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Syntax, Semantics, and Models of Computation

Specification versus Modeling
Concurrency: Two things at once

Nondeterminsm: Unpredictability

Types of communication: Memory, broadcasting

Hierarchy
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Specification and Modeling

How do you want to use the program?

Specification languages say “build this,

please”

Modeling languages allow you to
describe something that does or
will exist

Distinction a function of the model
and the language’s semantics
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r

Copernican Model
of the Solar System

What Have We Covered?

= General Language Issues

= Assembly Languages

= C++
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Models of Computation

= All languages we have studied thus far use the same
model of computation:
- Imperative program operating on a memory space

Fetch an instruction

Read its operands

Perform the action

Save the results

Go on to the next instruction
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Nondeterminism

= You simply cannot predict what will happen
= No statistical distribution, no expected behavior

= |t may not work, work for the moment and fail, or
always work

= You saw this in the homework assignment

= Nondeterministic language allows nondeterministic
programs

Copyright © 2001 Stephen A. Edwards All rights reserved



Assembly Languages CISC Assembly Language

= Program a sequence of instructions = Designed for humans to write
= Embodies the Von Neumann model of computation:
= fetch, read, execute, store = Often fewer, special-purpose registers
= Single instruction can perform a lot of work
= Instructions consist of opcode and operands = Two-address instructions (sourcel, source2/dest)
= Registers and addressing modes = Difficultto pipeline
= Difficult compiler target (hard to model)
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RISC Assembly Language Main DSP Application
= Simple, more orthogonal = Finite Impulse Response filter (FIR)
= Three-operand instructions (sourcel, source2, dest) = Can be used for lowpass, highpass, bandpass, etc.
= More, uniformly-accessible registers = Basic DSP operation

= Many have delayed branch instructions
= For each sample, computes
j MyLabel 3
add R1, R2, R3 % Executed after the jump instruction Yo = Z a Xpai
sub R2, R3, R4 % Not executed i=0

= g, ... 3 are filter coefficients
= X, andy, are the nth input and output sample
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Traditional DSP Architectures VLIW Architectures
= Multiply-accumulate operation central = Next step on the path toward more instruction-level
parallelism

= Small number of special-purpose registers
] L I = More orthogonal: more costly, but more flexible than
= Stripped-down datapath to maximize speed, minimize traditional DSPs
cost, power

= Difficult to program automatically * Bigger register banks

- . . . = Simple RISC-like instructions issued in parallel
= Specialized instruction-level parallelism

« Architecture heavily specialized to application = Multiple, slightly differentiated computational units

domain
- Complex addressing modes = Virtually impossible to program by hand
- MAC instruction

. Limited zero-overhead loops * Reasonable compiler target
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The C Language

= High-level assembly for systems programming
= Originally used to develop the Unix operating system

= Pragmatic language as a result

= Stack-frame based mechanism for recursion,
automatic variables

= Low-level model of memory inherited from typeless
BCPL

= Influenced its view of arrays, pointers
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C Types

= Based on processor’s natural types
= (Actually, a PDP-11's natural types)

= Integers
= Floating-point numbers
= Bytes (characters)

= Funny declarator syntax
- int (*f)(doub le, int)
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Dynamic Memory Management

= Malloc() and free() system calls
= Maintains a “free list” of available storage

= Malloc() locates suitable storage, or requests more
from OS if necessary

= Free() release its given area to free list, updates the
data structure

= Can be slow and unpredictable

= Time/space overhead
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C Programs

Collection of Functions

- Recursive

- Automatic (local) variables

Functions contain statements

- Simple control-flow (if-else, for, while, switch)
Statements contain expressions

- Powerful menagerie of operators

- Arithmetic, logical, bit-oriented, comparison,
assignment
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C Structs and Unions

Struct:
Way to group objects in memory
Padded to guarantee alignment requirements

Each field given its own storage

Union:

Way to store different objects in the same space
Size equal to size of largest element

Each field stored in the same place
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C Arrays

View left over from BCPL's typeless view of memory

alk] is equivalent to a + k (pointer arithmetic)

Thus a[0] is the base of the array

Objects in array simply tiled
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C Operators

= Arithmetic +*

= Logical & |

= Lazy logical && || (expand to conditional branches)
= Pointer arithmetic allowed (from BCPL)

Copyright © 2001 Stephen A. Edwards Al rights reserved

Setjmp/longjmp

= The weird part: longjmp sends control back to the
setjmp call that initialized the jmp_buf

switch (setjmp(jmpbuf)) {
case 0: /* first time */ break;
case 1: /* longjmp called */ break;
}

= |t's as if setjmp returns twice
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Using setjimp/longjmp
= Where an error occurs

if ( having_trouble )
Tongjmp(jmpbuf, ERROR_CODE) ;

= Will exit this function as well as others currently
being executed

= Does not do any clean-up on the way
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setimp/longjmp

= A way to exit from deeply nested functions

#include <Setjm[:.h>/ Stores a jump target
jmp_buf jmpbuf;

setjmp(jmpbuf); «— Stores context, returns 0

. . Jumps back to target in
Tongjmp(jmpbuf,k); +— jmpbpuf g
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Using setjmp/longjmp

#include <setjmp.h>
jmp_buf jmpbuf;

int main(int argc, char *argv[]) {

switch (setjmp(jmpbuf)) {
case 0:
body(); /* Normal program execution */
break;
case 1:
error(“something bad!”);
break;

}
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C++

= C with facilities for structuring very large programs

= Classes for new data types

= Operator overloading for convenient arithmetic
expressions

= References for pass-by-name arguments
= Inline functions for speed

= Templates for polymorphism

= Exceptions

= Vast standard library
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Classes

= Extension of C struct that binds functions to the
object

= Inheritance: adding new fields, methods to an
existing class to build a new one

= Object layout model
- Single inheritance uses a trick
- New data members simply tacked on at the end
- Can’'t remove data members in derived classes
- Multiple inheritance more complicated
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Implementing Virtual Functions

= Each object of a class with virtual functions has an
extra pointer to its virtual table

= Virtual table has pointers to the virtual functions for
the class

= Compiler fills in these virtual tables
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Inline

= C++can “inline” function calls: copy the function’s
body to the call site

inline int sum(int a, int b) { returna +b; }
¢ =sum(5, 6);
is compiled as

c=5+6;
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Virtual Functions

= Normal methods dispatched by the static type of the
object determined at compile time

= Virtual functions dispatched by the actual type of the
object at run time

struct A { struct B : A {
void f(); void f();
virtual void g (); virtual void g();

A*a =new B;
a->f(); Il calls A:f()
a->g(); /l calls B::g()
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Const

= Way to pass pointers to objects that should not be
modified

void g(char *a, const char *b);

void f(char *a, const char *b) {

*a='‘a’; /I OK

*b ='b’; / Error: b is const

g(a,a); /I OK: non-const cast to const
g(b,b); /I Error: const b castto non-const
}
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FAQs

= Do we need to know each assembly language in
detail for the test?

No: I want you to understand the structure of the
assembly languages.

= Will the test require writing a big program?
Not a big one, but perhaps a small one.

= Are C++ compilers implemented in one pass like C
compilers?

Definitely not. C++is much too complex. Modern C
compilers make multiple passes, too.
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Program Size Versus Speed Maybe not so dumb

= Not always a direct trade-off Template <class T> sort(int size, T*array) { ... }
= Dumb example: char *c[10];
int sum(int a, int b) { int sum1(int a, int b) { sort<char *>(10,c);

return a + b; return a + b; float *c[10];
} } sort<float *>(10,c);
¢ =sum(5,6) + sum(7,8); int sum2(int a, int b) {

return a +b; » Each call of sort will generate a distinct, identical
} copy of the code for sort

¢ =suml(5,6) + sum2(7,8);
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