The Synchronous Language
Esterel

Prof. Stephen A. Edwards

Copyright © 2001 Stephen A. Edwards Al rights reserved

A First Try: An FSM

- Fairly complicated:

Copyright © 2001 Stephen A. Edwards Al rights reserved

The Esterel Version

Esterel
programs built

/ from modules
module ABRO:

input A, B, R;
output O;  ¥T————_ Each module has an

interface of input and
loop output signals
[ await A || await B ];
emit O

each R

end module

Copyright © 2001 Stephen A. Edwards All rights reserved

A Simple Example

- The specification:

The output O should occur when inputs A
and B have both arrived. The R input
should restart this behavior.

Copyright © 2001 Stephen A. Edwards Al rights reserved

The Esterel Version

- Much simpler
- ldeas of signal, wait, reset part of the languag e

module ABRO Means the

input A, B, R; same thing as
output O; the FSM

loop
[ await A || await B |;
emit O

each R

end module

Copyright © 2001 Stephen A. Edwards Al rights reserved

The Esterel Version

loop ... each
statement
implements the
reset

module ABRO:
input A, B, R;

output O; await waits for the
next cycle in which its
loop signal is present
[awaitA || await B [; || operator means run
emit O the two awaits in
each R parallel
end module

Copyright © 2001 Stephen A. Edwards Al rights reserved



The Esterel Version

module ABRO:

input A, B, R; Parallel statements

output O; terminate
immediately when all
branches have

loop

[awaitA Il await B J; Emit O makes signal
emitO +—————— O present when A and
each R B have both arrived

end module

Copyright © 2001 Stephen A. Edwards Al rights reserved

Uses of Esterel

- Wristwatch
. Canonical example
- Reactive, synchronous, hard real-time

- Controllers
- Communication protocols

- Avionics
- Fuel control system
- Landing gear controller
- Other user interface tasks

- Processor components (cache controller, etc.)

Copyright © 2001 Stephen A. Edwards Al rights reserved

Disadvantages of Esterel

- Finite-state nature of the language limits flexibility
- No dynamic memory allocation
- No dynamic creation of processes

- Virtually non existent support for handling data

- Really suited for simple decision-dominated
controllers

- Synchronous model of time can lead to
overspecification

- Semantic challenges
- Avoiding causality violations often difficult
- Difficult to compile

- Limited number of users, tools, etc.
Copyright © 2001 Stephen A. Edwards Al rights reserved

Basic ldeas of Esterel

- Imperative, textual language
- Concurrent

- Based on synchronous model of time
- Program execution synchronized to an external clock
- Like sync hronous digital logic
- Suits the cycli c executive approach

- Two types of statements

. Those that take “z ero time” (execute and terminate in
same instant, e.g., emit)

. Those that delay for a prescribed number of cycl es
(e.g., await)

Copyright © 2001 Stephen A. Edwards Al rights reserved

Advantages of Esterel

- Model of time gives programmer precise control

- Concurrency convenient for specifying control
systems

- Completely deterministic
- Guaranteed: no need for locks, semaphores, etc.

- Finite-state language
. Easy to analyze
- Execution time predictable
- Much easier to verify formally

- Amenable to implementation in both hardware and
software

Copyright © 2001 Stephen A. Edwards Al rights reserved

Signals

- Esterel programs communicate through signals

- These are like wires
- Each signalis either present or absent in each cycle
. Can't take multiple values within a cycle

- Presence/absence not held between cycles

- Broadcast across the program
- Any process can read or write a signal

Copyright © 2001 Stephen A. Edwards Al rights reserved



Basic Esterel Statements

- emitS
- Make signal S present in the current instant
- Asignal is absent unless it is emitted

- pause
- Stop and resume after the next cycl e after the pause

- present Sthen stmtl else stmtl end

. If signal Sis present in the current instant, immediately
run stmtl, otherwise run stmt2

Copyright © 2001 Stephen A. Edwards Al rights reserved

Signal Coherence Rules

- Each signal is only present or absent in a cycle,
never both

- All writers run before any readers do
- Thus

present A else
emit A
end

is an erroneou s program

Copyright © 2001 Stephen A. Edwards Al rights reserved

Time Can Be Controlled Precisely

- This guarantees every 60t Sec a “Min” signal is
emitted

“every” invokes its body

every 60 Sec do every 60 Sec exactly
emit Min emit takes no time
end

- Timing diagram:

1 2 3 4 5 59 60
Sec Sec Sec Sec Sec Sec Sec
] ] ] ] ] ] ]
1 1 1 1 1 1 1
Min Min

Copyright © 2001 Stephen A. Edwards All rights reserved

Basic Esterel Statements

- Thus
emit A;
present A then emit B end;
ause; A c
p . ; B
emit C

- Makes A & B present the first instant, C present the
second

Copyright © 2001 Stephen A. Edwards Al rights reserved

Advantage of Synchrony

- Easy to control time
- Speed of actual computation nearly uncontrollable

- Allows function and timing to be specified
independently

- Makes for deterministic concurrency
- Explicit control of “before” “after” “at the same time

Copyright © 2001 Stephen A. Edwards Al rights reserved

The || Operator

- Groups of statements separated by || run
concurrently and terminate when all groups have
terminated

[ A B D
emit A; pause; emit B; cC E
Il ——t—F—

pause; emit C; pause; emit D
I

emit E

Copyright © 2001 Stephen A. Edwards Al rights reserved



Communication Is Instantaneous

- A signal emitted in a cycle is visible immediately

[ A A
pause; emit A; pause; emit A B
I

pause; present A then emit B end

]

Copyright © 2001 Stephen A. Edwards Al rights reserved

Concurrency and Determinism

- Signals are the only way for concurrent processes to
communicate

- Esterel does have variables, but they cannot be
shared

- Signal coherence rules ensure deterministic behavior

- Language semantics clearly defines who must
communicate with whom when

Copyright © 2001 Stephen A. Edwards Al rights reserved

The Await Statement

- Await normally waits for a cycle before beginning to
check

- await immediate also checks the initial cycle

[

emit A ; pause ; pause; emit A

await immediate A; emit B A A
1 B
————

Copyright © 2001 Stephen A. Edwards All rights reserved

Bidirectional Communicatio n

- Processes can communicate back and forthin the
same cycle

[

pause; emit A; present B then emit C end;
pause; emit A

A A
pause; present A then emit B end B
] c
————

Copyright © 2001 Stephen A. Edwards Al rights reserved

The Await Statement

- The await statement waits for a particular cycle

- await S waits for the next cycle in which Sis
present

[

emit A ; pause ; pause; emit A

await A; emit B A A
1 B
—

Copyright © 2001 Stephen A. Edwards Al rights reserved

Loops

- Esterel has aninfinite loop statement

- Rule: loop body cannot terminate instantly
- Needs at least one pause, await, etc.
. Can’'t do an infinite amount o f work in a single cycle

loop
emit A; pause; pause; emit B

end

+ o >
+ o >

Copyright © 2001 Stephen A. Edwards Al rights reserved



Loops and Synchronization Preemption

- Instantaneous nature of loops plus await provide - Often want to stop doing something and start doing
very powerful synchronization mechanisms something else

- E.g., Ctrl-C in Unix: stop the currently-running

loop program

await 60 Sec: - Esterel has many constructs for handling preemption

emit Min
end 1 2 3 4 5 59 60
Sec Sec Sec Sec Sec Sec Sec
| | | | | | |
T T T T T T T
Min Min
Copyright © 2001 Stephen A. Edwards Al rights reserved Copyright © 2001 Stephen A. Edwards Al rights reserved
The Abort Statement The Abort Statement
. . . A
- Basic preemption mechanism abort c
. General form: pause; —+4——+—+—1+— Normal termination
pause;
abort emit A ?;
statement whenB; 4 ¥ L 1 Aported termination.
. emit C
when condition
- Runs statement to completion. If condition ever c Aborted termination.
holds, abort terminates immediately. — 4+ F | Execution of emit A
preempted.
B A Normal termination. B
C not checked in first
—F+—+—+—+— cycle (like await)
Copyright © 2001 Stephen A. Edwards Al rights reserved Copyright © 2001 Stephen A. Edwards Al rights reserved
Strong vs. Weak Preemption Strong vs. Weak Abort
- Strong preemption: abort weak abort
- The body does not run when the preemption condition pause; pause;
holds pause; pause;
- The previous example illustrated strong preemption emit A; emit A
- Weak preemption: pause pause
. The body is allowed to run eve n when the preemption when B; when B; A
condition holds, but is terminated thereafter emit C B emit C B
- “weak abort” implements this in Esterel C c
—
Strong abort: emit A Weak abort: emit A
not allowed to run allowed to run, body
terminated
afterwards

Copyright © 2001 Stephen A. Edwards All rights reserved Copyright © 2001 Stephen A. Edwards Al rights reserved



Strong vs. Weak Preemption

- Important distinction
- Something cannot cause its own strong preemption
abort

emit A

when A

- Erroneous: if body runs then it could not have

Copyright © 2001 Stephen A. Edwards Al rights reserved

The Trap Statement

trap Tin A D

[ —+—+—+—+— Normal termination
pause; from first process
emit A; A
pause; B
exit T c D

I Emit C also runs
await B;
emit C B

] A ¢

end trap; Second process

D
I allowed to run even
emit D — though first process

has exited

Copyright © 2001 Stephen A. Edwards Al rights reserved

The Suspend Statement

- Preemption (abort, trap) terminate something, but
what if you want to pause it?

- Like the unix Ctrl-Z

- Esterel's suspend statement pauses the execution of

a group of statements

- Strong preemption: statement does not run when
condition holds

Copyright © 2001 Stephen A. Edwards All rights reserved

The Trap Statement

- Esterel provides an exception facility for weak
preemption

- Interacts nicely with concurrency

- Rule: outermost trap takes precedence

Copyright © 2001 Stephen A. Edwards Al rights reserved

Nested Traps

trap T1in

trap. T2in . Outer trap takes

[exit T1|| exit T2] precedence: control

end; transferred directly to

emit A outer trap statement.
end; emit A not allowed to
emit B run

B
————+

Copyright © 2001 Stephen A. Edwards Al rights reserved

The Suspend Statement

suspend
loop
emit A; pause; pause
end
when B

A A B A B A

B delays emission of B prevents A from

A by onecycle being emitted;
Y v resumed the next

cycle

Copyright © 2001 Stephen A. Edwards Al rights reserved



Causality

- Unfortunate side-effect of instantaneous
communication coupled with the single valued signal
rule

- Easy to write contradictory programs, e.g.,

- present A else emit A end
- abort emit Awhen A
- present A then nothing end; emit A

- These sorts of programs are erroneous and flagged
by the Esterel compiler as incorrect

Copyright © 2001 Stephen A. Edwards Al rights reserved

Causality

- Definition has evolved since first version of the
language

- Original compiler had concept of “potentials”

- Static concept: at a particular program point, which
signals could be emitted along any path from that point

- Latest definition based on “constructive causality”

- Dynamic conce pt: whether there’s a “guess-free proof”
that concludes a signal is absent

Copyright © 2001 Stephen A. Edwards Al rights reserved

Causality Example

emit A;
present B then emit C end;

present A else emit B end;

- Considered acceptable to the latest compiler

- After emit A runs, it is clear that B cannot be emitted
because A’s presence runs the “then” branch of the
second present

- B declared absent, both present statements run

Copyright © 2001 Stephen A. Edwards All rights reserved

Causality

- Can be very complicated becaus e of instantaneous
communication

- For example: thisis also erroneous

abort

emitB +——— Emission of B

hen A indirectly causes
when emission of A

|
[

present B then emit A end;
pause

]

Copyright © 2001 Stephen A. Edwards Al rights reserved

Causality Example

- Consider the following program

emit A;
present B then emit C end;
present A else emit B end;

- Considered erroneous under the original compiler
- After emit A runs, there’s a static path to emit B

- Therefore, the value of B cannot be decided yet

- Execution procedure deadlocks: program is bad

Copyright © 2001 Stephen A. Edwards Al rights reserved

Compiling Esterel

- Semantics of the language are formally defined and
deterministic

- ltis the responsibility of the compiler to ensure the
generated executable behaves correctly w.r.t. the
semantics

- Challenging for Esterel

Copyright © 2001 Stephen A. Edwards Al rights reserved



Compilation Challenges

- Concurrency

- Interaction between exceptions and concurr ency
- Preemption

- Resumption (pause, await, etc.)

- Checking causality

- Reincarnation

- Loop restriction generally prevents any statement from
executing more than once in a cycle

- Complex interaction between conc urrency, traps, and
loop s can make certain statements execute more than
once

Copyright © 2001 Stephen A. Edwards Al rights reserved

Automata-based Compilation

- First compiler simulated an Esterel program in every
possible state and generated code for each one

- For example

Copyright © 2001 Stephen A. Edwards Al rights reserved

Automata Compilation Considered

- Very fast code
- Internal signaling can be compiled away

- Can generate a lot of code because
- Concurrency can cause exponential state growth

- n-state machine interacting with another n-state
machine can produce n? states

- Language provides input constraints for reducing
state count
- “these inputs are mutually exclusive,”
. “if this input arrives, this one do es, too”

Copyright © 2001 Stephen A. Edwards All rights reserved

Automata-Based Compilation

- First key insight:
. Esterel is a finite-stat e language

- Each state is a set of program counter values where
the program has paused between cycles

- Signals are not part of these states because they do
not hold their values between cycles

- Esterel has variables, but these are not considered
part of the state

Copyright © 2001 Stephen A. Edwards Al rights reserved

Automata Example

emit A; emit B; await C;

emit D; present E then emit B end; First state: A, B,

emitted, go to second

switch (state) {

case 0: Second state: if Cis
present, emit D,
A =1; B=1; state = 1; break; check E & emit F & go
on, otherwise, stay in
case 1: second state

if(C){D=1,if(E){B=1;}state=3;}
else { state=1;}

}

Copyright © 2001 Stephen A. Edwards Al rights reserved

Automata Compilation

- Not practical for large programs

- Theoretically interesting, but don’t work for most
programs longer than 1000 lines

- All other techniques produce slower code

Copyright © 2001 Stephen A. Edwards Al rights reserved



Netlist-Based Compilation

- Second key insight:

- Esterel programs can be translated into Boolean logic
circuits

- Netlist-based compiler:

- Translate each statement into a small number of
logic gates
- A straightforward, mechanical process

- Generate code that simulates the netlist

Copyright © 2001 Stephen A. Edwards Al rights reserved

Netlist Compilation Considered

- Scales very well
- Netlist generation roughly linear in prog ram size
- Generated code roughly linear in prog ram size

- Good framework for analyzing causality
- Semantics of netlists straightforward

- Constructive reasoning equivalent to three-valued
simulation

- Terribly inefficient code

- Lots of time wasted computing ultimately irrelevant
results

. Can be hundreds of time slower than automata
- Little use of conditionals

Copyright © 2001 Stephen A. Edwards Al rights reserved

Control-Flow Graph-Based

- Key insight:
- Esterel looks like a imperative language, so treat it as
such

- Esterel has a fairly natural translation into a
concurrent control-flow graph

- Trick is simulating the concurrency

- Concurrent instructions in most Esterel programs
can be scheduled statically

- Use this schedule to build code with explicit context
switches in it

Copyright © 2001 Stephen A. Edwards All rights reserved

Netlist Example

emit A; emit B; await C;

emit D; present E then emit B end;

Copyright © 2001 Stephen A. Edwards Al rights reserved

Netlist Compilation

- Currently the only solution for large programs that

appear to have causality problems

- Scalability attractive for industrial users

- Currently the most widely-used technique

Copyright © 2001 Stephen A. Edwards Al rights reserved

Control-flow Approach Considered

- Scales as well as the netlist compiler, but produces
much faster code, almost as fast as automata

- Not an easy framework for checking causality

- Static scheduling requirement more restrictive than
netlist compiler
- This compiler rejects some programs the others accept
- Only implementation hiding within Synopsys’
CoCentric System Studio. Will probably never be
used industrially.

- See my recent IEEE Transactions on Computer-Aided
Design paper for details

Copyright © 2001 Stephen A. Edwards Al rights reserved



What To Understand About Esterel

- Synchronous model of time
- Time divided into sequence of discrete instants
- Instructions either run and terminate in the same
instant or explicitly in later instants
- ldea of signals and broadcast

- “Variables” that take exactly one value each instant
and don't persist

- Coherence rule: all writers run before any readers

- Causality Issues
- Contradictory programs
- How Esterel decides whether a program is correct

Copyright © 2001 Stephen A. Edwards Al rights reserved

What To Understand About Esterel

- Compilation techniques

- Automata

- Fast code

- Doesn't scale
- Netlists

- Scales well

- Slow code

- Good for causality
- Control-flow

- Scales well

- Fastcode

- Bad at causality

- Compilers, documentation, etc. available from
www.esterel.org

Copyright © 2001 Stephen A. Edwards Al rights reserved

10



