The C++ Language

Prof. Stephen A. Edwards

Copyright © 2001 Stephen A. Edwards All rights reserved

C++ Features

The C++ Language

= Bjarne Stroupstrup, the language’s creator

C++ was designed to provide Simula’s
facilities for program organization together
with C’s efficiency and flexibility for systems
programming.

Copyright © 2001 Stephen A. Edwards All rights reserved

Example: A stack in C

= Classes
- User-defined types

= Operator overloading
- Attach different meaning to expressions suchasa+b

= References
- Pass-by-reference function arguments

= Virtual Functions
- Dispatched depending on type at run time

= Templates
- Macro-like polymorphism for containers (e.g., arrays)

= Exceptions

Copyright © 2001 Stephen A. Edwards All rights reserved

Example: A stack in C

typedef struct { Creator function ensures stack

char s[SIZE]; is created properly.
it sp; Does not help for stack that is
} stack; automatic variable.

Programmer could
inadvertently create

stack *create() { uninitialized stack.
Stack *s;
s = (Stack *)malloc(sizeof(Stack));
s->sp = 0;
return s;

Copyright © 2001 Stephen A. Edwards All rights reserved

C++ Solution: Class

char pop(Stack *s) {
if (sp = 0) error(“Underflow”);
return s->s[--sp];

}

void push(stack *s, char v) {
if (sp == SIZE) error(“overflow”);

S—>S [Sp++] =V Not clear these are the only stack-
} related functions.

Another part of program can modify any
stack any way it wants to, destroying
invariants.

Temptation to inline these
computations, not use functions.
Copyright © 2001 Stephen A. Edwards All rights reserved

class stack { Definition of both

char s[SIzE]; / representation and

int sp; operations

Public: visible outside the class

public:

Stack() { sp = 0; }

void push(char v) {
if (sp == SIZE) error(“overflow”);
s[sp++] = v;

Constructor: initializes

}

char pop() {
if (sp == 0) error(“underflow”);
return s[--sp];

}

b Member functions see object
fields like local variables
Copyright © 2001 Stephen A. Edwards All rights reserved




C++ Stack Class C++ Stack Class

= Natural to use = Members (functions, data) can be public, protected,

or private
Stack st; class Stack {
st.push(‘a’); st.push(‘b’); char s[SIZE];
public:

char d = st.pop(Q); char pop()
}.

Stack *stk = new Stack;

Coan. oy Stack st;
stk->push(‘a’); stk->push(‘b’); st.s[0] =‘a’; /[ Error: sp is private
char d = stk->popQ); st.pop(); 11 OK

Copyright © 2001 Stephen A. Edwards All rights reserved Copyright © 2001 Stephen A. Edwards All rights reserved

Class Implementation Operator Overloading
= C++ compiler translates to C-style implementation = For manipulating user-defined “numeric” types
C++ Equivalent C implementation Complex c1(1,5.3), c2(5);
Creating objects of th

class Stack { struct Stack { complex c3 = cl + c2; usrzra_érgir?eéeg,seo ¢

char s[S1zE]; char s[SIzE]; c3 =c3 + 2.3; \

int sp; int sp; Want + to mean

blic: ’ }; ’ something different in
puSt1 ck() ’ this context

ac
void push(char); void st_Stack(Stack*);
char popQ); void st_push(Stack*, char); Promote 2.3 to a

char st_pop(Stack*); complex number here

Copyright © 2001 Stephen A. Edwards All rights reserved Copyright © 2001 Stephen A. Edwards All rights reserved

Example: Complex number type References

= Designed to avoid copying in overloaded operators
= A mechanism for calling functions pass-by-reference

= C++'s operator overloading makes it elegant

Class Complex { = Conly has pass-by-value
double re, im;
public: Pass-by-reference
complex(double); reduces copying void swap(int x, int y) { * Doesn’t work */
complex(double, double); inttmp =x; x =y; y = tmp;
complex& operator+=(const complex&); }
}; void swap(int &x, int &y) { /* Works with references */
Operator overloading inttmp =x; x =y; y =tmp;
defines arithmetic
operators for the }
complex type

Copyright © 2001 Stephen A. Edwards All rights reserved Copyright © 2001 Stephen A. Edwards All rights reserved



Complex Number Type

Complex Number Class

= Member functions including operators can be defined
inside or outside the class definition

complex&
Ccomplex: :operator+=(const complex &a)
{
re += a.re;
im += a.im;
return *this;

Copyright © 2001 Stephen A. Edwards All rights reserved

Function Overloading

= Operators can also be defined outside classes

Ccomplex operator+(const Complex a,
const Complex b) {
Ccomplex sum = a; // Copy constructor
a +=b; /linvoke Complex::operator +=
return sum;

}

Copyright © 2001 Stephen A. Edwards All rights reserved

Const

= Overloaded operators a specific case of overloading

= General: select specific method/operator based on
name, number, and type of arguments

void foo(int);
void foo(int, int); // OK
void foo(char *); // OK

int foo(char *); /I BAD: return type not in'signat‘uré' "

Copyright © 2001 Stephen A. Edwards All rights reserved

Templates

= Access control over variables, arguments. =55
. Rock of
= Provides safety Gibraltar

const double pi = 3.14159265; // Compile-time constant

int foo(const char* a) { /I Constant argument

*a=‘a; /I lllegal: ais const

}

class bar { /I “object not modified”
int get_field() const { return field; }

}

Copyright © 2001 Stephen A. Edwards All rights reserved

Template Stack Class

= Qur stack type is nice, but hard-wired for a single
type of object

= Using array of “void *” or a union might help, but
breaks type safety

= C++ solution: atemplate class

= Macro-processor-like way of specializing a class to
specific types

= Mostly intended for container classes

= Standard Template Library has templates for
. strings, lists, vectors, hash tables, trees, etc.

Copyright © 2001 Stephen A. Edwards All rights reserved

template <class_T> class Stack {
T s[S1zE];
int sp; T is a type argument

public:
Used like a type within
stack() { sp = 0; the body
void push(T {
if (sp == SIZE) error(“overflow”);
s[sp++] = v;

}

T pop( {
if (sp == 0) error(“underflow”);
return s[--spl;

}

I H

Copyright © 2001 Stephen A. Edwards All rights reserved



Using a template

Display-list example

Stack<char>cs; // Instantiates the specialized code
cs.push(‘a’);
char c =cs.pop();

Stack<double *> dps;
double d;
dps.push(&d);

Copyright © 2001 Stephen A. Edwards All rights reserved

Inheritance

= Say you want to draw a graphical scene

= List of objects
- lines, arcs, circles, squares, etc.

= How do you store them all in a single array?
void *list[10]; /l Ugly: type-unsafe

= How do you draw them all?
switch (object->type) { /I Hard to add new object
case LINE: /* ... */ break;
case ARC: /* ... */ break;

}

Copyright © 2001 Stephen A. Edwards All rights reserved

Inheritance

= Inheritance lets you build derived classes from base
classes

class Shape { /* ... */ };
class Line : public Shape {/*... */}; [/l Also a Shape

class Arc : public Shape {/*...*/}; // Also a Shape

Shape *dlist[10];

Copyright © 2001 Stephen A. Edwards All rights reserved

Implementing Inheritance

class Shape {
double x, y; /I Base coordinates of shape
public:
void translate(double dx, double dy) {
x +=dx; y +=dy;

}} Line inherits both the
3 / representation and
member functions of

class Line : public Shape { the Shape class
h

Linel;

l.translate(1,3); /I lnvoke Shape::translate()

Copyright © 2001 Stephen A. Edwards All rights reserved

Virtual Functions

= Add new fields to the end of the object
= Fields in base class at same offset in derived class

C++ Equivalent C implementation

class Shape { struct Shape {

double x, y; double x, y
}; 1
class Box : Shape { struct Box {
doubTle h, w; double x, y;
}; double h, w;
b

Copyright © 2001 Stephen A. Edwards All rights reserved

class Shape { / draw() is a virtual
virtual void draw(); function invoked

N based on the actual

class Line : public Shape { type of the object, not

the type of the pointer

void draw();
b
class Arc : public Shape {

void draw(); New classes can be
h added without having

to change “draw

Shape *dI[10]; everything” code
dI[0] = new Line;
dI[1] = new Arc;
dI[0]->draw(); /l'invoke Line::draw()
dI[1]->draw(); Il invoke Arc::draw()

Copyright © 2001 Stephen A. Edwards All rights reserved



Implementing Virtual Functions

Cfront

= Involves some overhead ) Virtual table
ObJECt. of for class Virt
type Virt
class Virt { 31— &Virt:foo
h . vptr -
inta, b; a &Virt::bar
virtual void foo(); b
virtual void bar();
b
C+w.L ] Equivalent C implementation
void f(virt *v) void f(virt *v)
{
v->bar(Q); (*(v->vptr.bar))(v);
} }

Copyright © 2001 Stephen A. Edwards All rights reserved

Default arguments

= How the language was first compiled
= Full compiler that produced C as output
= C++ semantics therefore expressiblein C

= C++ model of computation ultimately the same
= C++ syntax substantial extension of C
= C++ semantics refer to the same model as C

= So why use C++?
- Specifications are clearer, easier to write and maintain

Copyright © 2001 Stephen A. Edwards All rights reserved

Declarations may appear anywhere

= Another way to simplify function calls
= Especially useful for constructors

void foo(inta,intb =3,intc=4){/*...*}

C++ Expands to
foo(3) foo(3,3,4)
foo(4,5) foo(4,5,4)
foo(4,5,6) foo(4,5,6)

Copyright © 2001 Stephen A. Edwards All rights reserved

Multiple Inheritance

= Convenient way to avoid uninitialized variables

void f(int i, const char *p)

{
if (i<=0) error();
const int len = strlen(p);
char c = 0;
for (int j =1 ; j<len ; j++)
c += pljl;

Copyright © 2001 Stephen A. Edwards All rights reserved

Multiple Inheritance Ambiguities

= Rocket Science
= Inherit from two or more classes:
class Window { ... };

class Border { ... };
class BWindow : public Window, public Border { ... };

Copyright © 2001 Stephen A. Edwards All rights reserved

= What happens with duplicate methods?
class Window { void draw(); };
class Border { void draw() };

class BWindow : public Window, public Border { };

BWindow bw;
bw.draw(); /I Error: ambiguous

Copyright © 2001 Stephen A. Edwards All rights reserved



Multiple Inheritance Ambiguities Duplicate Base Classes

= Ambiguity can be resolved explicitly = A class may be inherited more than once
class Window { void draw(); }; class Drawable{ ... };
class Border { void draw() }; class Window : public Drawable { ... };
class BWindow : public Window, public Border { class Border : public Drawable{ ... };
id d Window::draw(); '
}_VOI raw() { Window::draw(); } class BWindow : public Window, public Border { ... };

BWindow bw: = BWindow gets two copies of the Drawable base class

bw.draw(); // BWindow::draw() calls Window::draw()

Copyright © 2001 Stephen A. Edwards All rights reserved Copyright © 2001 Stephen A. Edwards All rights reserved

Duplicate Base Classes Implementing Multiple Inheritance

= Virtual base classes are inherited at most once = A virtual function expects a pointer to its object
struct A { virtual void f(); }
struct B { virtual void f(); }

class Drawable{ ... }; struct C : A, B { void f(); }
class Window : public virtual Drawable{ ... }; = E.g., C:f() expects “this” to be a C*
class Border : public virtual Drawable { ... }; = But this could be called with “this” being a B*

class BWindow : public Window, public Border { ... };
In-memory

representation of a C

= BWindow gets one copy of the Drawable base class C *C or A *a —| A
B *bh—» B
C

Copyright © 2001 Stephen A. Edwards All rights reserved Copyright © 2001 Stephen A. Edwards All rights reserved

Implementation Using VT Offsets Implementation Using Thunks
struct A { int x; virtual void f(); } = Create little “helper functions” that adjust this
struct B { inty; virtual void f(); virtual void g(); } = Advantage: Only pay extra cost for virtual functions
struct C : A, B { int z; void f(); } C's vibl with multiple inheritance
Cc; c C’s vtbl
B*b = &c: thr -1 C 2CT
b->f(); // C::f() X Bin C’s vtbl vptr 7] __

' b— vptr T— &C:f —2 X Bin C’s vthl

y &B:g 0 b—>_vptr T——fgC:f in B

1. bisaB*: vptrhas f(), g() z y &Bug
2. Call C::f(this—2 z

.a (this ) ) void C::f_in_B(void* this) {
3. First argument now pointsto aC return C::f(this - 2);

}

Copyright © 2001 Stephen A. Edwards All rights reserved Copyright © 2001 Stephen A. Edwards All rights reserved



Namespaces Namespaces

= Namespace pollution = Scope for enclosing otherwise global declarations
- Occurs when building large systems from pieces
- Identical globally-visible names clash
- How many programs have a “print” function?
- Very difficult to fix

namespace Mine {
void print(int);
const float pi = 3.1415925635;
class Shape { };

}

void bar(float y) {
float x = y + Mine::pi;
Mine::print(5);

= Classes suggest a solution

class A { void fQ; };

class B { void fQ); };

}

= Two f’'s are separate

Copyright © 2001 Stephen A. Edwards All rights reserved Copyright © 2001 Stephen A. Edwards All rights reserved
Namespaces Namespaces
= using directive brings namespaces or objects into = Namespaces are open: declarations can be added

scope

namespace Mine {

namespace Mine { void f(int);

const float pi = 3.1415926535; }

void print(int);
} namespace Mine {

void g(int); /I Add Mine::g() to Mine

using Mine::print;
void foo() { print(5); } //invoke Mine::print
using namespace Mine;
float twopi = 2*pi; /I Mine::pi

Copyright © 2001 Stephen A. Edwards All rights reserved Copyright © 2001 Stephen A. Edwards All rights reserved
Namespaces Exceptions
= Declarations and definitions can be separated = A high-level replacement for C’'s setjmp/longjmp
namespace Mine { struct Except {};

void f(int);
} void bar() { throw Except; }
void Mine::f(int a) { void foo() {

VARV try {
} bar(Q;

catch (Except e) {
printf(“oops”);
}

3

Copyright © 2001 Stephen A. Edwards All rights reserved Copyright © 2001 Stephen A. Edwards All rights reserved




Standard Template Library C++ 10 Facilities

= |/O Facilities: iostream = C’'s printing facility is clever but unsafe
= Garbage-collected String class char *s; int d; double g;
= Containers printf(“%s %d %g”, s, d, g);
+ vector, list, queue, stack, map, set = Hard for compiler to typecheck argument types
= Numerical against format string

- complex, valarray

= General algorithms = C++ 10 overloads the << and >> operators

. search, sort . .
cout << S << << d << << g;

= Type safe
Copyright © 2001 Stephen A. Edwards All rights reserved Copyright © 2001 Stephen A. Edwards All rights reserved
C++ 10 Facilities C++ string class
= Printing user-defined types = Reference-counted for automatic garbage collection
ostream &operator<<(ostream &o, MyType &m) { : .
0 << “An Object of MyType”; string s1, s2; >
return o; A \(ORLD'S LARGEST
} s1="Hello"; BALL OF STRING = |
s2="“There”;
= Input overloads the >> operator s1+=* goodbye”;
s1l=""; /I Frees memory occupied by “Hello goodbye”
int read_integer;
cin >>read_integer;
Copyright © 2001 Stephen A. Edwards Al rights reserved Copyright © 2001 Stephen A. Edwards Al rights reserved
C++ STL Containers Iterators

= Vector = Mechanism for stepping through containers

- Dynamically growing, shrinking array of elements

vector<int>v;

vector<int>v; for (vector<int>::iterator i = v.begin();
v.push_back(3); /I vector can behave as a stack i1=v.end() ; i++){
v.push_back(2); int entry = *i;
int j = v[0]; /I operator[] defined for vector }
v.begin() v.end()

Copyright © 2001 Stephen A. Edwards All rights reserved Copyright © 2001 Stephen A. Edwards All rights reserved



Other Containers

Insert/Delete from

front mid. end random access
vector O(n) O(n) O(1) 0O(1)
list O(1) O(1) O(1) o(n)
deque O(1) O(n) O(1) o(n)

Copyright © 2001 Stephen A. Edwards All rights reserved

C++in Embedded Systems

= Dangers of using C++
- No or bad compiler for your particular processor
- Increased code size
- Slower program execution

= Much harder language to compile

- Unoptimized C++ code often much larger, slower than

equivalent C

Copyright © 2001 Stephen A. Edwards All rights reserved

Inexpensive C++ Features

= Default arguments

. Compiler adds code at call site to set default
arguments

- Long argument lists costly in C and C++ anyway

= Constructors and destructors

- Function call overhead when an object comes into
scope (normal case)

- Extra code inserted when object comes into scope
(inlined case)

Copyright © 2001 Stephen A. Edwards All rights reserved

Associative Containers

= Keys must be totally ordered
= Implemented with trees

= set

- Set of objects

set<int, less<int>>s;

s.insert(5);

set<int, less<int> >::iterator i = s.find(3);
= map

« Associative Array

map<int, char*>m;

m[3] = “example”;

Copyright © 2001 Stephen A. Edwards All rights reserved

C++ Features With No Impact

= Classes
- Fancy way to describe functions and structs
- Equivalent to writing object-oriented C code

= Singleinheritance
- More compact way to write larger structures

= Function name overloading
- Completely resolved at compile time

= Namespaces
- Completely resolved at compile time

Copyright © 2001 Stephen A. Edwards All rights reserved

Medium-cost Features

= Virtual functions
- Extralevel of indirection for each virtual function call
- Each object contains an extra pointer

= References
- Often implemented with pointers
- Extralevel of indirection in accessing data
. Can disappear with inline functions

= Inline functions
- Can greatly increase code size for large functions
- Usually speeds execution

Copyright © 2001 Stephen A. Edwards All rights reserved



High-cost Features

= Multiple inheritance
- Makes objects much larger (multiple virtual pointers)
- Virtual tables larger, more complicated
- Calling virtual functions even slower

= Templates
- Compiler generates separate code for each copy
- Can greatly increase code sizes
- No performance penalty

Copyright © 2001 Stephen A. Edwards All rights reserved

High-cost Features

= Much of the standard template library
- Uses templates: often generates lots of code

- Very dynamic data structures have high memory-
management overhead

- Easy to inadvertently copy large datastructures

Copyright © 2001 Stephen A. Edwards All rights reserved

High-cost Features

= Exceptions
- Typical implementation:

- When exception is thrown, look up stack until handler
is found and destroy automatic objects on the way

- Mere presence of exceptions does not slow program
- Often requires extra tables or code to direct clean-up
- Throwing and exception often very slow

Copyright © 2001 Stephen A. Edwards All rights reserved

Bottom-line

= C still generates better code
= Easy to generate larger C++ executables
= Harder to generate slower C++ executables

= Exceptions most worrisome feature
- Consumes space without you asking

- GCC compiler has a flag to enable/disable exception
support —fexceptions and —fno-exceptions

Copyright © 2001 Stephen A. Edwards All rights reserved

10



