The C Language

The C Language = Currently, the most commonly-used language for
embedded systems

= “High-level assembly”

Prof. Stephen A. Edwards = Very portable: compilers exist for virtually every
processor

= Easy-to-understand compilation
= Produces efficient code

= Fairly concise

Copyright © 2001 Stephen A. Edwards All rights reserved Copyright © 2001 Stephen A. Edwards All rights reserved

C History BCPL

= Developed between 1969 and 1973 along with Unix = Designed by Martin Richards (Cambridge) in 1967

= Typeless
- Everything an n-bit integer (a machine word)
- Pointers (addresses) and integers identical

= Due mostly to Dennis Ritchie

= Designed for systems programming
- Operating systems
. Utility programs = Memory is an undifferentiated array of words
. Compilers -
- Filters

Natural model for word-addressed machines

. = Local variables depend on frame-pointer-relative
= Evolved from B, which evolved from BCPL addressing: dynamically-sized automatic objects
not permitted

= Strings awkward
- Routines expand and pack bytes to/from word arrays

Copyright © 2001 Stephen A. Edwards All rights reserved Copyright © 2001 Stephen A. Edwards All rights reserved

C History C History

= Original machine (DEC PDP-11) = Many language features designed to reduce memory
was very small . Forward declarations required for everything
- 24K bytes of memory, 12K used . Designed to work in one pass: must know everything

for operating system - No function nesting

= Written when computers were
big, capital equipment
- Group would get one, develop
new language, OS

= PDP-11 was byte-addressed
- Now standard
. Meant BCPL's word-based model was insufficient

Copyright © 2001 Stephen A. Edwards All rights reserved Copyright © 2001 Stephen A. Edwards All rights reserved

Hello World in C Hello World in C

Program mostly a

collection of functions

i] «— Preprocessor used to - . i))
#include <stdio.h> sha?e information #include <stdio.h> “main” function special:
the entry point

among source files

e o e o i quaier indiates
printf(“Hello, world!\n"); * Cheaplyimplemented printf(“Hello, world!\n”); anything
+ Very flexible }
1/0 performed by a library
| function: not included in
& the language
ol
Copyright © 2001 Stephen A. Edwards All rights reserved) - Copyright © 2001 Stephen A. Edwards All rights reserved

Euclid’s algorithm in C Euclid’s algorithm in C

int gcd(int m, int Me— d’\éﬁ}g;i}gﬁ J;‘{;C""” int gcd(int m, int n)

{ number and type of { Automatic variable
nt r; arguments nt r; Storage allocated on
while ((r =m % n) !=0) { originally only listed while ((r =m % n) != 0) { stack when function

m = n; return type. m = n; entered, released
n=r: Generated code did n=r: when it returns.
’ not care how many ’
} arguments were } Excess autbmatt variables
return n; actually passed. return n; «— arguments accessed w.r.t
3 Arguments are call- } simply frame pointer.
by-value n ignored
Erame m Extrg sc;(orﬁgfe
; —ret. addr. neeaea whnile
pointer T le— Stack evaluating large
pointer expressions also
placed on the stack
Copyright © 2001 Stephen A. Edwards Al rights reserved Copyright © 2001 Stephen A. Edwards Al rights reserved
Euclid’s algorithm in C Euclid’s algorithm in C
int gcd(int m, int n) int gcd(int m, int n)

Expression: C's
int r; / basic type of int r;

while ((r=m%n) 1=0) { Saemen while ((r =m%n) 1= 0) {
m = n; Arithmetic and m=n:
n=r; logical n=rs
} S{ﬂ%ﬂ%ﬁ? - } High-level control-flow
return n; el return n: Each function statement. Ultimately
} ’ can be used in } +~—_ retuns asingle becomes a conditional
expressions value, usually an ~ branch.
'tﬂtr%%gh Eest;égﬁg Supports “structured
% is remainder register by programming”
1= iis not equal convention.

Copyright © 2001 Stephen A. Edwards All rights reserved Copyright © 2001 Stephen A. Edwards All rights reserved

Euclid Compiled on PDP-11

.glob1l _gcd r0-r7
.text PC is r7, SP is r6, FP is r5
_ged:
jsr r5,rsave save sp in frame pointer r5
L2:mov 4(r5),rl r:.L =n int gcd(int m, int n)
sxt ro sign extend
div 6(r5),r0 m/ n=ro0,rl intr;
mov rl,-10(r5) r=m%n while ((r=m %n)!=0){
jeq L3 o
mov 6(r5),4(r5) m=n) !
mov -10(r5),6(r5) n = return n;
jbr L2 }
L3:mov 6(r5),r0 return n in r0
jbr L1
L1:jmp rretrn restore sp ptr, return

Copyright © 2001 Stephen A. Edwards All rights reserved

Pieces of C

= Types and Variables
- Definitions of data in memory

= Expressions
- Arithmetic, logical, and assignment operators in an
infix notation
= Statements
. Sequences of conditional, iteration, and branching
instructions
= Functions

- Groups of statements and variables invoked
recursively

Copyright © 2001 Stephen A. Edwards All rights reserved

C Type Examples

Euclid Compiled on PDP-11

-globl _gcd Very natural mapping from C into
-test PDP-11 instructions.
_gcj;r rs, rsave Complex addressing modes make
L2:mov 4(r5),rl frame-pointer-relative accesses
easy.
sxt ro0
div 6(r5),r0 Another idiosyncrasy: registers
mov rl,-10(r5) were memory-mapped, so taking
jeq L3 address of a variable in a register
mov 6(r5),4(r5) is straightforward. .
mov -10(r5),6(r5)
jbr L2
L3:mov 6(r5),r0
jbr L1

L1:jmp rretrn

Copyright © 2001 Stephen A. Edwards All rights reserved

C Types

int 1i; Integer

int *j, k; j: pointer to integer, int k
unsigned char *ch; ch: pointer to unsigned char
float f[10]; Array of 10 floats

char nextChar(int, char¥*); 2-arg function

int a[3][5][10]; Array of three arrays of five ...

int *funcl(float); function returning int *

int (*func2)(void); pointer to function returning int

Copyright © 2001 Stephen A. Edwards All rights reserved

= Basic types: char, int, float, and double

= Meant to match the processor’s native types
- Natural translation into assembly
- Fundamentally nonportable

= Declaration syntax: string of specifiers followed by a
declarator

= Declarator’s notation matches that in an expression

= Access a symbol using its declarator and get the
basic type back

Copyright © 2001 Stephen A. Edwards All rights reserved

C Typedef

= Type declarations recursive, complicated.
= Name new types with typedef

= Instead of
int (*func2)(void)
use
typedef int func2t(void);
func2t *func2;

Copyright © 2001 Stephen A. Edwards All rights reserved

C Structures

= A struct is an object with named fields:

struct {
char *name;
int x, y;
int h, w;

} box;

= Accessed using “dot” notation:

box.x
box.y

5;
2;

Copyright © 2001 Stephen A. Edwards All rights reserved

C Unions

Struct bit-fields

= Way to aggressively pack datain memory

struct {
unsigned int baud : 5;
unsigned int div2 : 1;
unsigned int use_external_clock : 1;
} flags;

= Compiler will pack these fields into words

= Very implementation dependent: no guarantees of
ordering, packing, etc.

= Usually less efficient
- Reading a field requires masking and shifting

Copyright © 2001 Stephen A. Edwards All rights reserved

Alignment of data in structs

= Can store objects of different types at different times

union {
int ival;
float fval;
char *sval;
1

= Useful for arrays of dissimilar objects
= Potentially very dangerous

= Good example of C's philosophy
- Provide powerful mechanisms that can be abused

Copyright © 2001 Stephen A. Edwards All rights reserved

Alignment of data in structs

= Most processors require n-byte objects to be in
memory at address n*k

= Side effect of wide memory busses
= E.g., a 32-bit memory bus
= Read from address 3 requires two accesses, shifting

Copyright © 2001 Stephen A. Edwards All rights reserved

= Compilers add “padding” to structs to ensure proper
alignment, especially for arrays

= Pad to ensure alignment of largest object (with
biggest requirement)

a

b b b b

struct { | | | .

char a;

int b; l Pad

char c; 2

} b b b b

C

= Moral: rearrange to save memory

Copyright © 2001 Stephen A. Edwards All rights reserved

Linker-visible.
C Sto rag € Cl asses Allocated at fixed
location
#include <stdlib.h> Visible within file.

Allocated at fixed
int global_static; / location.
static int file_static;

void foo(int auto_param)

{ o
static int func_static;«—— oo Wihin func.
int auto_i, auto_a[10]; location.

double *auto_d = malloc(sizeof(double)*5);
}

Copyright © 2001 Stephen A. Edwards All rights reserved

C Storage Classes

#include <stdlib.h>

int global_static;
static int file_static;

Space allocated on
void foo(int auto_param) < stack by caller.

{
static int func_static; Space allocated on
int auto_i, auto_a[10]; «— stack by function.
double *auto_d = malloc(sizeof(double)*5);

} \
Space allocated on

heap by library routine.

Copyright © 2001 Stephen A. Edwards All rights reserved

malloc() and free()

= More flexible than automatic variables (stacked)

= More costly in time and space
- malloc() and free() use complicated non-constant-time
algorithms
- Each block generally consumes two additional words
of memory
= Pointer to next empty block
= Size of this block

= Common source of errors
- Using uninitialized memory
- Using freed memory
- Not allocating enough
- Neglecting to free disused blocks (memory leaks)

Copyright © 2001 Stephen A. Edwards All rights reserved

Dynamic Storage Allocation

= What are malloc() and free() actually doing?

= Pool of memory segments:

H l Free

l malloc(H)
e prm—— i

Copyright © 2001 Stephen A. Edwards All rights reserved

malloc() and free()

= Library routines for managing the heap

int *a;

a = (int *) malloc(sizeof(int) * k);
a[5] = 3;

free(a);

= Allocate and free arbitrary-sized chunks of memory
in any order

Copyright © 2001 Stephen A. Edwards All rights reserved

malloc() and free()

= Memory usage errors so pervasive, entire successful
company (Pure Software) founded to sell tool to track
them down

= Purify tool inserts code that verifies each memory
access

= Reports accesses of uninitialized memory,
unallocated memory, etc.

= Publicly-available Electric Fence tool does something
similar

Copyright © 2001 Stephen A. Edwards All rights reserved

Dynamic Storage Allocation

= Rules:
- Each segment contiguous in memory (no holes)
- Segments do not move once allocated

= malloc()
- Find memory area large enough for segment
- Mark that memory is allocated

= free()
- Mark the segment as unallocated

Copyright © 2001 Stephen A. Edwards All rights reserved

Dynamic Storage Allocation

= Three issues:

= How to maintain information about free memory

= The algorithm for locating a suitable block

= The algorithm for freeing an allocated block

Copyright © 2001 Stephen A. Edwards All rights reserved

Simple Dynamic Storage Allocation

B |

| ‘ | :
First large-enough
Next Next free block selected
Size Size Size Free block divided
Free block Allocated block into two
Previous next
l malloc(I:l) pointer updated

Newly-gllot_:ated_ N
(1 — Adevae

Copyright © 2001 Stephen A. Edwards All rights reserved

Dynamic Storage Allocation

= Many, many variants
= Other “fit” algorithms

= Segregation of objects by sizes
- 8-byte objects in one region, 16 in another, etc.

= More intelligent list structures

Copyright © 2001 Stephen A. Edwards All rights reserved

Simple Dynamic Storage Allocation

= Three issues:

= How to maintain information about free memory
. Linked list

= The algorithm for locating a suitable block
- First-fit

= The algorithm for freeing an allocated block
- Coalesce adjacent free blocks

Copyright © 2001 Stephen A. Edwards All rights reserved

Simple Dynamic Storage Allocation

Appropriate
position in free list
free(a) identified

Newly-freed region
added to adjacent
| | | | | free regions

Copyright © 2001 Stephen A. Edwards All rights reserved

Memory Pools

= An alternative: Memory pools
= Separate management policy for each pool

= Stack-based pool: can only free whole pool at once
- Very cheap operation
- Good for build-once data structures (e.g., compilers)

= Pool for objects of a single size
- Useful in object-oriented programs

= Not part of the C standard library

Copyright © 2001 Stephen A. Edwards All rights reserved

Arrays Multidimensional Arrays

= Array: sequence of identical

r € = Array declarations read right-to-left
objects in memory

int a[10][3][2];

Filippo Brunelleschi,

= int a[10]; means space forten roe o 1apr

integers = “an array of ten arrays of three arrays of two ints”
= By itself, ais the address of the first integer = In memory
= *3and a[0] mean the same thing 3 3 3

= The address of a is not stored in memory: the

compiler inserts code to compute it when it appears |I||I||I| |I||I||I| |I||I||I|
R e e ol e

= Ritchie calls this interpretation the biggest 222 222 222

conceptual jump from BCPL to C ~ ~ /

10

Copyright © 2001 Stephen A. Edwards Al rights reserved Copyright © 2001 Stephen A. Edwards Al rights reserved fﬂ?:g:gg 5;‘,"%'22'3,%"5“%'9
Multidimensional Arrays Multidimensional Arrays
= Passing a multidimensional array as an argument = Use arrays of pointers for variable-sized

requires all but the first dimension multidimensional arrays

= You need to allocate space for and initialize the

int al[10]1[3]1[2]; arrays of pointers

. . int ***3;
void examine(a[][3]1[2]) { .. }
= a[3][5][4] expands to *(*(*(a+3)+5)+4)
= Address for an access such as a[i][j]1[k] is int **a
The value
a+ k + 2% + 3*1)
int = int * int
Copyright © 2001 Stephen A. Edwards All rights reserved Copyright © 2001 Stephen A. Edwards All rights reserved
C Expressions C Expression Classes
= Traditional mathematical expressions = arithmetic: + - * / %
= comparison: == I= < <= > >=

y = a*x*x + b*x +c; = bitwise logical: & | A ~

= shifting: << >>

. ical: 1

= Very rich set of expressions lazy logical: & || !
= conditional: ? :

= Able to deal with arithmetic and bit manipulation)
= assignment: = += -=

= increment/decrement: ++ --
= sequencing: ,
= pointer: * -> & []

Copyright © 2001 Stephen A. Edwards All rights reserved Copyright © 2001 Stephen A. Edwards All rights reserved

Bitwise operators

= and: & or: | xor: not: ~ left shift: <<right shift: >>

= Useful for bit-field manipulations

#define MASK 0x040

if @& MASK) { ... } /* Check bits */
¢ |= MASK; /* Set bits */

c &=~MASK; /* Clear bits */
d = (a & MASK) >> 4; /* Select field */

Copyright © 2001 Stephen A. Edwards All rights reserved

Conditional Operator

= c=za<b?a+1:b-1;

= Evaluate first expression. If true, evaluate second,
otherwise evaluate third.

= Puts almost statement-like behavior in expressions.
= BCPL allowed code in an expression:

a:=5+valof{inti,s=0; for (i=0;i<10;i++)s +=a[l];
returns; }

Copyright © 2001 Stephen A. Edwards All rights reserved

Pointer Arithmetic

= From BCPL’s view of the world

= Pointer arithmetic is natural: everything’s an integer
int *p, *q;

*(p+5) equivalent to p[5]

= |f p and g point into same array, p — qis number of
elements between p and q.

= Accessing fields of a pointed-to structure has a
shorthand:

p->field means (*p).field

Copyright © 2001 Stephen A. Edwards All rights reserved

Lazy Logical Operators

= “Short circuit” tests save time

if(a==3&&b==4&&c==5){...}

equivalent to

if @==3){if (b==4){if(c==5){...}}}

= Evaluation order (left before right) provides safety

if (i <= SIZE && a[i] ==0){ ... }

Copyright © 2001 Stephen A. Edwards All rights reserved

Side-effects in expressions

= Evaluating an expression often has side-effects

a++ increment a afterwards
a=5 changes the value of a
a=foo() function foo may have side-effects

Copyright © 2001 Stephen A. Edwards All rights reserved

C Statements

= Expression

= Conditional
- if(expr){...}else{...}
- switch (expr) { case cl: casec2: ... }

= |teration
- while (expr){ ... } zero or more iterations
- do ... while (expr) at least one iteration
- for (init; valid; next) {...}
= Jump
- goto label
- continue; go to start of loop
. break; exit loop or switch
- return expr; return from function

Copyright © 2001 Stephen A. Edwards All rights reserved

The Switch Statement

= Performs multi-way branches

tmp = expr; e
switch (expr) { if (tmp == 1) goto L1
case 1: .. else if (tmp == 5) goto L5

break; else if (tmp == 6) goto L6
case 5: else goto Default;
case 6: .. Li: ..
break; goto Break;
default: .. tg:'
break; goto Break;
} pefault: ..
goto Break;
Break:

Copyright © 2001 Stephen A. Edwards All rights reserved

setimp/longjmp

= A way to exit from deeply nested functions

= A hack now a formal part of the standard library

Space for a return

- - address and registers
#include <setjmp.h> (including stack pointer,

jmp_buf jmpbuf; «— frame pointer)
void tOp(VO'id) { Stores context, returns 0
switch (setjmp(jmpbuf)) {

case 0: child(); break;

case 1: /* longjmp called */ break;

1} Returns to context, making it

j appear setjmp() returned 1
void deeplynested() { longjmp(jmpbuf, 1); }

Copyright © 2001 Stephen A. Edwards All rights reserved

Macro Preprocessor Pitfalls

= Header file dependencies usually form a directed
acyclic graph (DAG)

= How do you avoid defining things twice?

= Convention: surround each header (.h) file with a
conditional:

#ifndef _MYHEADER_H__
#define __MYHEADER_H__
/* Declarations */
#endif

Copyright © 2001 Stephen A. Edwards All rights reserved

Switch Generates Interesting Code
= Sparse case labels tested sequentially

if (e == 1) goto L1;
else if (e == 10) goto L2;
else if (e == 100) goto L3;

= Dense cases use ajump table

table = { L1, L2, Default, L4, LS5 };
if (e >= 1 and e <= 5) goto table[e];

= Clever compilers may combine these

Copyright © 2001 Stephen A. Edwards All rights reserved

The Macro Preprocessor

= Relatively late and awkward addition to the language

= Symbolic constants
#define PI 3.1415926535

= Macros with arguments for emulating inlining
#define min(O,y) (0O < () 2 () : y))

= Conditional compilation
#ifdef _sTpc__

= Fileinclusion for sharing of declarations
#include “myheaders.h”

Copyright © 2001 Stephen A. Edwards All rights reserved

Macro Preprocessor Pitfalls

= Macros with arguments do not have function call
semantics

= Function Call:

- Each argument evaluated once, in undefined order,
before function is called

= Macro:

- Each argument evaluated once every time it appears in
expansion text

Copyright © 2001 Stephen A. Edwards All rights reserved

Macro Preprocessor pitfalls

= Example: the “min” function
int min(int a, int b)
{ if (a < b) return a; else return b; }

#define min(a,b) ((@) < (b) ? (a) : (b))

= Identical for min(5,x)

= Different when evaluating expression has side-effect:
min(a++,b)
- min function increments a once
- min macro may increment atwice ifa<b

Copyright © 2001 Stephen A. Edwards All rights reserved

Nondeterminism in C

= Library routines
- malloc() returns a nondeterministically-chosen address
- Address used as a hash key produces
nondeterministic results
= Argument evaluation order
- myfunc(funcl(), func2(), func3())
- funcl, func2, and func3 may be called in any order

= Word sizes

int a;
a=1<<16; /* Might be zero */
a=1<<32 /* Might be zero */

Copyright © 2001 Stephen A. Edwards All rights reserved

Nondeterminism in C

= How to deal with nondeterminism?
. Caveat programmer

= Studiously avoid nondeterministic constructs
- Compilers, lint, etc. don’t really help

= Philosophy of C: get out of the programmer’s way

= “Ctreats you like a consenting adult”
- Created by a systems programmer (Ritchie)

= “Pascal treats you like a misbehaving child”
- Created by an educator (Wirth)

= “Adatreats you like a criminal”
- Created by the Department of Defense

Copyright © 2001 Stephen A. Edwards All rights reserved

Macro Preprocessor Pitfalls

= Text substitution can expose unexpected groupings

#define mult(a,b) a*b

mult(5+3,2+4)

= Expandsto5 + 3 * 2 + 4

= Operator precedence evaluates this as

5+ (3*2) + 4 =15 not (5+3) * (2+4) = 48 as intended

= Moral: By convention, enclose each macro argument
in parenthesis:

#define mult(a,b) (a)*(b)

Copyright © 2001 Stephen A. Edwards All rights reserved

Nondeterminism in C

= Uninitialized variables
- Automatic variables may take values from stack
- Global variables left to the whims of the OS

= Reading the wrong value from a union
- union {int a; float b; } u; u.a = 10; printf(“%g”, u.b);

= Pointer dereference

- *aundefined unless it points within an allocated array
and has been initialized

Very easy to violate these rules

Legal: int a[10]; a[-1] = 3; a[10] = 2; a[11] = 5;

int *a, *b; a-b only defined if aand b point into the
same array

Copyright © 2001 Stephen A. Edwards All rights reserved

Summary

= Cevolved from the typeless languages BCPL and B
= Array-of-bytes model of memory permeates the
language
= Original weak type system strengthened over time
= C programs built from
- Variable and type declarations
- Functions
- Statements
- Expressions

Copyright © 2001 Stephen A. Edwards All rights reserved

10

Summary of C types

= Built from primitive types that match processor types
= char, int, float, double, pointers

= Struct and union aggregate heterogeneous objects

= Arrays build sequences of identical objects

= Alignment restrictions ensured by compiler

= Multidimensional arrays

= Three storage classes
- global, static (address fixed at compile time)
- automatic (on stack)
- heap (provided by malloc() and free() library calls)

Copyright © 2001 Stephen A. Edwards All rights reserved

Summary of C statements
= Expression

= Conditional
- if-else switch

= lteration
- while do-while for(;;)

= Branching
- goto break continue return

= Awkward setjmp, longjmp library routines for non-
local goto

Copyright © 2001 Stephen A. Edwards All rights reserved

The Main Points

= Like a high-level assembly language
= Array-of-cells model of memory

= Very efficient code generation follows from close
semantic match

= Language lets you do just about everything
= Very easy to make mistakes

Copyright © 2001 Stephen A. Edwards All rights reserved

Summary of C expressions

= Wide variety of operators
Arithmetic +-*/

Logical && || (lazy)
Bitwise & |

Comparison < <=
Assignment = += *=
Increment/decrement ++ --
Conditional ? :

= Expressions may have side-effects

Copyright © 2001 Stephen A. Edwards All rights reserved

Summary of C

= Preprocessor
- symbolic constants
- inline-like functions
- conditional compilation
. fileinclusion

= Sources of nondeterminsm
- library functions, evaluation order, variable sizes

Copyright © 2001 Stephen A. Edwards All rights reserved

11

