variables

Functions contain statements

- Simple control-flow (if-else, for, while, switch)
Statements contain expressions

- Powerful menagerie of operators

- Arithmetic, logical, bit-oriented, comparison,
assignment

Copyright © 2001 Stephen A. Edwards Al rights reserved

C Structs and Unions

Struct:
Way to group objects in memory
Padded to guarantee alignment requirements

Each field given its own storage

Union:

Way to store different objects in the same space
Size equal to size of largest element

Each field stored in the same place

Copyright © 2001 Stephen A. Edwards Al rights reserved

C Arrays

View left over from BCPL's typeless view of memory

alk] is equivalent to a + k (pointer arithmetic)

Thus a[0] is the base of the array

Objects in array simply tiled

Copyright © 2001 Stephen A. Edwards All rights reserved

C Operators

= Arithmetic +*

= Logical & |

= Lazy logical && || (expand to conditional branches)
= Pointer arithmetic allowed (from BCPL)

Copyright © 2001 Stephen A. Edwards Al rights reserved

Setjmp/longjmp

= The weird part: longjmp sends control back to the
setjmp call that initialized the jmp_buf

switch (setjmp(jmpbuf)) {
case 0: /* first time */ break;
case 1: /* longjmp called */ break;
}

= |t's as if setjmp returns twice

Copyright © 2001 Stephen A. Edwards Al rights reserved

Using setjimp/longjmp
= Where an error occurs

if (having_trouble)
Tongjmp(jmpbuf, ERROR_CODE) ;

= Will exit this function as well as others currently
being executed

= Does not do any clean-up on the way

Copyright © 2001 Stephen A. Edwards Al rights reserved

setimp/longjmp

= A way to exit from deeply nested functions

#include <Setjm[:.h>/ Stores a jump target
jmp_buf jmpbuf;

setjmp(jmpbuf); «— Stores context, returns 0

. . Jumps back to target in
Tongjmp(jmpbuf,k); +— jmpbpuf g

Copyright © 2001 Stephen A. Edwards Al rights reserved

Using setjmp/longjmp

#include <setjmp.h>
jmp_buf jmpbuf;

int main(int argc, char *argv[]) {

switch (setjmp(jmpbuf)) {
case 0:
body(); /* Normal program execution */
break;
case 1:
error(“something bad!”);
break;

}

Copyright © 2001 Stephen A. Edwards Al rights reserved

C++

= C with facilities for structuring very large programs

= Classes for new data types

= Operator overloading for convenient arithmetic
expressions

= References for pass-by-name arguments
= Inline functions for speed

= Templates for polymorphism

= Exceptions

= Vast standard library

Copyright © 2001 Stephen A. Edwards All rights reserved

Classes

= Extension of C struct that binds functions to the
object

= Inheritance: adding new fields, methods to an
existing class to build a new one

= Object layout model
- Single inheritance uses a trick
- New data members simply tacked on at the end
- Can’'t remove data members in derived classes
- Multiple inheritance more complicated

Copyright © 2001 Stephen A. Edwards Al rights reserved

Implementing Virtual Functions

= Each object of a class with virtual functions has an
extra pointer to its virtual table

= Virtual table has pointers to the virtual functions for
the class

= Compiler fills in these virtual tables

Copyright © 2001 Stephen A. Edwards Al rights reserved

Inline

= C++can “inline” function calls: copy the function’s
body to the call site

inline int sum(int a, int b) { returna +b; }
¢ =sum(5, 6);
is compiled as

c=5+6;

Copyright © 2001 Stephen A. Edwards Al rights reserved

Virtual Functions

= Normal methods dispatched by the static type of the
object determined at compile time

= Virtual functions dispatched by the actual type of the
object at run time

struct A { struct B : A {
void f(); void f();
virtual void g (); virtual void g();

A*a =new B;
a->f(); Il calls A:f()
a->g(); /l calls B::g()

Copyright © 2001 Stephen A. Edwards Al rights reserved

Const

= Way to pass pointers to objects that should not be
modified

void g(char *a, const char *b);

void f(char *a, const char *b) {

*a='‘a’; /I OK

*b ='b’; / Error: b is const

g(a,a); /I OK: non-const cast to const
g(b,b); /I Error: const b castto non-const
}

Copyright © 2001 Stephen A. Edwards Al rights reserved

FAQs

= Do we need to know each assembly language in
detail for the test?

No: I want you to understand the structure of the
assembly languages.

= Will the test require writing a big program?
Not a big one, but perhaps a small one.

= Are C++ compilers implemented in one pass like C
compilers?

Definitely not. C++is much too complex. Modern C
compilers make multiple passes, too.

Copyright © 2001 Stephen A. Edwards All rights reserved

Program Size Versus Speed Maybe not so dumb

= Not always a direct trade-off Template <class T> sort(int size, T*array) { ... }
= Dumb example: char *c[10];
int sum(int a, int b) { int sum1(int a, int b) { sort<char *>(10,c);

return a + b; return a + b; float *c[10];
} } sort<float *>(10,c);
¢ =sum(5,6) + sum(7,8); int sum2(int a, int b) {

return a +b; » Each call of sort will generate a distinct, identical
} copy of the code for sort

¢ =suml(5,6) + sum2(7,8);

Copyright © 2001 Stephen A. Edwards Al rights reserved Copyright © 2001 Stephen A. Edwards Al rights reserved

