
1

Copyright © 2001 Stephen A. Edwards All rights reserved

The C Language

Prof. Stephen A. Edwards

Copyright © 2001 Stephen A. Edwards All rights reserved

The C Language
� Currently, the most commonly-used language for

embedded systems
� “ High-level assembly”
� Very portable: compilers exist for virtually every

processor
� Easy-to-understand compilation
� Produces efficient code
� Fairly concise

Copyright © 2001 Stephen A. Edwards All rights reserved

C History
� Developed between 1969 and 1973 along with Unix
� Due mostly to Dennis Ritchie
� Designed for systems programming

• Operating systems
• Utility programs
• Compilers
• Filters

� Evolved from B, which evolved from BCPL

Copyright © 2001 Stephen A. Edwards All rights reserved

BCPL
� Designed by Martin Richards (Cambridge) in 1967
� Typeless

• Everything an n-bit integer (a machine word)
• Pointers (addresses) and integers identical

� Memory is an undifferentiated array of words
� Natural model for word-addressed machines
� Local variables depend on frame-pointer-relative

addressing: dynamically-sized automatic objects
not permitted

� Strings awkward
• Routines expand and pack bytes to/from word arrays

Copyright © 2001 Stephen A. Edwards All rights reserved

C History
� Original machine (DEC PDP-11)

was very small
• 24K bytes of memory, 12K used

for operating system

� Written when computers were
big, capital equipment

• Group would get one, develop
new language, OS

Copyright © 2001 Stephen A. Edwards All rights reserved

C History
� Many language features designed to reduce memory

• Forward declarations required for everything
• Designed to work in one pass: must know everything
• No function nesting

� PDP-11 was byte-addressed
• Now standard
• Meant BCPL’s word-based model was insufficient

2

Copyright © 2001 Stephen A. Edwards All rights reserved

Hello World in C
����������	�
���
�����
����������

� ����
������������

!�" ������#$��%�&���������')(�� " ��
+*-,.��/��10

2

Preprocessor used to
share information
among source files

- Clumsy

+ Cheaply implemented

+ Very flexible

Copyright © 2001 Stephen A. Edwards All rights reserved

Hello World in C
����������	�
���
�����
����������

� ����
������������

!�" ������#$��%�&���������')(�� " ��
+*-,.��/��10

2

Program mostly a
collection of functions

“main” function special:
the entry point

“void” qualifier indicates
function does not return
anything

I/O performed by a library
function: not included in
the language

Copyright © 2001 Stephen A. Edwards All rights reserved

Euclid’s algorithm in C
�3����4���
5�������6�7'8�����9���

����� " 0
(5�������:�;� "=< �6>:���?* <;@ �
� < �A0
� <:" 0

2
" ����	 " �;�A0

2

“New Style” function
declaration lists
number and type of
arguments

Originally only listed
return type.
Generated code did
not care how many
arguments were
actually passed.

Arguments are call-
by-value

Copyright © 2001 Stephen A. Edwards All rights reserved

Euclid’s algorithm in C
�3����4���
5�������6�7'8�����9���

����� " 0
(5�������:�;� "=< �6>:���?* <;@ �
� < �A0
� <:" 0

2
" ����	 " �;�A0

2

Automatic variable

Storage allocated on
stack when function
entered, released
when it returns.

All parameters,
automatic variables
accessed w.r.t.
frame pointer.

Extra storage
needed while
evaluating large
expressions also
placed on the stack

n
m

ret. addr.
r

Frame
pointer Stack

pointer

Excess
arguments
simply
ignored

Copyright © 2001 Stephen A. Edwards All rights reserved

Euclid’s algorithm in C
�3����4���
5�������6�7'8�����9���

����� " 0
(5�������:�;� "=< �6>:���?* <;@ �
� < �A0
� <:" 0

2
" ����	 " �;�A0

2

Expression: C’s
basic type of
statement.

Arithmetic and
logical

Assignment (=)
returns a value, so
can be used in
expressions

% is remainder

!= is not equal

Copyright © 2001 Stephen A. Edwards All rights reserved

Euclid’s algorithm in C
�3����4���
5�������6�7'8�����9���

����� " 0
(5�������:�;� "=< �6>:���?* <;@ �
� < �A0
� <:" 0

2
" ����	 " �;�A0

2
High-level control-flow
statement. Ultimately
becomes a conditional
branch.

Supports “structured
programming”

Each function
returns a single
value, usually an
integer. Returned
through a specific
register by
convention.

3

Copyright © 2001 Stephen A. Edwards All rights reserved

Euclid Compiled on PDP-11

� ���������
	�����
 ���������
��������� ������� ���! #" �$��� �&%')(�$��� ��*	�����
,+- � �.��*! &� ��/�0�� ��/�0��1��23��465 � /�7��12 � ��4���� �1��*8�9 + 7 � 0;:=< ��*�>' ���? �&?3@ 4
����� �&� ��� � 46��������4

 ��0 % < ��*�>' ��&� 71AB4 @C�&�, &�&?
7 � 0 ��?' D��?�� < ��*�> �E@ 76FB4- ��G 8�H
7 � 0 % < ��*�>' :=< ��*�> 7 @ 4
7 � 0 ��?�� < ��*�>, I% < ��*�> 4 @J�- �K� 8�9

8�H + 7 � 0 % < ��*�>' ��&� � ����L � 4146��4 ���- �K� 8 ?
8 ?'+ - 7�2 ��� ��� � 4 � ����� �M� �3��212�� �� N� ����L � 4

int gcd(int m, int n)
{

int r;
while ((r = m % n) != 0) {

m = n;
n = r;

}
return n;

}

Copyright © 2001 Stephen A. Edwards All rights reserved

Euclid Compiled on PDP-11

� ���������
	�����

���������	�����
,+- � �.��*! &� ��/�0��8�9 + 7 � 0;:=< ��*�>' ���?
����� �&�

 ��0 % < ��*�>' ��&�
7 � 0 ��?' D��?�� < ��*�>- ��G 8�H
7 � 0 % < ��*�>' :=< ��*�>
7 � 0 ��?�� < ��*�>, I% < ��*�>- �K� 8�9

8�H + 7 � 0 % < ��*�>' ��&�- �K� 8 ?
8 ?'+ - 7�2 ��� ��� � 4

Very natural mapping from C into
PDP-11 instructions.

Complex addressing modes make
frame-pointer-relative accesses
easy.

Another idiosyncrasy: registers
were memory-mapped, so taking
address of a variable in a register
is straightforward.

Copyright © 2001 Stephen A. Edwards All rights reserved

Pieces of C
� Types and Variables

• Definitions of data in memory
� Expressions

• Arithmetic, logical, and assignment operators in an
infix notation

� Statements
• Sequences of conditional, iteration, and branching

instructions
� Functions

• Groups of statements and variables invoked
recursively

Copyright © 2001 Stephen A. Edwards All rights reserved

C Types
� Basic types: char, int, float, and double
� Meant to match the processor’s native types

• Natural translation into assembly
• Fundamentally nonportable

� Declaration syntax: string of specifiers followed by a
declarator

� Declarator’s notation matches that in an expression
� Access a symbol using its declarator and get the

basic type back

Copyright © 2001 Stephen A. Edwards All rights reserved

C Type Examples
�3���;� 0
�3���PO!Q+'CRA0
	3������43����
 ����� " O����10
#��������;#TS�U @'V 0
�3��� " ���MW��!X���� " � ������'8����� " O�� 0
�3�����YS�Z V S�[V S�U @\V 0
�3���PO�#�	����'U�� #����������+0
�3���:��O�#�	����=]��.� � ����
��10

Integer

j: pointer to integer, int k

ch: pointer to unsigned char

Array of 10 floats

2-arg function

Array of three arrays of five …

function returning int *

pointer to function returning int

Copyright © 2001 Stephen A. Edwards All rights reserved

C Typedef
� Type declarations recursive, complicated.
� Name new types with typedef

� Instead of
�3���:��O�#�	����=]��.� � ����
��

use
�!^ ! ��
���#;����� #�	����!]��5� � �3��
�� 0
#�	����=]��PO�#�	����!]+0

4

Copyright © 2001 Stephen A. Edwards All rights reserved

C Structures
� A struct is an object with named fields:

��� " 	����
����� " O�������� 0
����� W+'�^70
����� � ')(0

2�� �=W�0

� Accessed using “ dot” notation:

� �=W+��W < [0
� �=W+� ^ <]+0

Copyright © 2001 Stephen A. Edwards All rights reserved

Struct bit-fields
� Way to aggressively pack data in memory

��� " 	����
	�������4�����
;����� � ��	�
�� [50
	�������4�����
;������
�� �]�� U 0
	�������4�����
;�����;	��������MW���� " �������5�������,R	� UA0

2 #�����43� 0

� Compiler will pack these fields into words
� Very implementation dependent: no guarantees of

ordering, packing, etc.
� Usually less efficient

• Reading a field requires masking and shifting

Copyright © 2001 Stephen A. Edwards All rights reserved

C Unions
� Can store objects of different types at different times

	3�������
����� � � ��� 0
#���������# � ���10
����� " O�� � ���10
2 0

� Useful for arrays of dissimilar objects
� Potentially very dangerous
� Good example of C’s philosophy

• Provide powerful mechanisms that can be abused

Copyright © 2001 Stephen A. Edwards All rights reserved

Alignment of data in structs
� Most processors require n-byte objects to be in

memory at address n*k
� Side effect of wide memory busses
� E.g., a 32-bit memory bus
� Read from address 3 requires two accesses, shifting

4 3 2

1

4 3 2 1

Copyright © 2001 Stephen A. Edwards All rights reserved

Alignment of data in structs
� Compilers add “ padding” to structs to ensure proper

alignment, especially for arrays
� Pad to ensure alignment of largest object (with

biggest requirement)

��� " 	����
����� " �+0
����� � 0
����� " � 0

2

� Moral: rearrange to save memory

a
bbbb
c

a
bbbb
c

Pad

Copyright © 2001 Stephen A. Edwards All rights reserved

C Storage Classes
����������	�
���
�����
���� � � � �

�3����4���� � �����5�����������+0
������������������#������
�5�����������10

� ����
;#���� �������;��	������ ! � " �����

�����������;�����;#�	����
�5����������� 0
�����;��	��������1'8��	����
���TS�U @\V 0

���	 � ��� O���	����
��
 < �����������5������
�����# �
���	 � �����=O [�10

2

Linker-visible.
Allocated at fixed
location

Visible within file.
Allocated at fixed
location.

Visible within func.
Allocated at fixed
location.

5

Copyright © 2001 Stephen A. Edwards All rights reserved

C Storage Classes
����������	�
���
�����
���� � � � �

�3����4���� � �����5�����������+0
������������������#������
�5�����������10

� ����
;#���� �������;��	������ ! � " �����

�����������;�����;#�	����
�5����������� 0
�����;��	��������1'8��	����
���TS�U @\V 0

���	 � ��� O���	����
��
 < �����������5������
�����# �
���	 � �����=O [�10

2

Space allocated on
stack by function.

Space allocated on
stack by caller.

Space allocated on
heap by library routine.

Copyright © 2001 Stephen A. Edwards All rights reserved

malloc() and free()
� Library routines for managing the heap

int *a;
a = (int *) malloc(sizeof(int) * k);
a[5] = 3;
free(a);

� Allocate and free arbitrary-sized chunks of memory
in any order

Copyright © 2001 Stephen A. Edwards All rights reserved

malloc() and free()
� More flexible than automatic variables (stacked)
� More costly in time and space

• malloc() and free() use complicated non-constant-time
algorithms

• Each block generally consumes two additional words
of memory

� Pointer to next empty block
� Size of this block

� Common source of errors
• Using uninitialized memory
• Using freed memory
• Not allocating enough
• Neglecting to free disused blocks (memory leaks)

Copyright © 2001 Stephen A. Edwards All rights reserved

malloc() and free()
� Memory usage errors so pervasive, entire successful

company (Pure Software) founded to sell tool to track
them down

� Purify tool inserts code that verifies each memory
access

� Reports accesses of uninitialized memory,
unallocated memory, etc.

� Publicly-available Electric Fence tool does something
similar

Copyright © 2001 Stephen A. Edwards All rights reserved

Dynamic Storage Allocation
� What are malloc() and free() actually doing?
� Pool of memory segments:

Free

malloc()

Copyright © 2001 Stephen A. Edwards All rights reserved

Dynamic Storage Allocation
� Rules:

• Each segment contiguous in memory (no holes)
• Segments do not move once allocated

� malloc()
• Find memory area large enough for segment
• Mark that memory is allocated

� free()
• Mark the segment as unallocated

6

Copyright © 2001 Stephen A. Edwards All rights reserved

Dynamic Storage Allocation
� Three issues:

� How to maintain information about free memory

� The algorithm for locating a suitable block

� The algorithm for freeing an allocated block

Copyright © 2001 Stephen A. Edwards All rights reserved

Simple Dynamic Storage Allocation
� Three issues:

� How to maintain information about free memory
• Linked list

� The algorithm for locating a suitable block
• First-fit

� The algorithm for freeing an allocated block
• Coalesce adjacent free blocks

Copyright © 2001 Stephen A. Edwards All rights reserved

Simple Dynamic Storage Allocation

Next

Size

Next

SizeSize
Free block Allocated block

malloc()

First large-enough
free block selected

Free block divided
into two

Previous next
pointer updated

Newly-allocated
region begins with
a size value

Copyright © 2001 Stephen A. Edwards All rights reserved

Simple Dynamic Storage Allocation

free(a)

Appropriate
position in free list
identified

Newly-freed region
added to adjacent
free regions

Copyright © 2001 Stephen A. Edwards All rights reserved

Dynamic Storage Allocation
� Many, many variants
� Other “ fit” algorithms
� Segregation of objects by sizes

• 8-byte objects in one region, 16 in another, etc.
� More intelligent list structures

Copyright © 2001 Stephen A. Edwards All rights reserved

Memory Pools
� An alternative: Memory pools
� Separate management policy for each pool

� Stack-based pool: can only free whole pool at once
• Very cheap operation
• Good for build-once data structures (e.g., compilers)

� Pool for objects of a single size
• Useful in object-oriented programs

� Not part of the C standard library

7

Copyright © 2001 Stephen A. Edwards All rights reserved

Arrays
� Array: sequence of identical

objects in memory
�
����� � S�U @\V 0 means space for ten
integers

Filippo Brunelleschi,
Ospdale degli Innocenti,
Firenze, Italy, 1421

� By itself,
�

is the address of the first integer
�
O��

and
� S @'V mean the same thing

� The address of
�

is not stored in memory: the
compiler inserts code to compute it when it appears

� Ritchie calls this interpretation the biggest
conceptual jump from BCPL to C

Copyright © 2001 Stephen A. Edwards All rights reserved

Multidimensional Arrays
� Array declarations read right-to-left
� int a[10][3][2];
� “ an array of ten arrays of three arrays of two ints”
� In memory

2 2 2

3

2 2 2

3

2 2 2

3

...

10

Seagram Building, Ludwig
Mies van der Rohe,1957

Copyright © 2001 Stephen A. Edwards All rights reserved

Multidimensional Arrays
� Passing a multidimensional array as an argument

requires all but the first dimension

�3�����YS�U @'V S�Z V S�] V 0
� ����
;�!W����������5�=�YS V S�Z V S�] V � � 2

� Address for an access such as
�YS � V S�Q V S�R V is

� � R �]=O5��Q � Z�O����

Copyright © 2001 Stephen A. Edwards All rights reserved

Multidimensional Arrays
� Use arrays of pointers for variable-sized

multidimensional arrays
� You need to allocate space for and initialize the

arrays of pointers
�3���PO=O=O��+0
�
�YS�Z V S�[V S�� V expands to

O.��O.��O5� � � Z�� � [�� � ���

The value

int ** int * int

int ***a

Copyright © 2001 Stephen A. Edwards All rights reserved

C Expressions
� Traditional mathematical expressions

y = a*x*x + b*x + c;

� Very rich set of expressions
� Able to deal with arithmetic and bit manipulation

Copyright © 2001 Stephen A. Edwards All rights reserved

C Expression Classes
� arithmetic: ��� O�� >
� comparison: <�< * <
�
 < �;� <
� bitwise logical: �
	���

� shifting:

�
;���
� lazy logical: ���
	�	 *
� conditional: � �
� assignment: < � <�� <
� increment/decrement: ��� ���
� sequencing:

'
� pointer:

O � � � S V

8

Copyright © 2001 Stephen A. Edwards All rights reserved

Bitwise operators
� and: & or: | xor: ^ not: ~ left shift: << right shift: >>
� Useful for bit-field manipulations

#define MASK 0x040

if (a & MASK) { … } /* Check bits */

c |= MASK; /* Set bits */

c &= ~MASK; /* Clear bits */

d = (a & MASK) >> 4; /* Select field */

Copyright © 2001 Stephen A. Edwards All rights reserved

Lazy Logical Operators
� “ Short circuit” tests save time

if (a == 3 && b == 4 && c == 5) { … }

equivalent to

if (a == 3) { if (b ==4) { if (c == 5) { … } } }

� Evaluation order (left before right) provides safety

if (i <= SIZE && a[i] == 0) { … }

Copyright © 2001 Stephen A. Edwards All rights reserved

Conditional Operator
� c = a < b ? a + 1 : b – 1;

� Evaluate first expression. If true, evaluate second,
otherwise evaluate third.

� Puts almost statement-like behavior in expressions.

� BCPL allowed code in an expression:

a := 5 + valof{ int i, s = 0; for (i = 0 ; i < 10 ; i++) s += a[I];
return s; }

Copyright © 2001 Stephen A. Edwards All rights reserved

Side-effects in expressions
� Evaluating an expression often has side-effects

a++ increment a afterwards

a = 5 changes the value of a

a = foo() function foo may have side-effects

Copyright © 2001 Stephen A. Edwards All rights reserved

Pointer Arithmetic
� From BCPL’s view of the world
� Pointer arithmetic is natural: everything’s an integer
�3���PO ! ' O���0
O$� ! � [�� equivalent to ! S�[V
� If p and q point into same array, ! � �

is number of
elements between p and q.

� Accessing fields of a pointed-to structure has a
shorthand:

! � ��#�������
 means
��O ! �1� #�������

Copyright © 2001 Stephen A. Edwards All rights reserved

C Statements
� Expression
� Conditional

• if (expr) { … } else {…}
• switch (expr) { case c1: case c2: … }

� Iteration
• while (expr) { … } zero or more iterations
• do … while (expr) at least one iteration
• for (init ; valid ; next) { … }

� Jump
• goto label
• continue; go to start of loop
• break; exit loop or switch
• return expr; return from function

9

Copyright © 2001 Stephen A. Edwards All rights reserved

The Switch Statement
� Performs multi-way branches

��(�������� � �!W !�" �
������� U � �� " ���,R 0
������� [�
��������� � �� " ���,R 0

���#���	���� � �� " ���,R 0
2

�������
	�����
��
����� �������������������������
	���� 	 ����� ���!�"���$#%������������#
	���� 	 ����� ���!�"���
&������������ &
	���� 	'�������)(�	 ��*�+ ���,�
���.-0/

��������1�
2	 *!3 �
��#4-��
� &,-0/

��������1�
2	 *!3 �
(�	 ��*�+ ���,-0/

��������1�
2	 *!3 �
1�
2	 *�3 -

Copyright © 2001 Stephen A. Edwards All rights reserved

Switch Generates Interesting Code
5 Sparse case labels tested sequentially

6!798 :<;�;>=�?�@!A!B�A9C�=ED
:�FHG�:�6�7I8 :$;�;>=�JH?<@�A!B!AKC�LMD
:�FHG�:�6�7I8 :$;�;>=�J�J4?$@�A�B�A>C!NOD

5 Dense cases use a jump table

BHP!Q�F�:<;>RSC�=OTUC�LVT"W!:�7HP!X�F�BYT'C�ZYT'C�[]\ED
6!798 :<^�;>=]P�_�`<:<a�;9[�?�@�AHB�A�B�PHQ�F!:Vbc:HdMD

5 Clever compilers may combine these

Copyright © 2001 Stephen A. Edwards All rights reserved

setjmp/longjmp
5 A way to exit from deeply nested functions
5 A hack now a formal part of the standard library

e 6H_�f!F!X�`�:<agG�:�BHh�i�jVk%l�^
h!iHj�m.Q!X�7<h�i�j�Q�X!7MD

n AH6�`SB�AHjo8 n AH6�`�?pR
G%q.6�BHfHl>8�G�:�BHh�i�j.8�h�i�j�QHX�7!?!?KR
f�P4G�:$JsrtfHl�6HF�`,8 ?YD"Qgu�:�P�vED
f�P4G�:p=Erxw�ySF�Ag_�@Hh�i�jSf�P!F!F�:!`�y�wpQou :�P4vED

\S\

n AH6�`S`!:�:Hj!F�zg_�:gG�B!:�`O8 ?pR�F�Ag_�@!h�i4j.8 h�i4j�Q�X�7YT�=�?MD�\

Space for a return
address and registers
(including stack pointer,
frame pointer)

Stores context, returns 0

Returns to context, making it
appear setjmp() returned 1

Copyright © 2001 Stephen A. Edwards All rights reserved

The Macro Preprocessor
5 Relatively late and awkward addition to the language

5 Symbolic constants{�| 	 ����} 	�~��
�g��� ����#%����&�#���#
5 Macros with arguments for emulating inlining{�| 	 ����} 	'� ��}H� �O����� ��� ����� � ���U� � ���K- � �����
5 Conditional compilation{ ��� | 	 �"����� � (�� ���
5 File inclusion for sharing of declarations{ ��}�� � + | 	��2���!��	 * | 	H
 �.�����

Copyright © 2001 Stephen A. Edwards All rights reserved

Macro Preprocessor Pitfalls
5 Header file dependencies usually form a directed

acyclic graph (DAG)
5 How do you avoid defining things twice?

5 Convention: surround each header (.h) file with a
conditional:

e 6�7�_�`!:!7�m!m4�����.�2�gW4�!�%mg��mHm
e `�:�7H6�_�:�m!m4�����.�2�gW4�!�%mg��mHm
wgy�W!:Hf!F�Pou�P!B!6�A._�G�y�w
e :�_�`H6�7

Copyright © 2001 Stephen A. Edwards All rights reserved

Macro Preprocessor Pitfalls
5 Macros with arguments do not have function call

semantics

5 Function Call:
• Each argument evaluated once, in undefined order,

before function is called

5 Macro:
• Each argument evaluated once every time it appears in

expansion text

10

Copyright © 2001 Stephen A. Edwards All rights reserved

Macro Preprocessor pitfalls
5 Example: the “ min” function�������������	�
�����
�����������
�������	�������! #"�$&%' �()�
*�"�+�,&"- ."�$�%� /(��0*21
3�4 "&����(/")5
��(��	�
67�&�����	�����8�9����:��	���<;=�9���&�

> Identical for min(5,x)
> Different when evaluating expression has side-effect:

min(a++,b)
• min function increments a once
• min macro may increment a twice if a < b

Copyright © 2001 Stephen A. Edwards All rights reserved

Macro Preprocessor Pitfalls
> Text substitution can expose unexpected groupings

?
@BABCED0F'AHG0IKJMLON�PRQ�SBTUPEVBS
G
IBJMLWNMX&Y[Z\Q�]'YK^ET
> Expands to

X_Y`ZaVU]aYb^
> Operator precedence evaluates this as

5 + (3*2) + 4 = 15 not (5+3) * (2+4) = 48 as intended
> Moral: By convention, enclose each macro argument

in parenthesis:
?
@BABCED0F'AHG0IKJMLON�PRQ�SBTcN&PKTEV[N&SKT

Copyright © 2001 Stephen A. Edwards All rights reserved

Nondeterminism in C
> Library routines

• malloc() returns a nondeterministically-chosen address
• Address used as a hash key produces

nondeterministic results
> Argument evaluation order

• myfunc(func1(), func2(), func3())
• func1, func2, and func3 may be called in any order

> Word sizes
int a;
a = 1 << 16; /* Might be zero */
a = 1 << 32; /* Might be zero */

Copyright © 2001 Stephen A. Edwards All rights reserved

Nondeterminism in C
> Uninitialized variables

• Automatic variables may take values from stack
• Global variables left to the whims of the OS

> Reading the wrong value from a union
• union { int a; float b; } u; u.a = 10; printf(“ %g” , u.b);

> Pointer dereference
• *a undefined unless it points within an allocated array

and has been initialized
• Very easy to violate these rules
• Legal: int a[10]; a[-1] = 3; a[10] = 2; a[11] = 5;
• int *a, *b; a - b only defined if a and b point into the

same array

Copyright © 2001 Stephen A. Edwards All rights reserved

Nondeterminism in C
> How to deal with nondeterminism?

• Caveat programmer
> Studiously avoid nondeterministic constructs

• Compilers, lint, etc. don’t really help
> Philosophy of C: get out of the programmer’s way
> “ C treats you like a consenting adult”

• Created by a systems programmer (Ritchie)
> “ Pascal treats you like a misbehaving child”

• Created by an educator (Wirth)
> “ Ada treats you like a criminal”

• Created by the Department of Defense

Copyright © 2001 Stephen A. Edwards All rights reserved

Summary
> C evolved from the typeless languages BCPL and B
> Array-of-bytes model of memory permeates the

language
> Original weak type system strengthened over time
> C programs built from

• Variable and type declarations
• Functions
• Statements
• Expressions

11

Copyright © 2001 Stephen A. Edwards All rights reserved

Summary of C types
> Built from primitive types that match processor types
> char, int, float, double, pointers
> Struct and union aggregate heterogeneous objects
> Arrays build sequences of identical objects
> Alignment restrictions ensured by compiler
> Multidimensional arrays
> Three storage classes

• global, static (address fixed at compile time)
• automatic (on stack)
• heap (provided by malloc() and free() library calls)

Copyright © 2001 Stephen A. Edwards All rights reserved

Summary of C expressions
> Wide variety of operators

• Arithmetic + - * /
• Logical && || (lazy)
• Bitwise & |
• Comparison < <=
• Assignment = += *=
• Increment/decrement ++ --
• Conditional ? :

> Expressions may have side-effects

Copyright © 2001 Stephen A. Edwards All rights reserved

Summary of C statements
> Expression
> Conditional

• if-else switch
> Iteration

• while do-while for(;;)
> Branching

• goto break continue return

> Awkward setjmp, longjmp library routines for non-
local goto

Copyright © 2001 Stephen A. Edwards All rights reserved

Summary of C
> Preprocessor

• symbolic constants
• inline-like functions
• conditional compilation
• file inclusion

> Sources of nondeterminsm
• library functions, evaluation order, variable sizes

Copyright © 2001 Stephen A. Edwards All rights reserved

The Main Points
> Like a high-level assembly language

> Array-of-cells model of memory

> Very efficient code generation follows from close
semantic match

> Language lets you do just about everything
> Very easy to make mistakes

