
Connect via Embedded Linux and Java
Abstract

This is a survey about the networking related
features provided by embedded Linux. In this
survey, we will summarize the major reasons
why Linux is increasingly pervasive in
embedded systems market. Seeing the trend that
“everything to be connected”, we will focus on
the networking related features provided in
embedded Linux, and compare several
distributions. We will also put an eye on the use
of Java in embedded systems
1. Introduction
 Linux is winning in the embedded OS. There
are several major reasons:

• No per-unit royalty fees or licensing
charges

• Providing more features existing
RTOSes don’t, such as connectivity,
memory protection, security, and support
for customizable color GUIs.

• Being Extremely flexible that you can
definitely find some form of Linux to
run on any processor

• Provide a single platform from PDA to
clustered super computer to minimize
the system specific issues

Since the embedded systems are increasingly
shipped with more memory, more intelligent
features, and are likely to be interconnected
somehow in the future, they definitely need a
more general purpose embedded OS instead of
the traditional single-purpose device-specific
OSes. As the reasons listed above, Linux has
become prevailing in this area. The trend of
embedded devices is to be more intelligent. In
order to achieve the intelligence, embedded
systems needs more connectivity, both among
the devices and to the remote server. Therefore,
we will focus on the connectivity an embedded
Linux can provide.
2. Comparison among Linux

To be a good embedded OS for networking
purpose, the real-time performance is also quite
important, because networking always comes
with asynchronous response-time-limited events.
Here is a comprehensive real-time features
comparison table from[1]. From this table, we can
see some common mechanisms to achieve better
real-time performance, such as “Fully
preemptable” kernel[2], Precise scheduling.

From the functionality point of view,
embedded Linux provides the same capabilities
as normal Linux, and is very configurable. Since
Linux has implementation of almost any kind of
network function or protocol, it’s easy to build

[1] Kevin Dankwardt, Comparing real-time Linux
 alternatives,http://www.linuxdevices.com/article
s/AT4503827066.html
 [2] George Anzinger and Nigel Gamble, Design o
f a Fully Preemptable Linux kernel, http://www.li
nuxdevices.com/articles/AT4185744181.html

the same functionality into any embedded
version as long as the footprint is acceptable.

3. Java + Linux

When talking about networking and
program language, we can never ignore Java,
which is born to the mission. Java is perfect for
handling pure networking issues, and for the
exponentially growing number of embedded
devices, Java seems to be the simplest and
quickest way to develop and deploy applications.
As the release of J2ME (Java2 Micro Edison),
lots of drawbacks of Java in case of using it in
embedded system are overcome, e.g. the
footprint size can be as little as 128K for VM
and libraries [3]. The real-time specification for
Java enables processes to interrupt the garbage
collector to ensure predictable response amongst
many other improvements. AOT (Ahead-of-
Time), JIT (Just-in-time) and Dynamic
Compilation speed up Java dramatically. Here is
a comparison among these techniques [4]:

 Everything is showing that Java is ready to

go for embedded systems, and the combination
of Java and Linux will maximize the flexibility
and minimize the development and maintenance.
4. Future work

1) I’ll compare the network performance of
two embedded Linux with C/C++ language.

2) I’ll compare the implementation detail of
both embedded Linux.

3) I’ll build a test-bed on a selected Linux,
and compare the performance of different Java
compilation techniques on it and on Windows.

4) Finally, I’ll try to build a simulated
intelligent devices network to demonstrate the
inspiring future of Linux and Java.

[3] J2ME(TM) Connected Limited Device Configu
ration (CLDC) ("Specification")
[4] Randy Rorden, Java and Embedded Linux Tea
m Up, http://www.linuxdevices.com/articles/AT7
873839273.html

