
1

Copyright © 2001 Stephen A. Edwards All rights reserved

The Synchronous Language
Esterel

Prof. Stephen A. Edwards

Copyright © 2001 Stephen A. Edwards All rights reserved

A Simple Example

� The specif ication:

The output O should occur when inputs A
and B have both arrived. The R input
should restart this behavior.

Copyright © 2001 Stephen A. Edwards All rights reserved

A First Try: An FSM

� Fairly complicated:

R/
AR’/BR’/

ABR’/O

BR’/OAR’/O

R/ R/

Copyright © 2001 Stephen A. Edwards All rights reserved

The Esterel Version

� Much simpler
• Ideas of signal, wait, reset part of the languag e

modu le ABRO
inpu t A, B, R;
output O;

loop
 [await A || await B];
 emit O
each R

end module

Means the
same thing as
the FSM

Copyright © 2001 Stephen A. Edwards All rights reserved

The Esterel Version

modu le ABRO:
inpu t A, B, R;
output O;

loop
 [await A || await B];
 emit O
each R

end module

Esterel
programs buil t
from modu les

Each modu le has an
interface of inpu t and
output signals

Copyright © 2001 Stephen A. Edwards All rights reserved

The Esterel Version

modu le ABRO:
inpu t A, B, R;
output O;

loop
 [await A || await B];
 emit O
each R

end module

loop … each
statement
implements the
reset

await waits for the
next cyc le in which its
signal is present

|| operator means run
the two awaits in
parallel

2

Copyright © 2001 Stephen A. Edwards All rights reserved

The Esterel Version

modu le ABRO:
inpu t A, B, R;
output O;

loop
 [await A || await B];
 emit O
each R

end module

Parallel statements
terminate
immediately when all
branches have

Emit O makes signal
O present when A and
B have both arr ived

Copyright © 2001 Stephen A. Edwards All rights reserved

Basic Ideas of Esterel

� Imperative, textual language
� Concurrent
� Based on synchrono us model of time

• Program execution synchronized to an external clock
• Like sync hronous dig ital log ic
• Suits the cycli c executive appr oach

� Two types of statements
• Those that take “z ero time” (execute and terminate in

same instant, e.g., emit)
• Those that delay for a prescribed num ber of cycl es

(e.g., await)

Copyright © 2001 Stephen A. Edwards All rights reserved

Uses of Esterel

� Wristwatch
• Canon ical example
• Reactive, synchronou s, hard real-time

� Controllers
• Communication protocols

� Avionics
• Fuel control sys tem
• Landing gear controller
• Other user interface tasks

� Processor components (cache controller, etc.)

Copyright © 2001 Stephen A. Edwards All rights reserved

Advantages of Esterel

� Model of time gives programmer precise control
� Concurrency convenient f or specifying control

systems
� Completely deterministic

• Guaranteed: no need for locks, semapho res, etc.

� Finite-state language
• Easy to analyze
• Execution time predictable
• Much easier to verify formally

� Amenable to implementation in bot h hardware and
software

Copyright © 2001 Stephen A. Edwards All rights reserved

Disadvantages of Esterel

� Finite-state nature of the language limits flexibili ty
• No dyn amic memory allocation
• No dyn amic creation of processes

� Virtually non existent support for handling data
� Really suited for simple decis ion-dominated

controllers
� Synchronous model of time can lead to

overspecification
� Semantic challenges

• Avoiding causali ty vio lations often diff icult
• Diff icult to compile

� Limited number of users, tools, etc.
Copyright © 2001 Stephen A. Edwards All rights reserved

Signals

� Esterel programs communicate through signals
� These are like wires

• Each signal is either present or absent in each cycl e
• Can’t take mult ip le valu es wit hin a cyc le

� Presence/absence not held between cycles
� Broadcast across the program

• Any process can read or wr ite a signal

3

Copyright © 2001 Stephen A. Edwards All rights reserved

Basic Esterel Statements

� emit S
• Make signal S present in the current instant
• A signal is absent un less it is emitted

� pause
• Stop and resume after the next cycl e after the pause

� present S then stmt1 else stmt1 end
• If signal S is present in the current instant, immediately

run stmt1, otherwise run stmt2

Copyright © 2001 Stephen A. Edwards All rights reserved

Basic Esterel Statements

� Thus

emit A;

present A then emit B end;

pause;

emit C

� Makes A & B present the first instant, C present the
second

A

B
C

Copyright © 2001 Stephen A. Edwards All rights reserved

Signal Coherence Rules

� Each signal is only present or absent in a cyc le,
never both

� All writers run before any readers do

� Thus

present A else

emit A

end

is an erroneou s prog ram

Copyright © 2001 Stephen A. Edwards All rights reserved

Advantage of Synchrony

� Easy to control time
� Speed of actual computation nearly un cont rolla ble
� Allows function and timing to be specif ied

independently

� Makes for deterministic concurrency
• Explicit control of “ before” “ after” “ at the same time”

Copyright © 2001 Stephen A. Edwards All rights reserved

Time Can Be Controlled Precisely

� This guarantees every 60th Sec a “ Min” signal is
emitted

every 60 Sec do
 emit Min
end

� Timing diagram:

Sec Sec Sec Sec Sec Sec Sec

Min Min

1 2 3 4 5 59 60
…

“every” invokes its body
every 60 Sec exactly

emit takes no time

Copyright © 2001 Stephen A. Edwards All rights reserved

The || Operator

� Group s of statements separated by || run
concurrently and terminate when all groups have
terminated

[

 emit A; pause; emit B;

||

 pause; emit C; pause; emit D

];

emit E

A B

C

D

E

4

Copyright © 2001 Stephen A. Edwards All rights reserved

Communication Is Instantaneous

� A signal emitted in a cyc le is visib le immediately

[

 pause; emit A; pause; emit A

||

 pause; present A then emit B end

]

A

B

A

Copyright © 2001 Stephen A. Edwards All rights reserved

Bidirectional Communicatio n

� Processes can comm unicate back and f orth in the
same cycle

[

 pause; emit A; present B then emit C end;

 pause; emit A

||

 pause; present A then emit B end

]

A

B

C

A

Copyright © 2001 Stephen A. Edwards All rights reserved

Concurrency and Determinism

� Signals are the only way for concurrent processes to
communicate

� Esterel does have variables, but they cannot be
shared

� Signal coherence rules ensure deterministic behavior
� Langu age semantics c learly defines who must

communicate with whom when

Copyright © 2001 Stephen A. Edwards All rights reserved

The Await Statement

� The await statement waits for a particular cycle
� await S waits for the next cycle in which S is

present

[

 emit A ; pause ; pause; emit A

||

 await A; emit B

]

A A

B

Copyright © 2001 Stephen A. Edwards All rights reserved

The Await Statement

� Await normally waits for a cycle before beginning to
check

� await immediate also checks the in it ial cycle

[

 emit A ; pause ; pause; emit A

||

 await immediate A; emit B

]

A

B

A

Copyright © 2001 Stephen A. Edwards All rights reserved

Loops

� Esterel has an infin ite loop statement
� Rule: loop bod y cannot terminate instantly

• Needs at least one pause, await, etc.
• Can’t do an infinite amount o f work in a sing le cyc le

loop

 emit A; pause; pause; emit B

end

A A

B

A

B

A

B

5

Copyright © 2001 Stephen A. Edwards All rights reserved

Loops and Synchronization

� Instantaneous nature of loops plus await provide
very powerful synchronization mechanisms

loop

 await 60 Sec;

 emit Min

end
Sec Sec Sec Sec Sec Sec Sec

Min Min

1 2 3 4 5 59 60
…

Copyright © 2001 Stephen A. Edwards All rights reserved

Preemption

� Often want to stop doi ng something and start doing
something else

� E.g., Ctrl-C in Unix: stop the currently-running
program

� Esterel has many constructs for handling preemption

Copyright © 2001 Stephen A. Edwards All rights reserved

The Abort Statement

� Basic preemption mechanism
� General form:

abort

 statement

when condition
� Runs statement to completion. If condition ever

holds, abort terminates immediately.

Copyright © 2001 Stephen A. Edwards All rights reserved

The Abort Statement

abort
 pause;
 pause;
 emit A
when B;
emit C

A
C

B
C

B A
C

B
C

Normal termination

Aborted termination.
Execution of emit A
preempted.

Aborted termination.

Normal termination. B
not checked in first
cyc le (like await)

Copyright © 2001 Stephen A. Edwards All rights reserved

Strong vs. Weak Preemption

� Strong preemption:
• The bod y does not run when the preemption cond ition

holds
• The previous example il lustrated strong preempt ion

� Weak preemption:
• The bod y is allowed to run eve n when the preemption

cond ition hol ds, but is terminated thereafter
• “ weak abort” implements this in Esterel

Copyright © 2001 Stephen A. Edwards All rights reserved

Strong vs. Weak Abort

abort
 pause;
 pause;
 emit A;
 pause
when B;
emit C B

C

weak abort
 pause;
 pause;
 emit A;
 pause
when B;
emit C A

B
C

Strong abort: emit A
not allowed to run

Weak abort: emit A
allowed to run, bod y
terminated
afterwards

6

Copyright © 2001 Stephen A. Edwards All rights reserved

Strong vs. Weak Preemption

� Important distinction

� Something cannot cause its own strong preemption

abort

 emit A

when A

� Erroneous: if body runs then it could not have

Copyright © 2001 Stephen A. Edwards All rights reserved

The Trap Statement

� Esterel provides an exception facili ty for weak
preemption

� Interacts nicely with concurrency
� Rule: outermost trap takes precedence

Copyright © 2001 Stephen A. Edwards All rights reserved

The Trap Statement

trap T in
[
 pause;
 emit A;
 pause;
 exit T
||
 await B;
 emit C
]
end trap;
emit D

D

A
B
C

Normal termination
from first process

Emit C also runs

B
C
D Second process

allowed to run even
though first process
has exited

A

A

D

Copyright © 2001 Stephen A. Edwards All rights reserved

Nested Traps

trap T1 in
 trap T2 in
 [exit T1 || exit T2]
 end;
 emit A
end;
emit B

Outer trap takes
precedence: control
transferred directly to
outer trap statement.

emit A not allowed to
run

B

Copyright © 2001 Stephen A. Edwards All rights reserved

The Suspend Statement

� Preemption (abort, trap) terminate something, but
what if you want to pause it?

� Like the unix Ctrl-Z
� Esterel’s suspend statement pauses the execution of

a group of statements

� Strong preemption: stat ement does not run when
condition holds

Copyright © 2001 Stephen A. Edwards All rights reserved

The Suspend Statement

suspend
 loop
 emit A; pause; pause
 end
when B

A

B delays emiss ion of
A by one cycl e

A B A B A

B prevents A from
being emitted;
resumed the next
cyc le

7

Copyright © 2001 Stephen A. Edwards All rights reserved

Causality

� Unfortunate side-effect of instantaneous
communication coupled with the sing le valued signal
rule

� Easy to write contradictory programs, e.g.,

� present A else emit A end
� abort emit A when A
� present A then nothing end; emit A

� These sorts of programs are erroneous and flagged
by the Esterel compiler as incorrect

Copyright © 2001 Stephen A. Edwards All rights reserved

Causality

� Can be very complicated becaus e of instant aneous
communication

� For example: this i s also erroneous

 abort
 emit B
 when A
||
 [
 present B then emit A end;
 pause
]

Emiss ion of B
ind irectly causes
emission of A

Copyright © 2001 Stephen A. Edwards All rights reserved

Causality

� Definition has evolved since first version of the
language

� Original compiler had concept of “ potentials”
• Static concept: at a particular program point, which

signals coul d be emitted along any path f rom that po int

� Latest definition based on “ constructive causali ty”
• Dynamic conce pt: whether there’s a “ guess-f ree proof”

that concludes a signal is absent

Copyright © 2001 Stephen A. Edwards All rights reserved

Causality Example

� Consider the following program

emit A;

present B then emit C end;

present A else emit B end;

� Considered erroneous under the original compiler
� After emit A runs, there’s a static path to emit B
� Therefore, the value of B cannot be decided yet
� Execution procedure deadlocks: prog ram is bad

Copyright © 2001 Stephen A. Edwards All rights reserved

Causality Example

emit A;

present B then emit C end;

present A else emit B end;

� Considered acceptable to the latest compiler
� After emit A runs, it is clear that B cannot be emitted

because A’s presence runs the “ then” branch of t he
second present

� B declared absent, both present statements run

Copyright © 2001 Stephen A. Edwards All rights reserved

Compil ing Esterel

� Semantics of the language are formally defined and
deterministic

� It is the respon sibility of the compiler to ensure the
generated executable behaves correctly w.r.t. the
semantics

� Challenging for Esterel

8

Copyright © 2001 Stephen A. Edwards All rights reserved

Compilation Challenges

� Concurrency
� Interaction between exceptions and concurr ency
� Preemption
� Resumption (pause, await, etc.)
� Checking causali ty
� Reincarnation

• Loop restriction generally prevents any statement from
executing more than once in a cycl e

• Complex interaction between conc urrency, traps, and
loop s can make cer tain statements execute more than
once

Copyright © 2001 Stephen A. Edwards All rights reserved

Automata-Based Compilation

� First key insight:
• Esterel is a fin ite-stat e langua ge

� Each state is a set of program counter values where
the program has paused between cycl es

� Signals are not part of these states because they do
not ho ld their values between cyc les

� Esterel has variables, but these are not cons idered
part of the state

Copyright © 2001 Stephen A. Edwards All rights reserved

Automata-based Compilation

� First compiler simulated an Esterel program in every
poss ible state and generated code for each one

� For example

Copyright © 2001 Stephen A. Edwards All rights reserved

Automata Example

emit A; emit B; await C;

emit D; present E then emit B end;

switch (state) {

case 0:

 A = 1; B= 1; state = 1; break;

case 1:

 if (C) { D = 1; i f (E) { B = 1; } state = 3; }

 else { stat e = 1; }

}

First state: A, B,
emitted, go to second

Second state: if C is
present, emit D,
check E & emit F & go
on, otherwise, stay in
second state

Copyright © 2001 Stephen A. Edwards All rights reserved

Automata Compilation Considered

� Very fast code
� Internal signaling can be compiled away

� Can generate a lot of code because
� Concurrency can cause expon ential state growth
� n-state machine interacting with another n-state

machine can produce n2 states
� Langu age provides input constraints for reducing

state count
• “ these inpu ts are mutually exc lusive ,”
• “ if this inpu t arrives , this one do es, too”

Copyright © 2001 Stephen A. Edwards All rights reserved

Automata Compilation

� Not practical for large programs
� Theoretically interesting, but don’t work for most

programs longer than 1000 lines
� All other techniques produce slower code

9

Copyright © 2001 Stephen A. Edwards All rights reserved

Netlist-Based Compilation

� Second key insight:
• Esterel programs can be translated into Boolea n log ic

circuits

� Netlist-based compiler:
� Translate each stat ement into a small number of

log ic gates
• A straightforward, mechanical process

� Generate code that simulates the netlist

Copyright © 2001 Stephen A. Edwards All rights reserved

Netlist Example

emit A; emit B; await C;

emit D; present E then emit B end;

A

B

C

D

E

Copyright © 2001 Stephen A. Edwards All rights reserved

Netlist Compilation Considered

� Scales very well
• Netlist generation rough ly linear in prog ram size
• Generated code rough ly linear in prog ram size

� Good framework for analyzing causali ty
• Semantics of netlists straightforward
• Constructive reasoning equivalent to t hree-valued

simulation

� Terr ibly inefficient code
• Lots of time wasted computing ultimately irrelevant

results
• Can be hun dreds of time slower than automata
• Litt le use of cond itionals

Copyright © 2001 Stephen A. Edwards All rights reserved

Netlist Compilation

� Currently the only solution for large programs that
appear to have causality problems

� Scalabil ity attractive for industrial users
� Currently the most widely-used technique

Copyright © 2001 Stephen A. Edwards All rights reserved

Control-Flow Graph-Based

� Key insight:
• Esterel looks like a imperative l angua ge, so treat i t as

such

� Esterel has a fair ly natural translation i nto a
concurrent control-flow graph

� Trick is simulating the concurrency
� Concurrent instructions in most Esterel programs

can be scheduled statically
� Use this sch edule to bu ild co de with explici t context

switches in it

Copyright © 2001 Stephen A. Edwards All rights reserved

Control-flow Approach Considered

� Scales as well as the netlist compiler, but produ ces
much faster code, almost as fast as automata

� Not an easy framework for checking causali ty
� Static scheduling requirement more restrictive than

netlist compiler
• This compiler rejects some programs the others accept

� Only implementation hiding within Synopsys’
CoCentric System Studio. Will probably never be
used industrially.

� See my recent IEEE Transactions on Computer-Aided
Design paper for details

10

Copyright © 2001 Stephen A. Edwards All rights reserved

What To Understand About Esterel

	 Synchronous model of time
• Time divided into sequence of discrete instants
• Instructions either run and terminate in the same

instant or explicitly in later instants

	 Idea of signals and broadcast
• “ Variables” that take exactly on e value each instant

and don ’t persist
• Coherence rule: all writers run before any readers

	 Causality Issues
• Contradictory programs
• How Esterel decides whether a program is correct

Copyright © 2001 Stephen A. Edwards All rights reserved

What To Understand About Esterel

	 Compilation techniques
• Automata

 Fast code

 Doesn’t scale

• Netlists

 Scales well

 Slow code

 Good for causality

• Control-flow

 Scales well

 Fast code

 Bad at causality

	 Compilers, documentation, etc. available from
www.esterel.org

