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Abstract—Traditionally, many data mining techniques have been designed in the centralized model in which all data is collected and

available in one central site. However, as more and more activities are carried out using computers and computer networks, the

amount of potentially sensitive data stored by business, governments, and other parties increases. Different parties often wish to

benefit from cooperative use of their data, but privacy regulations and other privacy concerns may prevent the parties from sharing

their data. Privacy-preserving data mining provides a solution by creating distributed data mining algorithms in which the underlying

data need not be revealed. In this paper, we present privacy-preserving protocols for a particular data mining task: learning a Bayesian

network from a database vertically partitioned among two parties. In this setting, two parties owning confidential databases wish to

learn the Bayesian network on the combination of their databases without revealing anything else about their data to each other. We

present an efficient and privacy-preserving protocol to construct a Bayesian network on the parties’ joint data.

Index Terms—Data privacy, Bayesian networks, privacy-preserving data mining.
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1 INTRODUCTION

THE rapid growth of the Internet makes it easy to collect
data on a large scale. Data is generally stored by a

number of entities, ranging from individuals to small
businesses to government agencies. This data includes
sensitive data that, if used improperly, can harm data
subjects, data owners, data users, or other relevant parties.
Concern about the ownership, control, privacy, and
accuracy of such data has become a top priority in technical,
academic, business, and political circles. In some cases,
regulations and consumer backlash also prohibit different
organizations from sharing their data with each other. Such
regulations include HIPAA [19] and the European privacy
directives [35], [36].

As an example, consider a scenario in which a research
center maintains a DNA database about a large set of
people, while a hospital stores and maintains the history
records of those people’s medical diagnoses. The research
center wants to explore correlations between DNA se-
quences and specific diseases. Due to privacy concerns and
privacy regulations, the hospital cannot provide any
information about individual medical records to the
research center.

Data mining traditionally requires all data to be gathered
into a central site where specific mining algorithms can be
applied on the joint data. This model works in many data
mining settings. However, clearly this is undesirable from a
privacy perspective. Distributed data mining [28] removes
the requirement of bringing all raw data to a central site, but
this has usually been motivated by reasons of efficiency and
solutions do not necessarily provide privacy. In contrast,

privacy-preserving data mining solutions, including ours,
provide data mining algorithms that compute or approx-
imate the output of a particular algorithm applied to the
joint data, while protecting other information about the
data. Some privacy-preserving data mining solutions can
also be used to create modified, publishable versions of the
input data sets.

Bayesian networks are a powerful data mining tool. A
Bayesian network consists of two parts: the network
structure and the network parameters. Bayesian networks
can be used for many tasks, such as hypothesis testing and
automated scientific discovery. In this paper, we present
privacy-preserving solutions for learning Bayesian net-
works on a database vertically partitioned between two
parties. Using existing cryptographic primitives, we design
several privacy-preserving protocols. We compose them to
compute Bayesian networks in a privacy-preserving man-
ner. Our solution computes an approximation of the
existing K2 algorithm for learning the structure of the
Bayesian network and computes the accurate parameters. In
our solution, the two parties learn only the final Bayesian
network plus the order in which network edges were
added. Based on the security of the cryptographic primi-
tives used, it is provable that no other information is
revealed to the parties about each other’s data. (More
precisely, each party learns no information that is not
implied by this output and his or her own input.)

We overview related work in Section 2. In Section 3, we
give a brief review of Bayesian networks and the
K2 algorithm. We present our security model and formalize
the privacy-preserving Bayesian network learning problem
on a vertically partitioned database in Section 4 and we
introduce some cryptographic preliminaries in Section 5. In
Sections 6 and 7, we describe our privacy-preserving
structure-learning and parameter-learning solutions. In
Section 8, we discuss how to efficiently combine the two
learning steps together to reduce the total overhead.
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2 RELATED WORK

Certain data mining computations can be enabled while
providing privacy protection for the underlying data using
privacy-preserving data mining, on which there is a large
and growing body of work [33], [13], [29], [3]. Those
solutions can largely be categorized into two approaches.
One approach adopts cryptographic techniques to provide
secure solutions in distributed settings (e.g., [29]). Another
approach randomizes the original data in such a way that
certain underlying patterns (such as distributions) are
preserved in the randomized data (e.g., [3]).

Generally, the cryptographic approach can provide
solutions with perfect accuracy and guarantee the computa-
tion itself leaks no information beyond the final results. The
randomization approach is typically much more efficient
than the cryptographic approach, but it suffers a trade-off
between privacy and accuracy [1], [27]. Note that, in some
cases, an accurate solution may be considered too privacy-
invasive. Both the randomization approach and the crypto-
graphic approach can purposely introduce additional error
or randomization in this case.

Privacy-preserving algorithms have been proposed for
different data mining applications, including decision trees
on randomized data [3], association rules mining on
randomized data [37], [14], association rules mining across
multiple databases [40], [23], clustering [41], [21], [20], naive
Bayes classification [24], [42], and privacy-preserving
collaborative filtering [7]. Additionally, several solutions
have been proposed for privacy-preserving versions of
simple primitives that are very useful for designing
privacy-preserving data mining algorithms. These include
finding common elements [15], [2] computing scalar
products [6], [4], [40], [39], [15], [16], and computing
correlation matrices [30].

In principle, the elegant and powerful paradigm of
secure multiparty computation provides cryptographic
solutions for protecting privacy in any distributed compu-
tation [17], [46]. The definition of privacy is that no more
information is leaked than in an “ideal” model in which
each party sends her input to a trusted third party who
carries out the computation on the received inputs and
sends the appropriate results back to each party. Because,
generally, there is no third party that all participating
parties trust and because such a party would become a clear
single target for attackers, secure multiparty computation
provides privacy-preserving protocols that eliminate the
need for a trusted third party while ensuring that each party
learns nothing more than he or she would in the ideal
model. However, the complexity of the general secure
multiparty computation is rather high for computations on
large data sets. More efficient privacy-preserving solutions
can often be designed for specific distributed computations.
Our work is an example of such a solution (in our case, for
an ideal functionality that also computes both the desired
Bayesian network and the order in which the edges were
added, as we discuss further in Section 8.2). We use general
two-party computation as a building block for some smaller
parts of our computation to design a tailored, more efficient,
solution to Bayesian network learning.

The field of distributed data mining provides distributed
data mining algorithms for different applications [28], [38],
[22] which, on minor modification, may provide privacy-
preserving solutions. Distributed Bayesian network learn-
ing has been addressed for both vertically partitioned data
and horizontally partitioned data [9], [8], [44]. These
algorithms were designed without privacy in mind and,
indeed, they require parties to share substantial amounts of
information with each other. In Section 8.3, we briefly
describe an alternate privacy-preserving Bayesian network
structure-learning solution based on the solutions of Chen
et al. [9], [8] and compare that solution to our main
proposal.

Meng et al. [32] provide a privacy-preserving technique
for learning the parameters of a Bayesian network in
vertically partitioned data. We provide a detailed compar-
ison of our technique for parameter learning to theirs in
Section 7, where we show that our solution provides better
accuracy, efficiency, and privacy.

3 REVIEW OF BAYESIAN NETWORKS AND THE

K2 ALGORITHM

In Section 3.1, we give an introduction to Bayesian
networks. In Section 3.2, we briefly introduce the
K2 algorithm for learning a Bayesian network from a set
of data.

3.1 Bayesian Networks

A Bayesian network (BN) is a graphical model that encodes
probabilistic relationships among variables of interest [11].
This model can be used for data analysis and is widely used
in data mining applications. Formally, a Bayesian network
for a set V of m variables is a pair ðBs; BpÞ. The network
structure Bs ¼ ðV ;EÞ is a directed acyclic graph whose
nodes are the set of variables. The parameters Bp describe
local probability distributions associated with each variable.
The graph Bs represents conditional independence asser-
tions about variables in V : An edge between two nodes
denotes direct probabilistic relationships between the
corresponding variables. Together, Bs and Bp define the
joint probability distribution for V . Throughout this paper,
we use vi to denote both the variable and its corresponding
node. We use �i to denote the parents of node vi in Bs. The
absence of an edge between vi and vj denotes conditional
independence between the two variables given the values of
all other variables in the network.

For bookkeeping purposes, we assume there is a
canonical ordering of variables and their possible instantia-
tions which can be extended in the natural way to sets of
variables. We denote the jth unique instantiation of V by Vj.
Similarly, we denote the kth instantiation of a variable vi by
vik . Given the set of parent variables �i of a node vi in the
Bayesian network structure Bs, we denote the jth unique
instantiation of �i by �ij. We denote the number of unique
instantiations of �i by qi and the number of unique
instantiations of vi by di.

Given a Bayesian network structure Bs, the joint
probability for any particular instantiation V‘ of all the
variables is given by:
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Pr½V ¼ V‘� ¼
Y
vi2V

Pr½vi ¼ vik j �i ¼ �ij�;

where each k and j specify the instantiations of the
corresponding variables as determined by V‘. The network
parameters

Bp ¼ fPr½vi ¼ vik j �i ¼ �ij� : vi 2 V ; 1 � j � qi; 1 � k � dig

are the probabilities corresponding to the individual terms
in this product. If variable vi has no parents, then its
parameters specify the marginal distribution of vi:
Pr½vi ¼ vik j �i ¼ �ij� ¼ Pr½vi ¼ vik �.

3.2 K2 Algorithm

Determining the BN structure that best represents a set of
data is NP-hard [10], so heuristic algorithms are typically
used in practice. One of the most widely used structure-
learning algorithms is the K2 algorithm [11], which we use
as the starting point of our distributed privacy-preserving
algorithm. The K2 algorithm is a greedy heuristic approach
to efficiently determining a Bayesian network representa-
tion of probabilistic relationships between variables from a
data set containing observations of those variables.

The K2 algorithm starts with a graph consisting of nodes
representing the variables of interest, with no edges. For
each node in turn, it then incrementally adds edges whose
addition most increases the score of the graph, according to
a specified score function. When the addition of no single
parent can increase the score or a specified limit of parents
has been reached, this algorithm stops adding parents to
that node and moves onto the next node.

In the K2 algorithm, the number of parents for any node
is restricted to some maximum u. Given a node vi, PredðviÞ
denotes all the nodes less than vi in the node ordering. D is
a database of n records, where each record contains a value
assignment for each variable in V . The K2 algorithm
constructs a Bayesian network structure Bs whose nodes are
the variables in V . Each node vi 2 V has a set of parents �i.

More generally, we define �ijk to be the number of
records in D in which variable vi is instantiated as vik and �i
is instantiated as �ij. Similarly, we define �ij to be the
number of records in D in which �i is instantiated as �ij. We
note that, therefore,

�ij ¼
Xdi
k¼1

�ijk: ð1Þ

In constructing the BN structure, the K2 algorithm uses the
following score function fði; �iÞ to determine which edges
to add to the partially completed structure:

fði; �iÞ ¼
Yqi
j¼1

ðdi � 1Þ!
ð�ij þ di � 1Þ!

Ydi
k¼1

�ijk! ð2Þ

We refer to all possible �ijk and �ij that appear in (2) as
�-parameters. The K2 algorithm [11] is as follows:

Input: An ordered set of m nodes, an upper bound u on the
number of parents for a node, and a database D

containing n records.

Output: Bayesian network structure Bs (whose nodes are

the m input nodes and whose edges are as defined

by the values of �i at the end of the computation)

For i ¼ 1 to m

{

�i ¼ ;;
Pold ¼ fði; �iÞ;
KeepAdding = true;

While KeepAdding and j�ij < u

{

let z be the node in PredðxiÞ � �i that maximizes

fði; �i [ fzgÞ;
Pnew ¼ fði; �i [ fzgÞ;
If Pnew > Pold

Pold ¼ Pnew;

�i ¼ �i [ fzg;
Else KeepAdding = false;

}

}

4 SECURITY MODEL AND PROBLEM

FORMALIZATION

We formally state our security model in Section 4.1. We
formalize the privacy-preserving distributed learning Baye-
sian network problem in Section 4.2. The security of our
solution relies on the composition of privacy-preserving
protocols, which is introduced in Section 4.3.

4.1 Security Model

Security in distributed computation is frequently defined
with respect to an ideal model [18]. In the ideal model for
privacy-preserving Bayesian networks, two parties send
their databases to a trusted third party (TTP). The TTP then
applies a Bayesian network learning algorithm on the
combination of the two databases. Finally, the learned BN
model is sent to the two parties by the trusted third party. In
the ideal model, the two parties only learn the global BN
(their objective) and nothing else. A distributed computa-
tion that does not make use of a TTP is then said to be
secure if the parties learn nothing about each other’s data
during the execution of the protocol that they would not
learn in the ideal model.

In this paper, we design a privacy-preserving solution
for two parties to learn a BN using a secure distributed
computation. Ideally, the parties should learn nothing more
than in the ideal model. In our case, in order to obtain
security with respect to an ideal model, we must also allow
the ideal model to reveal the order in which an iterative
algorithm adds edges to the Bayesian network (as this is
revealed to Alice and Bob in our solution).

Following standard distributed cryptographic protocols,
we make the distinction between passive and active adver-
saries [18]. Passive adversaries (often called semihonest
adversaries) only gather information and do not modify the
behavior of the parties. Such adversaries often model
attacks that take place only after the execution of the
protocol has completed. Active adversaries (often called
malicious) cause the corrupted parties to execute arbitrary
operations of the adversary’s choosing, potentially learning
more about the other party’s data than intended. In this
work, as in much of the existing privacy-preserving data
mining literature, we suppose the parties in our setting are
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semihonest adversaries. That is, they correctly follow their
specified protocol, but they keep a record of all intermediate
computation and passed messages and may use those to
attempt to learn information about each other’s inputs.

4.2 Problem Formalization

In the distributed two-party setting we consider, a
database D consisting only of categorical variables is
vertically partitioned among Alice and Bob. Alice and Bob
hold confidential databases DA and DB, respectively, each
of which can be regarded as a relational table. Each
database has n rows. The variable sets in DA and DB are
denoted by VA and VB, respectively. There is a common ID
that links the rows in two databases owned by those two
parties. Without loss of generality, we assume that the row
index is the common ID that associates the two databa-
ses—that is, Alice’s rows and Bob’s rows represent the same
records, in the same order, but Alice and Bob each have
different variables in their respective “parts” of the records.
Thus, D ¼ DA ffl DB. Alice has DA and Bob has DB, where
DA has the variables VA ¼ fa1; . . . ; ama

g and DB has the
variables VB ¼ fb1; . . . ; bmb

g. (The sets DA and DB are
assumed to be disjoint.) Hence, ma þmb ¼ m and the
variable set is V ¼ VA [ VB. We assume the domains of
databases D are public to both parties. We also assume the
variables of interest are those in the set V ¼ VA [ VB. That is,
Alice and Bob wish to compute the Bayesian network of the
variables in their combined database DA ffl DB without
revealing any individual record and ideally not revealing
any partial information about their own databases to each
other except the information that can be derived from the
final Bayesian network and their own database. However,
our solution does reveal some partial information in that it
reveals the order in which edges were added in the process
of structure learning. The privacy of our solution is further
discussed in Section 8.2.

4.3 Composition of Privacy-Preserving Protocols

In this section, we briefly discuss the composition of
privacy-preserving protocols. In our solution, we use the
composition of privacy-preserving subprotocols in which
all intermediate outputs from one subprotocol that are
inputs to the next subprotocol are computed as secret shares
(see Section 5). In this way, it can be shown that if each
subprotocol is privacy-preserving, then the resulting com-
position is also privacy-preserving [18], [5]. (A fully fleshed
out proof of these results requires showing simulators that
relate the information available to the parties in the actual
computation to the information they could obtain in the
ideal model.)

5 CRYPTOGRAPHIC PRELIMINARIES

In this section, we introduce several cryptographic pre-
liminaries that are used to construct the privacy-preserving
protocols for learning BN on vertically partitioned data.

5.1 Secure Two-Party Computation

Secure two-party computation, introduced by Yao [46] is a
very general methodology for securely computing any
function. Under the assumption of the existence of the
collections of enhanced trapdoor permutations, Yao’s

solution provides a solution by which any polynomial-time
computable (randomized) function can be securely com-
puted in polynomial time. (In practice, a block cipher such
as AES [12] is used as the enhanced trapdoor permutation,
even though it is not proven to be one.) Essentially, the
parties compute an encrypted version of a combinatorial
circuit for the function and then they evaluate the circuit on
encrypted values. A nice description of Yao’s solution is
presented in Appendix B of [29].

In our setting, as in any privacy-preserving data mining
setting, general secure two-party computation would be too
expensive to use for the entire computation if the data set is
large. However, it is reasonable for functions that have
small inputs and circuit representation, as was recently
demonstrated in practice by the Fairplay system that
implements it [31]. We use general secure two-party
computation as a building block for several such functions.

5.2 Secret Sharing

In this work, we make use of secret sharing and,
specifically, 2-out-of-2 secret sharing. A value x is “shared”
between two parties in such a way that neither party knows
x, but, given both parties’ shares of x, it is easy to compute
x. In our case, we use additive secret sharing in which Alice
and Bob share a value x modulo some appropriate value N
in such a way that Alice holds a, Bob holds b, and x is equal
(not just congruent, but equal) to ðaþ bÞmodN . An
important property of this kind of secret sharing is that if
Alice and Bob have shares of x and y, then they can each
locally add their shares modulo N to obtain shares of xþ y.

5.3 Privacy-Preserving Scalar Product Share
Protocol

The scalar product of two vectors z ¼ ðz1; . . . ; znÞ and z0 ¼
ðz01; . . . ; z0nÞ is z � z0 ¼

Pn
i¼1 ziz

0
i. A privacy-preserving scalar

product shares protocol where both parties hold each
vector, respectively, and both parties learn secret shares of
the product result. We only require the use of the scalar
product protocol for binary data, even if the database
consists of nonbinary data. This can be done with complete
cryptographic privacy based on any additive homomorphic
encryption scheme [6], [39], [16] such as the Paillier
encryption scheme [34], which is secure assuming that it
is computationally infeasible to determine composite
residuosity classes. The protocol produces two shares
whose sum modulo N (where N is appropriately related
to the modulus used in the encryption scheme) is the target
scalar product. To avoid the modulus introducing differ-
ences in computations, the modulus should be larger than
the largest possible outcome of the scalar product.

5.4 ln x and x lnx Protocols

Lindell and Pinkas designed an efficient two-party privacy-
preserving protocol for computing x lnx [29]. In the
protocol, two parties have inputs v1 and v2, respectively,
and we define x ¼ v1 þ v2. The output for this protocol is
that two parties obtain random values w1 and w2,
respectively, such that w1 þ w2 ¼ x lnx. With the same
techniques, the two parties can also compute secret shares
for lnx. Both protocols are themselves privacy-preserving
and produce secret shares as their results.
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6 PRIVACY-PRESERVING BAYESIAN NETWORK

STRUCTURE PROTOCOL

In this section, we present a privacy-preserving protocol to
learn the Bayesian network structure from a vertically
partitioned database. We start in Sections 6.1 and 6.2 by
describing a modified K2 score function and providing
some experimental results for it. We describe several new
privacy-preserving subprotocols in Sections 6.3, 6.4, 6.5, and
6.6. In Section 6.7, we combine these into our overall
privacy-preserving solution for Bayesian network structure.
Bayesian network parameters are discussed later in
Section 7.

6.1 Our Score Function

We make a number of changes to the score function that
appear not to substantially affect the outcome of the
K2 algorithm and that result in a score function that works
better for our privacy-preserving computation. Since the
score function is only used for comparison purposes, we
work instead with a different score function that has the
same relative ordering. We then use an approximation to
that score function. Specifically, we make three changes to
the score function fði; �iÞ: We apply a natural logarithm, we
take Stirling’s approximation, and we drop some bounded
terms.

First, we apply the natural logarithm to fði; �iÞ, yielding
f 0ði; �iÞ ¼ ln fði; �iÞ without affecting the ordering of differ-
ent scores:

f 0ði; �iÞ ¼
Xqi
j¼1

lnðdi � 1Þ!� lnð�ij þ di � 1Þ!
� �

þ
Xqi
j¼1

Xdi
k¼1

ln�ijk!:

ð3Þ

Next, we wish to apply Stirling’s approximation on

f 0ði; �iÞ. Recall that Stirling’s approximation says that, for

any ‘ � 1, we have ‘! ¼
ffiffiffiffiffiffiffiffi
2�‘
p

‘
e

� �‘
e�‘ , where �ð‘Þ is determined

by Stirling’s approximation and satisfies 1
12‘þ1 < �ð‘Þ < 1

12‘ .

However, if any �ijk is equal to 0, then Stirling’s approxima-

tion does not apply to �ijk!. As a solution, we note that, if an

�ijk is changed from 0 to 1 in (3), the outcome is unchanged

because 1! ¼ 0! ¼ 1. Hence, we replace any�ijk that is 0 with 1.

Specifically, we define �ijk ¼ �ijk if �ijk is not 0 and �ijk ¼ 1 if

�ijk is 0. Either way, we define�ij ¼ �ij. (This is simply so that

we may entirely switch to using �s instead of having some �s

and some�s.) We refer to �ijk and �ij for all possible i, j, and k

as � parameters. Replacing � parameters with � parameters

in (3), we have

f 0ði; �iÞ ¼
Xqi
j¼1

lnðdi � 1Þ!� lnð�ij þ di � 1Þ!
� �

þ
Xqi
j¼1

Xdi
k¼1

ln�ijk!

ð4Þ

Taking ‘ij ¼ �ij þ di � 1, we apply Stirling’s approximation
to (4), obtaining:

f 0ði; �iÞ �
Xqi
j¼1

�Xdi
k¼1

�
1

2
ln �ijk þ �ijk ln�ijk � �ijk þ �ð�ijkÞ

�

�
�

1

2
ln ‘ij þ ‘ij ln ‘ij � ‘ij þ �ð‘ijÞ

��

þ qi ln ðdi � 1Þ!þ qiðdi � 1Þ
2

ln 2�:

ð5Þ

Finally, dropping the bounded terms �‘ij and ��ijk , pulling
out qiðdi � 1Þ, and setting

pubðdi; qiÞ ¼ qiðdi � 1Þ þ qi ln ðdi � 1Þ!þ qiðdi � 1Þ
2

ln 2�;

we obtain our score function gði; �iÞ that approximates the
same relative ordering as fði; �iÞ:

gði; �iÞ ¼
Xqi
j¼1

�Xdi
k¼1

�
1

2
ln �ijk þ �ijk ln�ijk

�

�
�

1

2
ln ‘ij þ ‘ij ln ‘ij

��
þ pubðdi; qiÞ:

ð6Þ

A main component of our privacy-preservingK2 solution
is showing how to compute gði; �iÞ in a privacy-preserving
manner, as described in the remainder of this section. First,
we provide some experimental results to provide some
evidence that f and g produce similar results.

6.2 Experimental Results of Our Score Function

We tested our score function on two different data sets in
order to validate that it produces an acceptable approxima-
tion to the standard K2 algorithm. The first data set, called
the Asia data set, includes one million instances. It is
generated from the commonly used Asia model.1 The
Bayesian network for the Asia model is shown in Fig. 1.
This model has eight variables: Asia, Smoking, Tubercu-

losis, Lung cancer, Bronchitis, Either, X-ray, and Dyspnoea,
denoted by {A, S, T, L, B, E, X, D}.

The second data set is a synthetic data set with 10,000
instances, including six variables denoted 0 to 5. All six
variables are binary, either true or false. Variables 0, 1, and 3
were chosen uniformly at random. Variable 2 is the XOR of
variables 0 and 1. Variable 4 is the product of variables 1
and 3. Variable 5 is the XOR of variables 2 and 4.

On those two data sets, we tested the K2 algorithms with
both score functions f and g. For both the Asia data set and
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the synthetic data set, the K2 algorithm generates the same
structures whether f or g is used as the score function.

We further compare the difference of g and ln f for both
data sets as computed by the K2 algorithm. (Recall that g is
our approximation to ln f .) In total, the K2 algorithm
computes 64 scores on the Asia data set and 30 scores on the
synthetic data set. Fig. 2 shows the ratios of each g to the
corresponding ln f . The X-axis represents different variables
and the Y-axis represents the ratios of g to ln f that are
computed for choosing the parents at each node. For
instance, 14 scores for node D are computed to choose the
parents of D. In the Asia model, all g scores are within
99.8 percent of ln f . The experimental results illustrate that,
for those two data sets, the g score function is a good
enough approximation to the f score function for the
purposes of the K2 algorithm. Kardes et al. [26] have
implemented our complete privacy-preserving Bayesian
network structure protocol and are currently carrying out
additional experiments.

6.3 Privacy-Preserving Computation of
� Parameters

In this section, we describe how to compute secret shares of
the � parameters defined in Section 3.2 in a privacy-
preserving manner. Recall that �ijk is the number of records
in D ¼ DA ffl DB, where vi is instantiated as vik and �i is
instantiated as �ij (as defined in Section 3.2), and recall that
qi is the number of unique instantiations that the variables
in �i can take on. The � parameters include all possible �ijk
and �ij that appear in (2) in Section 3.2.

Given instantiations vik of variable vi and �ij of the
parents �i of vi, we say a record in D is compatible with �ij for
Alice if the variables in �i \ VA (i.e., the variables in �i that
are owned by Alice) are assigned as specified by the
instantiation �ij and we say the record is compatible with vik
and �ij for Alice if the variables in ðfvig [ �iÞ \ VA are
assigned as specified by the instantiations vik and �ij.
Similarly, we say a record is compatible for Bob with �ij, or
with vik and �ij, if the relevant variables in VB are assigned
according to the specified instantiation(s).

We note that �ijk can be computed by determining how
many records are compatible for both Alice and Bob with vi
and �i. Similarly, �ij can be computed by determining how
many records are compatible for both Alice and Bob with

�i. Thus, Alice and Bob can determine �ijk and �ij using
privacy-preserving scalar product share protocols (see
Section 5) such that Alice and Bob learn secret shares of
�ijk and �ij. We describe this process in more detail below.

We define the vector compatAð�ijÞ to be the vector
ðx1; . . . ; xnÞ in which x‘ ¼ 1 if the ‘th database record is
compatible for Alice with �ij; otherwise, x‘ ¼ 0. We
analogously define compatAðvik;�ijÞ, compatBð�ijÞ, and
compatBðvik;�ijÞ. Note that, given the network structure
and i, j, k, Alice can construct compatAð�ijÞ and
compatAðvik;�ijÞ and Bob can construct compatBð�ijÞ and
compatBðvik;�ijÞ. Then, �ij ¼ compatAð�ijÞ � compatBð�ijÞ
and �ijk ¼ compatAðvik;�ijÞ � compatBðvik;�ijÞ. However,
the parties cannot, in general, learn �ijk and �ij as this
would violate privacy.

Note that in the degenerate case, all variables for vi and
�i belong to one party, who can locally compute the
corresponding � parameters without any interaction with
the other party. The following protocol computes �ijk
parameters for the general case in which variables including
vi and �i are distributed among two parties:

Input: DA and DB held by Alice and Bob, respectively,

values 1 � i � m, 1 � j � qi, and 1 � k � di, plus the

current value of �i and a particular instantiation �ij
of the variables in �i are commonly known to both

parties.

Output: Two secret shares of �ijk.

1) Alice and Bob generate compatAðvik;�ijÞ and

compatBðvik;�ijÞ, respectively.
2) By taking compatAðvik;�ijÞ and compatBðvik;�ijÞ as two

inputs, Alice and Bob execute the privacy-preserving

scalar product share protocol of Section 5 to generate the

secret shares of �ijk.

By running the above protocol for all possible combina-
tions i, j, and k, Alice and Bob can compute secret shares for
all �ijk parameters in (2). Since �ij ¼

Pdi
k¼1 �ijk, Alice and

Bob can compute the secret shares for a particular �ij by
simply adding all their secret shares of �ijk together.

Theorem 1. Assuming both parties are semihonest, the protocol
for computing � parameters is privacy-preserving.

Proof. Since the scalar product share protocol is privacy-
preserving, the privacy of each party is protected. Each
party only learns secret shares of each �-parameter and
nothing else about individual records of the other party’s
data. tu

6.4 Privacy-Preserving Computation of
� Parameters

We now show how to compute secret shares of the �
parameters of (6). As described earlier in Section 6.3, Alice
and Bob can compute secret shares for �ijk and �ij. We
denote these shares by �ijk ¼ aijk þ bijk and �ij ¼ aij þ bij,
where aijk, aij and bijk, bij are secret shares held by Alice and
Bob, respectively. Since �ij is equal to �ij (by definition), the
secret shares of �ij are aij and bij.

Recall that �ijk ¼ �ijk if �ijk is not 0; otherwise, �ijk ¼ 1.
However, neither Alice nor Bob knows the value of each
�ijk because each only has a secret share of each �ijk. Hence,
neither of them can directly compute the secret shares of
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�ijk from �ijk. (The direct exchange of their secret shares

would incur a privacy breach.)
We use general secure two-party computation to gen-

erate the secret shares of �ijk. That is, Alice and Bob carry
out a secure version of the following algorithm. Given that
the algorithm is very simple and has small inputs, Yao’s
secure two-party computation of it can be carried out
privately and efficiently [46], [31].

Input: aijk and bijk held by Alice and Bob.

Output: Rerandomized aijk and bijk to Alice and Bob,

respectively.

If ðaijk þ bijk ¼¼ 0Þ
Rerandomize aijk and bijk s.t. aijk þ bijk ¼ 1;

Else Rerandomize aijk and bijk s.t. aijk þ bijk ¼ �ijk;
That is, Alice and Bob’s inputs to the computation are

two secret shares of �ijk. They obtain two new secret

shares of �ijk.

6.5 Privacy-Preserving Score Computation

Our goal in this subprotocol is to privately compute two
secret shares of the output of the gði; �iÞ score function.
There are five kinds of subformulas to compute in the
gði; �iÞ score function:

1. ln�ijk,
2. �ijk ln�ijk ,
3. ln ð�ij þ di � 1Þ,
4. ð�ij þ di � 1Þ lnð�ij þ di � 1Þ, and
5. pubðdi; qiÞ.

To compute two secret shares of gði; �iÞ for Alice and Bob,
the basic idea is to compute two secret shares of each
subformula for Alice and Bob and then Alice and Bob can
add their secret shares of the subformulas together to get
the secret shares of gði; �iÞ. The details of how to compute
the secret shares are addressed below.

Since di is public to each party, secret shares of �ij þ
di � 1 can be computed by Alice (or Bob) adding di � 1 to
her secret share of �ij such that Alice holds aij þ di � 1 and
Bob holds bij as the secret shares for �ij þ di � 1. Hence,
items 1 and 3 in the above list can be written as ln aijk þ bijk
and ln ðaij þ di � 1Þ þ bij. Then, the problem of computing
secret shares for items 1 and 3 above can be reduced to the
problem of computing two secret shares for lnx, where x is
secretly shared by two parties. The lnx problem can be
solved by the privacy-preserving lnx protocol of Lindell
and Pinkas [29].

Similarly, the problem of generating two secret shares for

items 2 and 4 above can be reduced to the problem of

computing secret shares of x lnx in a privacy-preserving

manner, which again is solved by Lindell and Pinkas [29].

In item 5 above, qi and di are known to both parties, so they

can be computed by either party.
After computing secret shares for items 1, 2, 3, 4, and 5

above, Alice and Bob can locally add their respective secret

shares to compute secret shares of gði; �iÞ. Because each

subprotocol is privacy-preserving and results in only secret

shares as intermediate results, the computation of secret

shares of gði; �iÞ is privacy-preserving.

6.6 Privacy-Preserving Score Comparison

In the K2 algorithm specified in Section 3, Alice and Bob
need to determine which of a number of shared values is
maximum. That is, we require the following privacy-
preserving comparison computation:

Input: ðra1;ra2; . . . ; raxÞ held by Alice and ðrb1;rb2; . . . ; rbxÞ held

by Bob.

Output: i such that rai þ rbi � raj þ rbj for 1 � j � x.

In this case, x is at most uþ 1, where u is the restriction on
the number of possible parents for any node and, in any case,
no larger than m, the total number of variables in the
combined database. Given that generally m will be much
smaller than n, this can be privately and efficiently computed
using general secure two-party computation [46], [31].

6.7 Overall Privacy-Preserving Solution for
Learning Bayesian Network Structure

Our distributed privacy-preserving structure-learning pro-
tocol is shown in Fig. 3. It is based on the K2 algorithm,
using the variable set of the combined database DA ffl DB,
but executes without revealing the individual data values
and the sensitive information of each party to the other.
Each party learns only the BN structure plus the order in
which edges were added (which in turn reveals which edge
had maximum score at each iteration).

In the original K2 algorithm, all the variables are in
one central site, while, in our setting, the variables are
distributed in two sites. Hence, we must compute the
score function across two sites. Remembering that
‘ij ¼ �ij þ di � 1, we can see from (6) that the score relies
on the � parameters.

Other than the distributed computation of the scores and
their comparison, our control flow is as given in the
K2 algorithm. (For efficiency reasons, it is preferable to
combine the comparisons that determine which possible
parent yields the highest score with the comparison to
determine if this score is higher than the current score, but
logically the two are equivalent.) Note that this method
leaks relative score values by revealing the order in which
the edges were added. Formally, in order for the protocol to
be considered privacy-preserving, we therefore consider it
to be a protocol for computing Bayesian network structure
and the order in which edges were added by the algorithm.

The protocol does not reveal the actual scores or any
other intermediate values. Instead, we use privacy-preser-
ving protocols to compute the secret shares of the scores.
We divide the BN structure-learning problem into smaller
subproblems and use the earlier described privacy-preser-
ving subprotocols to compute shares of the � parameters
(Section 6.4) and the scores (Section 6.5) in a privacy-
preserving way, and to compare the resulting scores in a
privacy-preserving way (Section 6.6). Overall, the privacy-
preserving protocol is executed jointly between Alice and
Bob as shown in Fig. 3. It has been fully implemented by
Kardes et al. [26]. Privacy and performance issues are
further discussed in Section 8.

Theorem 2. Assuming the subprotocols are privacy-preserving,

the protocol to compute Bayesian network structure reveals
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nothing except the Bayesian network structure and order in

which the nodes are added.

Proof. Besides the structure itself, the structure-learning

protocol reveals only the order information because each

of the subprotocols is privacy-preserving, they are

invoked sequentially, and they only output secret shares

at each step. tu

7 PRIVACY-PRESERVING BAYESIAN NETWORK

PARAMETERS PROTOCOL

In this section, we present a privacy-preserving solution for

computing Bayesian network parameters on a database

vertically partitioned between two parties. Assuming the

BN structure is already known, Meng et al. presented a

privacy-preserving method for learning the BN parameters

[32], which we refer to as MSK. In this section, we describe

an alternate solution to MSK. In contrast to MSK, ours is

more private, more efficient, and more accurate. In

particular, our parameter-learning solution provides com-

plete privacy, in that the only information the parties learn

about each other’s inputs is the desired output, and

complete accuracy, in that the parameters computed are

exactly what they would be if the data were centralized. In

addition, our solution works for both binary and nonbinary

discrete data. We provide a more detailed comparison

between the two solutions in Section 7.2.
As we discuss further in Section 8.1, it is possible to run

our structure-learning protocol and parameter-learning

protocol together for only a small additional cost over just

the structure-learning protocol.

7.1 Privacy-Preserving Protocol for Learning BN
Parameters

Recall the description of Bayesian network parameters in

Section 3.1. Given Bayesian network structure Bs, the

network parameters are the conditional probabilities

Bp ¼ fPr½vi ¼ vik j �i ¼ �ij� : vi 2 V ; 1 � j � qi; 1 � k � dig.
If variable vi has no parents, then its parameters specify the

marginal distribution of vi:

Pr½vi ¼ vik j �i ¼ �ij� ¼ Pr½vi ¼ vik �:

Note that these parameters can be computed from the �

parameters as follows:

Pr½vi ¼ vik j �i ¼ �ij� ¼
�ijk
�ij

: ð7Þ

Earlier, in Section 6.3, we described a privacy-preserving

protocol to compute secret shares of �ijk and �ij. Now, we

need to extend this to allow the parties to compute the value

�ijk=�ij without sharing their data or revealing any

intermediate values such as �ijk and �ij (unless such values

can be computed from the BN parameters themselves, in

which case, revealing them does not constitute a privacy

breach). We consider three cases separately:

1. One party owns all relevant variables. In the
degenerate case, one party (say, Alice) owns all of
the relevant variables: fvig [ �i. In this case, she
can compute �ijk=�ij locally and announce the
result to Bob.

2. One party owns all parents, other party owns node.
In the next simplest case, one party (again, say Alice)
owns all the variables in �i and the other party (Bob)
owns vi. In this case, Alice can again directly compute
�ij from her own data. Alice and Bob can compute the
secret shares of �ijk using the protocol described in
Section 6.3. Bob then sends his share of �ijk to Alice so
she can compute �ijk. (In this case, it is not a privacy
violation for her to learn �ijk because, knowing �ij,
she could compute �ijk from the final public para-
meter �ijk=�ij.) From �ijk and �ij, Alice then
computes �ijk=�ij, which she also announces to Bob.

3. The general case: The parent nodes are divided
between Alice and Bob. In the general case, Alice
and Bob have secret shares for both �ijk and �ij such
that aijk þ bijk ¼ �ijk and aij þ bij ¼ �ij (where these
additions are modular additions in a group depend-
ing on the underlying scalar product share protocol
used in Section 6.3). Thus, the desired parameter is
ðaijk þ bijkÞ=ðaij þ bijÞ. In order to carry out this
computation without revealing anything about aijk
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and aij to Bob or bijk and bij to Alice, we make use of
general secure two-party computation. Note that this
is sufficiently efficient here because the inputs are
values of size k, independent of the database size n,
and because the function to compute is quite simple.

Note that cases 1 and 2 could also be handled by the general
case, but the simpler solutions provide a practical optimiza-
tion as they require less computation and communication.
In order to learn all the parameters Bp, Alice and Bob
compute each parameter for each variable using the method
just described above, as demonstrated in Fig. 4.

Theorem 3. Assuming the privacy and correctness of the protocol
for computing � parameters is privacy-preserving and the
secure two-party computation protocol, the parameter-learning
protocol is correct and private.

Proof. The correctness of that protocol is clear because the
values computed are precisely the desired parameters
�ijk=�ij.

Privacy is protected because, in each case, we only
reveal values to a party that are either part of the final
output or are straightforwardly computable from the
final output and its own input. All other intermediate
values are protected via secret sharing, which reveals no
additional information to the parties. tu

7.2 Comparison with MSK

For a data set containing only binary values, the MSK
solution showed that the count information required to
estimate the BN parameters can be obtained as a solution to
a set of linear equations involving some inner products
between the relevant different feature vectors. In MSK, a
random projection-based method is used to securely
compute the inner product.

In this section, we provide a detailed comparison of the
privacy, efficiency, and accuracy of our parameter-learning
solution and MSK. We show that our solution performs
better in efficiency, accuracy, and privacy than MSK. The
primary difference between our solution and MSK is that
MSK computes the parameter probabilities by first comput-
ing the counts of the various possible instantiations of
nodes and their parents. As we discuss below, this
approach inherently leaks more information than the
parameters alone. In addition, they use a secure “pseudo
inner product” to compute those counts, using a method
that is less efficient, less accurate, and less private than

cryptographic scalar product protocols (such as those
discussed in Section 5).

As we discuss further below, replacing the pseudo inner
product of MSK with an appropriate cryptographic scalar
product would improve MSK to have somewhat better
efficiency than our solution and complete accuracy (as our
solution does). Our solution remains more private than the
modified MSK, so, in some sense, this suggests that our
solution and the modified MSK solution represent an
efficiency/privacy tradeoff.

7.2.1 Efficiency

Let d ¼ max di be the maximum number of possible
values any variable takes on, � be a security parameter
describing the length of cryptographic keys used in the
scalar product protocol, and u be the maximum number
of parents any node in the Bayesian network has. (Thus,
u � m� 1 and, typically, u	 m	 n). Our solution runs
in time Oðmdðuþ1Þð�nþ �2ÞÞ. Taking d ¼ 2 for purposes of
comparison (since MSK assumes the data is binary-
valued), this is Oðm2ðuþ1Þð�nþ �2ÞÞ. In contrast, MSK
runs in time Oðmð2ðuþ1Þ þ n2ÞÞ. In particular, for a fixed
security parameter � and maximum number u of parents
of any node, as the database grows large enough that
�	 n, our efficiency grows linearly in n, while MSK
grows as n2.

We note that the source of the quadratic growth of MSK
is their secure pseudo inner product as, for an input
database with n records, it requires the parties to produce
and compute with an n
 n matrix. If this step were
replaced with an ideally private cryptographic scalar
product protocol such as the one we use, their performance
would improve to Oðmð2ðuþ1Þ þ �nÞÞ, a moderate efficiency
improvement over our solution.

7.2.2 Accuracy

Our parameter-learning solution provides complete accu-
racy in the sense that we faithfully produce the desired
parameters. The secure pseudo inner product computation
of MSK introduces a small amount of computational error.
Again, replacing this step with a perfectly accurate
cryptographic scalar product can provide perfect accuracy.

7.2.3 Privacy

Our parameter-learning solution provides ideal privacy in
the sense that the parties learn nothing about each other’s
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inputs beyond what is implied by the Bayesian parameters
and their own inputs. MSK has two privacy leaks beyond
ideal privacy. The first comes from the secure pseudo inner
product computation, but again this could be avoided by
using an ideally private scalar product protocol instead. The
second, however, is intrinsic to their approach. As
mentioned earlier, they compute the parameter probabil-
ities by first computing the counts of the various possible
instantiations of nodes and their parents. As they point out,
the probabilities can be easily computed from the counts, so
this does not affect the correctness of their computation.
However, the reverse is not true—in general, the counts leak
more information than the probabilities because different
counts can give rise to the same probabilities. We illustrate
this by a simple example, as shown in Figs. 5 and 6.

In this example, Alice owns the variable eyes, while Bob
owns skin and hair. The Bayesian network, consisting of
both the given structure (which we assume is given as part
of the input to the problem) and the parameters (which are
computed from the input databases), are shown in Fig. 5.

Fig. 6 shows two quite different kinds of databases, DB1
and DB2, that are both consistent with the computed
Bayesian network parameters and with a particular setting
for Alice’s values for eyes. Both databases have 16 records.
For eyes, half the entries are brown and half are blue;
similarly, for skin, half the entries are fair and half are dark.
The difference between DB1 and DB2 lies with hair and its
relation to the other variables. One can easily verify that
both DB1 and DB2 are consistent with the computed
Bayesian network parameters and with a particular setting
for Alice’s values for eyes. Hence, given only the para-
meters and her own input, Alice would consider both
databases with counts as shown in DB1 and with counts as
shown in DB2 possible (as well as possibly other databases).
However, if Alice is given additional count information, she
can determine that either DB1 or DB2 is not possible,
substantially reducing her uncertainty about Bob’s data
values. Although this example is simple and rather
artificial, it suffices to demonstrate the general problem.

8 DISCUSSION

We analyze the performance and privacy issues of the
proposed solution in Sections 8.1 and 8.2. In Section 8.3, we
discuss a possible alternate solution.

8.1 Performance Analysis

We have presented privacy-preserving protocols for learn-
ing BN structure and parameters (Sections 6 and 7,
respectively). Rather than running these sequentially to

learn a Bayesian network from a data set, these two
protocols can be combined so that the BN parameters can
be computed with a constant overhead over the computa-
tion of the BN structure. This is because the secret shares of
�ijk and �ij needed in the parameter protocol are already
computed in the structure protocol. Hence, the only
additional overhead to compute the parameters is the
secure two-party computation to divide the shared �ijk by
the shared �ij.

Further, we note a few more potential practical optimi-
zations. For example, in order to reduce the number of
rounds of communication, the � parameters can be
computed in parallel, rather than in sequence. This allows
all the vectors for a given set of variables to be computed in
a single pass through the database, rather than multiple
passes. Similarly, shares of each �ij need only be computed
once, rather than once for each BN parameter. Additionally,
if multiple nodes share the same set of parents, the same
intermediate values can be reused multiple times.

As discussed above, the dominating overhead of our
solution comes from computing the BN structure. Hence,
the overall overhead of our solution depends on the
database size n, the number m of variables, and the
limit u on the number of possible parents for any node.
Like the original K2 algorithm, our Structure Protocol
requires computation that is exponential in u (in order to
compute the � parameters for all possible Oð2uÞ instantia-
tions of the set of parents of a given node). In the K2
algorithm, the inner loop runs OðmuÞ times. Each time
the inner loop is executed, there are OðuÞ scores to
compute, each requiring Oðm2uÞ � parameters to be
computed. In our solution, the computation of each
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�-parameter, including the scalar product share protocol,
requires OðnÞ communication and computation. This is
the only place that n comes into the complexity. Every-
thing else, including computing � parameters from �
parameters, combining � parameters into the score, and
the score comparison, can be done in computation and
communication that is polynomial in m and 2u.

8.2 Privacy Analysis

In our solution, each party learns the Bayesian network,
including the structure and the parameters, on the joint data
without exchanging their raw data with each other. In
addition to the Bayesian network, each party also learns the
relative order in which edges are added into the
BN structure. While this could be a privacy breach for
some settings, it seems a reasonable privacy/efficiency
trade-off that may be acceptable in many settings.

We note that the BN parameters contain much statistical
information about each database, so another concern is that,
even if a privacy-preserving computation of Bayesian
network parameters is used, the resulting BN model—par-
ticularly when taken together with one party’s database—
reveals quite a lot of information about the other party’s
database. That is, the result of the privacy-preserving
computation may itself leak too much information, even if
the computation is performed in a completely privacy-
preserving way, a phenomenon discussed nicely by
Kantarcioglu et al. [25]. To limit this leakage, it might be
preferable, for example, to have the parameters associated
with a variable vi revealed only to the party owning the
variable. By using a secure two-party computation that
gives the result only to the appropriate party, our solution
can easily be modified to do this.

Another option would be to have the parties learn secret
shares of the resulting parameters, not the actual para-
meters. This suggests an open research direction, which is
to design mechanisms that allow the parties to use the
Bayesian network and shared parameters in a privacy-
preserving interactive way to carry out classification or
whatever task they seek to perform.

8.3 Possible Alternate Solution

Chen et al. present efficient solutions for learning Bayesian
networks on vertically partitioned data [8], [9]. In their
solutions, each party first learns local BN models based on
his own data, then sends a subset of his data to the other
party. A global BN model is learned on the combination of
the communicated subsets. (The computation can be done
by either party.) Finally, the final BN model is learned by
combining the global BN model and each party’s local
BN model. Those solutions are very efficient both in
computation and communication, but, obviously, they were
not designed with privacy in mind as each party has to send
part of his data to the other party. Further, these solutions
suffer a trade-off between the quality of the final BN model
and the amount of communicated data: The more of their
own data the parties send to each other, the more accurate
the final BN model will be.

By combining our proposed solution with the solutions in
[8], [9], we can achieve a new solution that provides privacy,
as discussed in Section 8.2, together with a trade-off between

performance and accuracy. The basic idea is that, first, each
party locally learns a model on his or her own data and
chooses the appropriate subset of his or her data according
to the methods of [8], [9]. Rather than sending the selected
subset of data to the other party, both parties then run our
solutions described in Sections 6 and 7 on the chosen subset
of their data to privately learn the global BN model on their
data subsets. Finally, each party publishes his or her local BN
models and the parties combine the global BN model with
their local models to learn the final BN model following the
methods of [8], [9]. This solution suffers a similar trade-off
between performance and accuracy as the solutions of [8],
[9], but with improved privacy as parties no longer send
their individual data items to each other.
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