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15:2 A. D. Jaggard et al.

1 INTRODUCTION

Dynamic environments where decision makers repeatedly interact arise in a variety of settings,
such as Internet protocols, large-scale markets, social networks, and multi-processor computer
architectures. Study of these environments lies at the boundary of game theory and distributed
computing. The decision makers are both strategic entities with individual economic preferences
and computational entities with limited resources, working in a decentralized and uncertain envi-
ronment. To understand the global behaviors that result from these interactions—the dynamics of
these systems—we draw on ideas from both disciplines.

The notion of self-stabilization to a “legitimate” state in a distributed system parallels that of
convergence to an equilibrium in a game. The foci, however, differ considerably. In game theory,
there is extensive research on dynamics that result from what is perceived as natural strategic
decision making (e.g., best- or better-response dynamics, fictitious play, or regret minimization).
Even simple heuristics that require little information or computational resources can yield sophis-
ticated behavior, such as the convergence of best-response dynamics to equilibrium points (see
[20] and references therein). These positive results for simple game dynamics are, with few excep-
tions (see Section 2), based on the sometimes implicit and often unrealistic premise of a controlled
environment in which actions are synchronous and coordinated. Distributed computing research
emphasizes the environmental uncertainty that results from decentralization but has no notion of
“natural” rules of behavior. It has long been known that environmental uncertainty—in the form
of both asynchrony [15, 30] and arbitrary initialization [10]—introduces substantial difficulties for
protocol termination in distributed systems. Our work bridges the gap between these two ap-
proaches by initiating the study of game dynamics in distributed computing settings. We take the
first steps of this research agenda, focusing primarily on systems in which the decision makers,
or computational nodes, are deterministic and have bounded recall, meaning that their behavior is
based only on the “recent history” of system interaction. Our model is asynchronous in the sense
of allowing, at every timestep, an adversarially chosen subset of nodes to be activated.

Our main contribution is a general impossibility result (Theorem 4.1) for asynchronous envi-
ronments, showing that a large and natural class of bounded-recall dynamics can fail to converge
whenever there are at least two “equilibrium points” of the dynamics. We prove this result using a
valency argument (a now-standard technique in distributed computing theory [14, 30]). We discuss
the implications of this result for game dynamics and describe its applications to asynchronous cir-
cuit design, social networks, interdomain routing protocols such as BGP, and congestion control in
networks. We also explore the impact on convergence guarantees of asynchrony that is bounded,
and we present complexity hardness results for checking whether an asynchronous system will
always converge: We show that it is PSPACE-hard and requires exponential communication.

2 RELATED WORK

Our work relates to many ideas in game theory and in distributed computing. Here, we discuss
game-theoretic work on the dynamics of simple strategies and on asynchrony, distributed com-
puting work on fault tolerance and self-stabilization, and other connections between game theory
and computer science (for more, see [18]). We also highlight the application areas we consider.

Algorithmic game theory. Since our work draws on both game theory and computer science,
it may be considered part of the broader research program of algorithmic game theory (AGT),
which merges concepts and ideas from those two fields [35]. Three main areas of study in
AGT have been algorithmic mechanism design, which applies concepts from computer science
to economic mechanism design [34]; the “price of anarchy,” which describes the efficiency of
equilibria and draws on approximability research [27]; and algorithmic and complexity research
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on the computation of equilibria [36]. Analyzing the computational power of learning dynamics
in games has been of particular interest (see, e.g., [2, 6, 26, 37]). Our work creates another
link between game theory and computer science by drawing on two previously disjoint areas,
self-stabilization in distributed computing theory and game dynamics, to explore broader classes
of dynamics operating in adversarial distributed environments.

Adaptive heuristics. Much work in game theory and economics deals with adaptive heuristics

(see [20] and references therein). Generally speaking, this long line of research explores the “con-
vergence” of simple and myopic rules of behavior (e.g., best-response/fictitious-play/no-regret
dynamics) to an “equilibrium.” However, with few exceptions (see below), such analysis has so
far primarily concentrated on synchronous environments in which steps take place simultane-
ously or in some other predetermined order. In this work, we explore dynamics of this type in
asynchronous environments, which are more realistic for many applications.

Game-theoretic work on asynchronous environments. Some game-theoretic work on re-
peated games considers “asynchronous moves.” Often, as in Marden and Shamma [31], this asyn-
chrony merely indicates that players are not all activated at each time step and thus is used to
describe environments where only one player is activated at a time (“alternating moves”) or where
there is a probability distribution that determines which player(s) are activated at each timestep.
Other work does not explore the behavior of dynamics but has other research goals (e.g., charac-
terizing equilibria, establishing folk theorems); see [29, 42], among others, and references therein.
To the best of our knowledge, we are the first to study the effects of asynchrony (in the broad
distributed computing sense) on the convergence of game dynamics to equilibria.

Fault-tolerant computation. We use ideas and techniques from work in distributed computing
on protocol termination in asynchronous computational environments where nodes and commu-
nication channels are possibly faulty. Protocol termination in such environments, initially moti-
vated by multi-processor computer architectures, has been extensively studied in the past three
decades [3, 4, 9, 15, 23, 39], as nicely surveyed in [14, 30]. Fischer, Lynch, and Paterson [15] showed,
in a landmark article, that a broad class of failure-resilient consensus protocols cannot provably
terminate. Intuitively, the risk of protocol non-termination in that work stems from the possibility
of failures; a computational node cannot tell whether another node is silent due to a failure or
is simply taking a long time to react. Our non-convergence result, by contrast, applies to failure-
free environments. In game-theoretic work that incorporated fault tolerance concepts, Abraham
et al. [1] studied equilibria that are robust to defection and collusion.

Self-stabilization. The concept of self-stabilization is fundamental to distributed computing and
dates back to Dijkstra 1974 [8] (see [10] and references therein). Convergence of dynamics to an
“equilibrium” in our model can be viewed as the self-stabilization of such dynamics (where the
“equilibrium points” are the legitimate configurations). Our formulation draws ideas from work in
distributed computing (e.g., Burns’ distributed daemon model [5]) and in networking research [17]
on self-stabilization.

Applications. We discuss the implications of our non-convergence result across a wide variety
of applications, that have previously been studied: convergence of game dynamics (see, e.g., [21,
22]); asynchronous circuits (see, e.g., [7]); diffusion of innovations, behaviors, and so on, in social
networks (see [24, 33]); interdomain routing [17, 40]; and congestion control [16].

3 ASYNCHRONOUS DYNAMIC INTERACTION

In this section, we present our model of asynchronous dynamic interaction. Intuitively, an interac-

tion system consists of a collection of computational nodes, each capable of selecting actions that
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15:4 A. D. Jaggard et al.

are visible to the other nodes. The state of the system at any time consists of each node’s current
action. Each node has a deterministic reaction function that maps system histories to actions. At
every discrete timestep, each node activated by a schedule simultaneously applies its deterministic
reaction function to select a new action, which is immediately visible to all other nodes.

Definition 3.1. An interaction system is characterized by a tuple (n,A, f ):

• The system has n ∈ Z+ computational nodes, labeled 1, . . . ,n.
• A = A1 × · · · ×An , where each Ai is a finite set called the action space of node i . A is called

the state space of the system, and a state is an n-tuple a = (a1, . . . ,an ) ∈ A. A history of
the system is a nonempty finite sequence of states, H ∈ A� , for some � ∈ Z+. The set of all
histories is A+ =

⋃
�∈Z+ A

� .
• f : A+ → A is a function given by f (H ) = ( f1 (H ), . . . , fn (H )), where fi : A+ → Ai is called

node i’s reaction function.

We now describe the asynchronous dynamics of our model, that is, the ways that a system’s
state can evolve due to interactions between nodes. Informally, there is some initial state, and, in
each discrete time step 1, 2, 3, . . . , a subset of the nodes are activated according to a schedule. The
nodes that are activated in a given timestep react simultaneously; each applies its reaction function
to the current state to choose a new action. This updated action is immediately observable to all
other nodes.1

Definition 3.2. Let S ⊆ [n] be a set of nodes. Define the function fS : A+ → A by fS (H ) =

( f̂1 (H ), . . . , f̂n (H )), where each function f̂i : A+ → Ai is given by

f̂i (a0, . . . , a� ) =

{
fi (a0, . . . , a� ) if i ∈ S
a�i otherwise.

A schedule is a function σ : Z+ → 2[n] that maps each t to a (possibly empty) subset of the compu-
tational nodes.2 If i ∈ σ (t ), then we say that node i is activated at time t .

Since the reaction functions are deterministic, an initial history and a schedule completely de-
termine the resulting infinite state sequence; we call these state sequences trajectories.

Definition 3.3. Let H = (a0, . . . , a� ) ∈ A+ be a history, and let σ be a schedule. The (H ,σ )-
trajectory of the system is the infinite sequence a

0, a1, a2, . . . extendingH such that for every t > �,

a
t = fσ (t ) (a

0, . . . , at−1)

The history (a0, . . . , at−1) is the length-t prefix of the (H ,σ )-trajectory.

3.1 Fairness and Convergence

Our main theorem is an impossibility result, in which we show that an adversarially chosen initial
history and schedule can prevent desirable system behavior. Notice that an arbitrary schedule
might never allow some or all nodes to react or might stop activating them after some time. Hence,
we limit this adversarial power (thereby strengthening our impossibility result) by restricting our
attention to fair schedules, which never permanently stop activating any node.

Definition 3.4. A fair schedule is a schedule σ that activates each node infinitely many times,
that is, for each i ∈ [n], the set {t ∈ Z+ : i ∈ σ (t )} is infinite. A fair trajectory is one that is the
(H ,σ )-trajectory for some history H and some fair schedule σ .

1This model has “perfect monitoring.” While this is clearly unrealistic in some important real-life contexts (e.g., some of the
environments considered in Section 5), this restriction only strengthens our main results, which are impossibility results.
2[n] denotes {1, . . . , n }, and for any set S , 2S is the set of all subsets of S .
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Fig. 1. Shading shows the information about past and current actions available to node 3 at time t given

different reaction function restrictions. Left: self-independent. Node 3 can see the entire record of other

nodes’ past actions, but not its own. The length of this record gives the current timestamp t . Center: 2-recall.

Node 3 can see only the two most recent states. Unless the reaction function is stationary, it may also use the

value of the current timestamp. Right: self-independent and historyless. Node 3 can only see other nodes’

most recent actions and cannot even see the value of the current timestamp.

We are especially interested in whether a system’s fair trajectories converge, eventually remain-
ing at a single state forever.

Definition 3.5. A trajectory a
0, a1, a2, . . . converges to a state b if there exists some T ∈ Z+ such

that, for all t > T , a
t = b. The system is convergent if every fair trajectory converges. A state b is

a limit state of the system if some fair trajectory converges to b.

Note that it is possible for a trajectory to visit a limit state without converging to that state,
meaning that limit states are not necessarily “stable” or “absorbing.” They may, however, have
basins of attraction, in the sense that reaching certain histories might guarantee convergence to a
given limit state.

Definition 3.6. A historyH is committed to a limit state b if, for every fair schedule σ , the (H ,σ )-
trajectory converges to b. An uncommitted history is one that is not committed to any state.

3.2 Informational Restrictions on Reaction Functions

This framework allows for very powerful reaction functions. We now present several possible
restrictions on the information they may use. These are illustrated in Figure 1.

Our main theorem concerns systems in which the reaction functions are self-independent, mean-
ing that each node ignores its own past and present actions when reacting to the system’s state.
In discussing self-independence, we use the notation

A−i = A1 × · · · ×Ai−1 ×Ai+1 × · · · ×An ,

the state space of the system when i is ignored. Similarly, for a state a, a−i ∈ A−i denotes
(a1, . . . ,ai−1,ai+1, . . . ,an ), and given a historyH = (a0, . . . , a�−1), we writeH−i for (a0

−i , . . . , a
�−1
−i ).

Using this notation, we formally define self-independence.

Definition 3.7. A reaction function fi is self-independent if there exists a function дi : A+−i → Ai

such that fi (H ) = дi (H−i ) for every history H ∈ A+.

A reaction function has bounded recall if it only depends on recent states.

Definition 3.8. Given k ∈ Z+ and a historyH = (a0, . . . , at−1) ∈ At with t ≥ k , the k-history atH
is H |k := (at−k , . . . , at−1), the k-tuple of most recent states. A reaction function fi has k-recall if it
only depends on the k-history and the time counter, that is, there exists a function дi : Ak × Z+ →
Ai such that fi (H ) = дi (H |k , t ) for every time t ≥ k and history H ∈ At .
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15:6 A. D. Jaggard et al.

We sometimes slightly abuse notation by referring to the restricted-domain function дi , rather
than fi , as the node’s reaction function.

A bounded-recall reaction function is stationary if it also ignores the time counter.

Definition 3.9. We say that a k-recall reaction function is stationary if the time counter t is of no
importance. That is, if there exists a functionдi : Ak → Ai such that fi (H ) = дi (H |k ) for every time
t ≥ k and history H ∈ At . A reaction function fi is historyless if fi is both 1-recall and stationary.
That is, if fi only depends on the nodes’ most recent actions.

While seemingly very restricted, historyless dynamics capture the prominent and extensively
studied best-response dynamics from game theory (as we discuss in Section 5.1). We show in
Section 5 that historyless dynamics also encompass a host of other applications of interest, ranging
from Internet protocols to the adoption of technologies in social network.

4 GENERAL NON-CONVERGENCE RESULT

We now present our main theorem, a general impossibility result for convergence of nodes’ actions
under bounded-recall dynamics in asynchronous, distributed computational environments.

Theorem 4.1 (Main Theorem). In an interaction system where every reaction function is self-

independent and has bounded recall, the existence of multiple limit states implies that the system is

not convergent.

We prove this theorem in Section 4.1 by using a valency argument. In Section 4.2, we show that
the hypotheses of Theorem 4.1 are necessary. We then discuss in Section 4.3 the connections of
this work to the famous result of Fischer et al. [15] on the impossibility of resilient consensus.

Note that system convergence is closely related to self-stabilization, which is a guarantee that
the system will reach and remaining within a set of legitimate states. For a set L ⊆ A, we say that
a system self-stabilizes to L if, for every fair trajectory a

0, a1, a2, . . . , there is some T ∈ Z+ such
that, for every t > T , a

t ∈ L. In systems satisfying its hypotheses, Theorem 4.1 precludes self-
stabilization to any set containing only committed states.

4.1 Proof of Main Theorem

In proving this theorem, we use the following sequence of lemmas. We first show in Lemma 4.2
that it is sufficient to consider systems with 1-recall reaction functions. Then, in Lemma 4.3, we
argue that such a system can be convergent only if every fair trajectory has no committed prefix.
To show the existence of a fair trajectory with no committed prefix, we show that in any such
system, uncommitted histories exist (Lemma 4.5) and can be extended to a longer uncommitted
histories in a way that activates any given node (Lemma 4.6). This means that committed prefixes
can be avoided forever on a trajectory that activates every node infinitely many times, that is, a
fair trajectory.

Lemma 4.2. If there exists a convergent interaction system with bounded-recall, self-independent

reaction functions and multiple limit states, then there is also a convergent interaction system with

1-recall, self-independent reaction functions, and multiple limit states.

Proof. Assume that Γ = (n,A, f ) is a convergent system with self-independent, k-recall reac-
tion functions and multiple limit states, for some k ∈ Z+. Consider a 1-recall system Γ′ = (n,A′, f ′),
where A′ = Ak

1 × · · · ×Ak
n and f

′ : A′ × Z+ → A′ is given by

f ′i
((
a1

1, . . . ,a
k
1

)
, . . . ,

(
a1

n , . . . ,a
k
n

)
, t
)
=

[
fi
((
a1

1, . . . ,a
1
n

)
, . . . ,

(
ak

1 , . . . ,a
k
n

)
,kt
)]k
.
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Informally, a state in Γ′ is the transpose of a k-history for Γ. The reaction function f ′i applies
fi to this transpose and repeats the output k times. Notice that Γ′ has self-independent reaction
functions. Furthermore, if (a1, . . . ,an ) is a limit state of Γ, then ((a1, . . . ,a1), . . . , (an , . . . ,an )) is
a limit state of Γ′, so Γ′ also has multiple limit states.

Let σ : Z+ → 2[n] be a fair schedule, and let H ∈ (Ak )� be a history of Γ′ for some � ∈ Z+. Define
the schedule σ ′ : Z+ → 2[n] by

σ ′(t ) =

{
σ (t/k ) t/k ∈ Z+
∅ otherwise.

Notice that σ ′ is also fair. Let H ′ ∈ Ak� be the history for Γ formed by concatenating the k-tuples
inH . It is easy to see that the (H ,σ )-trajectory of Γ′ converges if and only if the (H ′,σ ′)-trajectory
of Γ converges. Since we assumed that Γ is convergent, it follows that Γ′ is also. �

Lemma 4.3. Let Γ be a convergent system with self-independent, 1-recall reaction functions. Then

every fair trajectory in Γ has a committed finite prefix.

Proof. Assume there exist some history H and fair schedule σ for Γ such that the (H ,σ )-
trajectory converges to a state a = (a1, . . . ,an ) but has no committed finite prefix. We will con-
struct a fair schedule σ ′ such that the (H ,σ ′)-trajectory does not converge, giving a contradiction.

Let u
0, u1, u2, . . . be the (H ,σ )-trajectory. Then there is some t0 ∈ Z+ such that u

t = a for all
t ≥ t0. The fairness of σ implies that there is some t1 > t0 such that every node is activated by σ
between t0 and t1, that is,

⋃
t0<t<t1

σ (t ) = [n]. By assumption, (u0, . . . , ut1 ) is not committed to a,
which means there is some time t2 ≥ t1 and node i ∈ [n] such that fi (a, t2) � ai . The fairness of σ
also implies that there is some t3 > t2 such that i ∈ σ (t3). Since t3 ≥ t0, we must have fi (a, t3) = ai .
By self-independence, then, fi (a′, t3) = ai for all a

′ such that a
′
−i = a−i .

We use these facts to iteratively build our fair scheduleσ ′. In the (H ,σ ′)-trajectory v
0, v1, v2, . . . ,

the system will repeatedly enter and exit the state a. First, let σ ′(t ) = σ (t ) for all 1 ≤ t ≤ t0, so
v

t0 = a. Define σ ′(t ) on values t0 < t ≤ t2 as follows.

σ ′(t ) =

{
σ (t ) t0 < t < t2
{i} t2 ≤ t ≤ t3.

By our choices of t0, t2, and t3, this partial schedule activates every node and induces a segment
(vt0+1, . . . , vt3 ) of the (H ,σ ′)-trajectory such that v

t = a whenever t0 < t < t2 or t = t3, but v
t2 � a.

Now set t0 = t3, select new t1, t2, i , and t3 relative to this t0, and iterate this process to define
σ ′(t ) for all values t ∈ Z+. Notice that σ ′ is fair and that the (H ,σ ′)-trajectory v

0, v1, v2, . . . does
not converge, which contradicts the assumption that the system is convergent. Therefore every
fair trajectory in the system must have a committed finite prefix. �

We will use the following consequence of self-independence in the course of proving Lemmas 4.5
and 4.6.

Observation 4.4. Let H ′ = (a0, . . . , a� ) and H ′ = (b0, . . . , b� ) be committed histories in an sys-

tem with self-independent, 1-recall reaction functions. If a
�
−i = b

�
−i for some i ∈ [n], then H and H ′

are committed to the same limit state.

Proof. Let H = (a0, . . . , a� ) and H ′ = (b0, . . . , b� ) be committed histories such that, for some
i ∈ [n], a

�
−i = b

�
−i , as in Figure 2. Letσ be any fair schedule such thatσ (� + 1) = {i}, and consider the

(H ,σ )- and (H ′,σ )-trajectories. When node i is activated, it will choose the same action regardless
of whether the history is H or H ′, by self-independence. As the reaction functions have 1-recall,
this means that both these trajectories are identical after time � + 1. Thus, since H and H ′ are both
committed, they must be committed to the same limit state. �
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15:8 A. D. Jaggard et al.

Fig. 2. Activating {i} from H = (a0, . . . , a� ) or H ′ = (b0, . . . , b� ) will have the same outcome.

Fig. 3. All histories in the bottom row are committed to the same limit state b.

Lemma 4.5. Every interaction system with 1-recall, self-independent reaction functions and more

than one limit state has at least one uncommitted history.

Proof. Suppose that every history of length one is committed, and consider two such histo-
ries (a) = ((a1, . . . ,an )) and (b) = ((b1, . . . ,bn )). Observation 4.4 implies that, for all 1 ≤ i <, the
histories ((a1, . . . ,ai−1,bi , . . . ,bn )) and ((a1, . . . ,ai ,bi+1, . . . ,bn )) are committed to the same limit
state and therefore that a and b are committed to the same limit state. Thus, all histories of length
one must be committed to the same limit state, and it follows that all histories must be committed
to the same limit state. This contradicts the system having more than one limit state. �

Lemma 4.6. Let (n,A, f ) be an interaction system with self-independent, 1-recall reaction functions

and more than one limit state, let H = (a0, . . . , a�−1) ∈ A� be an uncommitted history, for some � ∈
Z+, and let i ∈ [n] be a node. Then there exist some t ≥ � and schedule σ such that i ∈ σ (t ) and the

length-(t + 1) prefix of the (H ,σ )-trajectory is uncommitted.

Proof. Assume for contradiction that no such t and σ exist. Consider all histories that result
from activating a set containing i at historyH . By assumption, each of these histories is committed.
Notice that for all S ⊆ [n] and j ∈ [n], the states fS (H ) and fS∪{j } (H ) can only differ at coordinate
j. Hence, we can iteratively apply Observation 4.4, much as in the proof of Lemma 4.5, to see that
all these histories must be committed to the same limit state, which we call b.

Let σ be any fair schedule, and let a
0, a1, . . . be the (H ,σ )-trajectory. For each t ∈ Z+, let

H t = (a0, . . . , at ), and notice that H �−1 = H . For each t ≥ �, let v
t = fσ (t )∪{i } (H

t−1), and let I t =

(H t−1, vt ). Since i ∈ σ (t ) ∪ {i}, our assumption implies that each history I t is committed. Let
w

t = f{i } (H
t−1), and note that by self-independence, f{i } (I

t−1) = w
t also, as illustrated in Figure 3.

Let J t = (I t−1,wt ).
We now show by induction on t that, for every t ≥ �, the history I t is committed to b. This holds

for t = � by our definition of b. Fix t > �, and suppose that I t−1 is committed to b. Then J t is also
committed to b. Consider all histories that result from activating a set containing i at history H t−1.
As before, our assumption implies that all these histories are committed, and iterative application
of Observation 4.4 shows that they are all committed to the same limit state. In particular, I t must
be committed to the same limit state as J t , namely b.
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Since σ is a fair schedule, there is some time t for which i ∈ σ (t ). For this t , we have H t = I t ,
so H t is committed to b. Thus for every fair schedule σ , the (H ,σ )-trajectory converges to b,
contradicting the assumption that H is uncommitted. We conclude that our assumption was false
and that the lemma holds. �

Proof of Theorem 4.1. It follows from Lemmas 4.5 and 4.6 that, in every system with 1-recall,
self-independent reaction functions and multiple limit states, it is be possible to activate each node
infinitely many times without ever reaching a committed history. This means that every such
system has a fair trajectory with no committed prefix. By Lemma 4.3, this implies that no such
system may be convergent. The theorem follows immediately by Lemma 4.2.3 �

4.2 Tightness of Main Theorem

The following two examples demonstrate that the statement of Theorem 4.1 does not hold if either
the self-independence restriction or the bounded-recall restriction is removed.

Example 4.7. The self-independence restriction cannot be removed.

Consider a system with one node, with action space {α , β }. When activated, the node always
re-selects its own current action. Observe that the system is convergent despite having two limit
states.

Example 4.8. The bounded-recall restriction cannot be removed.

Consider a system with two nodes, 1 and 2, each with the action space {α , β }. The self-
independent reaction functions of the nodes are as follows: Node 2 always chooses node 1’s action,
node 1 will choose β if node 2’s action changed from α to β in the past, and α otherwise. Observe
that node 1’s reaction function has unbounded recall: it depends on the entire history of interac-
tion. We make the observations that the system is convergent and has two limit states. Observe
that if node 1 chooses β at some point in time due to the fact that node 2’s action changed from α
to β , then it will continue to do so thereafter; if, on the other hand, 1 never does so, then from some
point in time onwards, node 1’s action is constantly α . In both cases, node 2 will have the same
action as node 1 eventually, and thus convergence to one of the two limit states, (α ,α ) and (β, β ),
is guaranteed. Hence, two limit states exist and the system is convergent nonetheless. Notice also
that node 1’s reaction functions requires only two states, so the bounded-recall restriction cannot
be replaced by a memory restriction.

4.3 Connection to Consensus Protocols

We now discuss the relationship of our main result (Theorem 4.1) to the seminal result of Fischer
et al. on the impossibility of fault-resilient consensus protocols. The consensus problem is funda-
mental to distributed computing research. We give a brief description of it here, and we refer the
reader to Fischer et al. [15] for a detailed explanation of the model.

Fischer et al. studied an environment in which a group of processes, each with an initial value in
{0, 1}, communicate with each other via messages. The objective is for all non-faulty processes to
eventually agree on some consensus value x ∈ {0, 1}, where x must match the initial value of some
process. Fischer et al. established that no consensus protocol is resilient to even a single failure.
Their proof of this breakthrough non-termination result introduced the idea of a valency argument.

3Although our primary focus is on discrete state spaces, we note that in continuous metric spaces, the standard notion of
convergence only requires indefinite approach; the limit point might never be reached. Accordingly, given a metric d on
an infinite state space A, one could modify Definition 3.5 to say that a trajectory a

0, a
1, a

2, . . . converges to a state b if
for every ε > 0 there exists some T ∈ Z+ such that, for all t > T , d (at , b) < ε . If we require every limit state to have a
committed neighborhood, then our proof of Theorem 4.1 still holds in this setting.
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They showed that there exists some initial configuration that is bivalent, meaning that the resulting
consensus could be either 0 and 1 (the outcome depends on the asynchronous schedule of message
transmission), and that this bivalence can be maintained. Our proof of Theorem 4.1 also uses a
valency argument, where uncommitted histories play the role of bivalent configurations.

Intuitively, the risk of protocol non-termination in the environment studied by Fischer et al.
stems from the possibility of failures; a computational node cannot tell whether another node is
silent due to a failure or is simply taking a long time to react. Our non-convergence result concerns
environments in which nodes/communication channels do not fail. Thus, each node is guaranteed
that all other nodes will eventually react. Observe that in such an environment reaching a con-
sensus is easy; one pre-specified node i (the “dictator”) waits until it learns all other nodes’ inputs
(this is guaranteed to happen as failures are impossible) and then selects a value vi and informs
all other nodes; then, all other nodes select vi . By contrast, the possibility of non-convergence
shown in Theorem 4.1 stems from limitations on nodes’ behaviors. Hence, there is no immediate
translation from the result of Fischer et al. to ours (and vice versa).

5 APPLICATIONS: GAMES, CIRCUITS, SOCIAL NETWORKS, AND ROUTING

We present implications of our impossibility result, Theorem 4.1, for several well-studied environ-
ments: game dynamics, circuit design, social networks, and Internet protocols. For most of these
applications, the reaction functions are historyless. Recalling Definition 3.9, this means that they
react only to the current state of the system.

5.1 Asynchronous Game Dynamics

Traditionally, work in game theory on game dynamics (e.g., best-response dynamics) relies on the
explicit or implicit premise that players’ behavior is somehow synchronized (in some contexts
play is sequential, while in others it is simultaneous). Here, we consider the realistic scenario that
there is no computational center than can synchronize players’ selection of strategies. We describe
these dynamics in the setting of this work and exhibit an impossibility result for best-response,
and more general, dynamics.

A game is characterized by a triple (n, S, u). There are n players, 1, . . . ,n. Each player i has a
strategy set Si . S = S1 × · · · × Sn is the space of strategy profiles s = (s1, . . . , sn ). Each player i has
a utility function ui : S → R, where u = (u1 . . .un ). Intuitively, player i “prefers” states for which
ui is higher. Informally, a player is best responding when it has no incentive to unilaterally change
its strategy.

Definition 5.1. In a game U = (n, S, u), player i is best responding at s ∈ S if ui (s) ≥ ui (s′) for
every s

′ ∈ S such that s−i = s
′
−i . We write si ∈ BRU

i (s). A strategy profile s ∈ S is a pure Nash equi-

librium (PNE) if every player is best responding at s.

There is a natural relationship between games and the interaction systems described in Section 3.
A player with a strategy set corresponds directly to a node with an action space, and a strategy
profile may be viewed as a state. These correspondences are so immediate that we often use these
terms interchangeably.

Consider the case of best-response dynamics for a game in which best responses are unique (a
generic game): Starting from some arbitrary strategy profile, each player chooses its unique best
response to other players’ strategies when activated. Convergence to pure Nash equilibria under
best-response dynamics is the subject of extensive research in game theory and economics, and
both positive [32, 38] and negative [21, 22] results are known. If we view each player i in a game
(n, S, u) as a node in an interaction system, then under best-response dynamics its utility function
ui induces a self-independent historyless reaction function fi : S−i → Si , as long as best responses
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are unique. Formally,
fi (a−i ) = arg max

α ∈Si

ui (a1, . . . ,α , . . . ,an ).

Conversely, any system with historyless and self-independent reaction functions can be de-
scribed as following best-response dynamics for a game with unique best responses. Given reac-
tion functions f1, . . . , fn , consider the game where each player i’s utility function is given by

ui (a) =

{
1 if fi (a) = ai

0 otherwise.

Best-response dynamics on this game replicate the dynamics induced by those reaction functions.
Thus historyless and self-independent dynamics are exactly equivalent to best-response dynamics.
Since pure Nash equilibria are fixed points of these dynamics, the historyless case of Theorem 4.1
may be restated in the following form.

Theorem 5.2. If there are two or more pure Nash equilibria in a game with unique best responses,

then asynchronous best-response dynamics can potentially oscillate indefinitely.

In fact, best-response dynamics are just one way to derive reaction functions from utility func-
tions, that is, to translate preferences into behaviors. In general, a game dynamics protocol is a
mapping from games to systems that makes this translation. Given a game (n, S, u) as input, the
protocol selects reaction functions f = ( f1, . . . , fn ) and returns an interaction system (n, S, f ). The
above non-convergence result holds for a large class of these protocols. In particular, it holds for
bounded-recall and self-independent game dynamics, whenever pure Nash equilibria are limit
states. When cast into game-theoretic terminology, Theorem 4.1 says that if players’ choices of
strategies are not synchronized, then the existence of two (or more) pure Nash equilibria implies
that this broad class of game dynamics are not guaranteed to reach a pure Nash equilibrium. This
result should be contrasted with positive results for such dynamics in the traditional synchronous
game-theoretic environments. In particular, this result applies to best-response dynamics with
bounded recall and consistent tie-breaking rules (studied by Zapechelnyuk [43]).

Theorem 5.3. If there are two or more pure Nash equilibria in a game with unique best responses,

then all bounded-recall self-independent dynamics for which those equilibria are fixed points can fail

to converge in asynchronous environments.

5.2 Asynchronous Circuits

The implications of asynchrony for circuit design have been extensively studied in computer ar-
chitecture research [7]. By regarding each logic gate as a node executing an inherently historyless
and self-independent reaction function, we show that an impossibility result for stabilization of
asynchronous circuits follows from Theorem 4.1.

In this setting there is a Boolean circuit, represented as a directed graphG, in which the vertices
represent the circuit’s inputs and logic gates, and the edges represent the circuit’s connections.
The activation of the logic gates is asynchronous. That is, the gates’ outputs are initialized in some
arbitrary way, and then the update of each gate’s output, given its inputs, is uncoordinated and
unsynchronized. A stable Boolean assignment in this framework is an assignment of Boolean values
to the circuit inputs and the logic gates that is consistent with each gate’s truth table. We say that
a Boolean circuit is inherently stable if it is guaranteed to converge to a stable Boolean assignment
regardless of the initial Boolean assignment.

To show how Theorem 4.1 applies to this setting, we model an asynchronous circuit with a
fixed input as a historyless interaction system with self-independent reaction functions. Every
node in the system has action space {0, 1}. There is a node for each input vertex, which has a

ACM Transactions on Economics and Computation, Vol. 5, No. 3, Article 15. Publication date: August 2017.



15:12 A. D. Jaggard et al.

constant (and thus self-independent) reaction function. For each logic gate, the system includes a
node whose reaction function implements the logic gate on the actions of the nodes corresponding
to its inputs. If any gate takes its own output directly as an input, then we model this using an
additional identity gate; this means that all reaction functions are self-independent. Since every
stable Boolean assignment corresponds to a limit state of this system, this instability result follows
from Theorem 4.1:

Theorem 5.4. If two or more stable Boolean assignments exist for an asynchronous Boolean circuit

with a given input, then that asynchronous circuit is not inherently stable on that input.

5.3 Diffusion of Technologies in Social Networks

Understanding the ways in which innovations, ideas, technologies, and practices disseminate
through social networks is fundamental to the social sciences. We consider the classic economic
setting [33] (which has lately also been approached by computer scientists [24]) where each deci-
sion maker has two technologies {X ,Y } to choose from and wishes to have the same technology
as the majority of its “friends” (neighboring nodes in the social network). We exhibit a general
asynchronous instability result for this environment.

In this setting there is a social network of users, represented by a connected graph in which
users are the vertices and edges correspond to friendship relationships. There are two compet-
ing technologies, X and Y . Each user will repeatedly reassess his or her choice of technology, at
timesteps separated by arbitrary finite intervals. When this happens, the user will select X if at
least half of his or her friends are using X and otherwise select Y . A “stable global state” is a fixed
point of these choice functions, meaning that no user will ever again switch technologies. Observe
that if every user has chosen X or every user has chosen Y , then the system is in a stable global
state.

The dynamics of this diffusion can be described as asynchronous best-response dynamics for
the game in which each player’s utility is 1 if his or her choice of technology is consistent with the
majority (with ties broken in favor of X ) and 0 otherwise. This game has unique best responses,
and the strategy profiles (X , . . . ,X ) and (Y , . . . ,Y ) are both pure Nash equilibria for this game.
Thus Theorem 5.2 implies the following result.

Theorem 5.5. In every social network with at least one edge, the diffusion of technologies can

potentially oscillate indefinitely.

5.4 Interdomain Routing

Interdomain routing is the task of establishing routes between the smaller networks, or autonomous

systems (ASes), that make up the Internet. It is handled by the Border Gateway Protocol (BGP). We
abstract a recent result of Sami et al. [40] concerning BGP non-convergence and show that this
result extends to several BGP-based multipath routing protocols that have been proposed in the
past few years.

In the standard model for analyzing BGP dynamics [17], there is a network of source ASes that
wish to send traffic to a unique destination AS d . Each AS i has a ranking function <i that specifies
i’s strict preferences over all simple (loop-free) routes leading from i to d . Each AS also has an
export policy that specifies which routes it is willing to make available to each neighboring AS.
Under BGP, each AS constantly selects the “best” route that is available to it (see [17] for more
details). BGP safety, that is, guaranteed convergence to a stable routing outcome, is a fundamental
desideratum that has been the subject of extensive work in both the networking and the standards
communities. We now cast interdomain routing into the terminology of Section 3 to obtain a non-
termination results for BGP as a corollary of Theorem 4.1.
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Each AS acts as a computational node. The action space of each node i is the set of all
simple routes from i to the destination d , together with the empty route ∅. For every state
(R1, . . . ,Rn ) of the system, i’s reaction function fi considers the set of routes S = {(i, j )R j :
j is i’s neighbor and R j is exportable to i}. If S is empty, then fi returns ∅. Otherwise, fi selects
the route in S that is optimal with respect to <i . Observe that this reaction function is determin-
istic, self-independent, and historyless and that a stable routing tree is a limit state of this system.
Thus Theorem 4.1 implies the following result of Sami et al.

Theorem 5.6 (Sami et al. [40]). If there are multiple stable routing trees in a network, then BGP

is not safe on that network.

Importantly, the asynchronous model of Section 3 is significantly more restrictive than that of
Sami et al., so the result implied by Theorem 4.1 is stronger. Theorem 4.1 implies an even more
general non-safety result for routing protocols that depend on ASes that act self-independently
and with bounded recall. In particular, this includes recent proposals for BGP-based multi-path

routing protocols that allow each AS to send traffic along multiple routes, for example, R-BGP [28]
and Neighbor-Specific BGP (NS-BGP) [41].

5.5 Congestion Control

We now consider the fundamental task of congestion control in communication networks, which
is achieved through a combination of mechanisms on end-hosts (e.g., TCP) and on switches/routers

(e.g., RED and WFQ). We briefly describe the model of congestion control studied by Godfrey
et al. [16].

There is a network of routers, represented by a directed graph G, in which vertices represent
routers, and edges represent communication links. Each edge e has capacity ce . There are n source-

target pairs of vertices (si , ti ), termed “connections,” that represent communicating pairs of end-
hosts. Each source-target pair (si , ti ) is connected via some fixed route, Ri . Each source si transmits
at a constant rate γi > 0.4 For each of a router’s outgoing edges, the router has a queue manage-

ment, or queuing, policy, that dictates how the edge’s capacity should be allocated between the
connections whose routes traverse that edge. The network is asynchronous, so routers’ queuing
decisions can be made simultaneously. An equilibrium of the network is a global configuration of
edges’ capacity allocation such that the incoming and outgoing flows on each edge are consistent
with the queuing policy for that edge. Godfrey et al. show that, while one might expect flow to be
received at a constant rate whenever it is transmitted at a constant rate, this is not necessarily the
case. Indeed, Godfrey et al. present examples in which connections’ throughputs can potentially
fluctuate ad infinitum, never converging an equilibrium.

We model such a network as a historyless interaction system to show that every network
with multiple equilibria can oscillate indefinitely. The computational nodes of the system are the
edges. The action space of each edge e intuitively consists of all possible ways to divide traf-
fic going through e between the connections whose routes traverse e . More formally, for every
edge e , let N (e ) be the number connections whose paths go through e . Then e’s action space is
Ae = {(x1, . . . ,xN (e ) ) : each xi ≥ 0 and Σixi ≤ ce }. We assume that the xi have bounded preci-
sion, meaning that the state space is finite.

Edge e’s reaction function fe models the queuing policy according to which e’s capacity is
shared: For every N (e )-tuple of nonnegative incoming flows (w1, . . . ,wN (e ) ), fe outputs an ac-
tion (x1, . . . ,xN (e ) ) ∈ Ae such that for every i ∈ [N (e )], xi ≤ wi —a connection’s flow leaving
the edge cannot exceed its flow entering the edge. These reaction functions are historyless and

4This is modeled via the addition of an edge e = (u, si ) to G , such that ce = γi , and u has no incoming edges.
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self-independent, and an equilibrium of the network is a limit state of this system. Using
Theorem 4.1, then, we can obtain the following impossibility result.

Theorem 5.7. If there are multiple capacity-allocation equilibria in the network, then dynamics of

congestion control can potentially oscillate indefinitely.

6 COMPLEXITY OF ASYNCHRONOUS DYNAMICS

We now turn to the communication complexity and computational complexity of determining
whether a system is convergent. We present hardness results in both models of computation even
for the case of historyless interaction. Our computational complexity result shows that even if
nodes’ reaction functions can be succinctly represented, determining whether the system is con-
vergent is PSPACE-complete. Alongside its computational implications, this intractability result
implies that (unless PSPACE ⊆ NP) we cannot hope to have short, efficiently verifiable certificates
that guarantee a system’s convergence.

6.1 Communication Complexity

The following result shows that, in general, determining whether a system is convergent cannot
be done efficiently.

Theorem 6.1. Determining if a system with n nodes, each with 2 actions, is convergent requires

communicating Ω(2n ) bits. This holds even if all nodes have historyless and self-independent reaction

functions.

Proof. To prove our result, we present a reduction from the 2-party set disjointness problem, a
well-known problem in communication complexity theory: There are two parties, Alice and Bob.
Each party holds a subset of [q]; Alice holds the subsetA and Bob holds the subset B. The objective
is to determine whether A ∩ B = ∅. This problem instance is denoted Disjq (A,B). The following is
well known.

Theorem 6.2. Determining whether A,B ⊆ [q] are disjoint requires (in the worst case) the com-

munication of Ω(q) bits. This lower bound applies to randomized protocols with bounded 2-sided error

and also to nondeterministic protocols.

We now present a reduction from 2-party set disjointness to the question of determining
whether a system with historyless and self-independent reaction functions is convergent. Given
an instance Disjq (A,B), we construct a system with n nodes, each with two actions, as follows.
(The relation between the parameters q and n is to be specified later.) Let the action space of each
node be {0, 1}. We now define the reaction functions of the nodes. Consider the possible action
profiles of nodes 3, . . . ,n, that is, the set {0, 1}n−2. Observe that this set of actions profiles is the
(n − 2)-hypercubeQn−2, and thus can be visualized as the graph whose vertices are indexed by the
binary (n − 2)-tuples and such that two vertices are adjacent if and only if they differ in exactly
one coordinate. The reaction functions are based on following a snake in this hypercube.

Definition 6.3. A snake in a hypercubeQn is a simple cycle S = (v0, . . . ,vk ) that is chordless, that
is, for each vi ,vj on S , if vi and vj are neighbors in Qn , then vj ∈ {vi−1,vi+1}.

Let S be a maximal snake in Qn−2, and let q = |S |. We now show our reduction from Disjq . We
identify each element j ∈ [q] with a unique vertex v j ∈ S . Without loss of generality, we assume
that 0n−2 is on S . For ease of exposition we also assume that 1n−2 is not on S . (Getting rid of this as-
sumption is easy.) Orient the edges in S to form a cycle. For any edge that has exactly one endpoint
in S , orient the edge toward S . An example is given in Figure 4. Orient all other edges arbitrarily.
For each i = 3, . . . ,n, this orientation induces a function дi : Qn−2 → {0, 1}, where дi (a3, . . . ,an )
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Fig. 4. An acceptable orientation of the edges onQ4. The solid edges form a cycle on a maximal snake S , and

no edge is directed away from S .

is determined by the direction of the edge {(a3, . . . ai−1, 0,ai+1, . . . ,n), (a3, . . . ai−1, 1,ai+1, . . . ,n)}.
The nodes’ self-independent and historyless reaction functions are as follows.

f1 (a1, . . . ,an ) =

{
0 if a2 = 1 and (a3, . . . ,an ) = v j for some j ∈ A
1 otherwise

,

f2 (a1, . . . ,an ) =

{
0 if a1 = 1 and (a3, . . . ,an ) = v j for some j ∈ B
1 otherwise

,

fi (a1, . . . ,an ) =

{
дi (a3, . . . ,an ) if a1 = a2 = 0
1 otherwise

.

Informally, the aim is for nodes 3, . . . ,n to follow the snake S to vertices corresponding to each
value j ∈ [q].

Observation 6.4. 1n is the unique limit state of the system.

In our reduction Alice simulates node 1 (whose reaction function is based on A), Bob simulates
node 2 (whose reaction function is based on B), and one of the two parties simulates all other
nodes (whose reaction functions are based on neitherA nor B). The theorem now follows from the
combination of the following two claims.

Claim 6.5. In an oscillation there must be infinitely many time steps in which both node 1 and 2’s

actions are 0.

Proof. Suppose that from some moment forth it is never the case that both node 1 and 2’s
actions are 0. Observe that from that time onwards the nodes 3, . . . ,n will always choose the
action 1 when activated. Hence, after some time has passed the actions of all nodes in {3, . . . ,n}
will be 1. Observe that whenever nodes 1 and 2 are activated thereafter they shall choose the action
1, so we have convergence to the limit state 1n . �

Claim 6.6. The system is convergent iff A ∩ B = ∅.
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Proof. If A ∩ B � ∅, then initialize the system to a state (0, 0,a3, . . . ,an ), where (a3, . . . ,an ) =
v1. Consider a schedule that activates {3, . . . ,n} in every timestep until (a3, . . . ,an ) = v j for some
j ∈ A ∩ B. When that happens, the schedule activates {1, 2} for two consecutive timesteps, then
resumes activating {3, . . . ,n}. The functions дi ensure that, for each j ∈ [q], the vector (a3, . . . ,an )
will be equal tovj within a finite number of timesteps. Since there is some j ∈ A ∩ B, nodes 1 and 2
will eventually be activated, so this schedule is fair. This initial state and schedule clearly produce
an oscillation, so the system is not convergent in this case.

Now assume for contradiction that A ∩ B = ∅ and the system is not convergent. We know from
Claim 6.5 that if there is an oscillation, then there are infinitely many time steps in which both
node 1 and 2’s actions are 0. We argue that this implies that there must be infinitely many time
steps in which both nodes select action 0 simultaneously. Indeed, node 1 only chooses action 0 if
node 2’s action is 1, and vice versa, and so if both nodes never choose 0 simultaneously, then it is
never the case that both nodes’ actions are 0 at the same time step, a contradiction. Now, when
is it possible for both 1 and 2 to choose 0 at the same time? Observe that this can only be if the
actions of nodes 3, . . . ,n constitute an element that is in both A and B. Hence, A ∩ B � ∅, another
contradiction. �

We have reduced Disjq (A,B), which requires Ω(q) bits of communication, to the problem of
checking convergence of an n-node system with historyless and self-independent reaction func-
tions. As q was defined as the length of a maximal snake inQn , a classical combinatorial result due
to Evdokimov shows that q = Ω(2n ).

Theorem 6.7 (Evdokimov [12]). Let z ∈ Z+ be sufficiently large. Then, the size |S | of a maximal

snake in the z-hypercube Qz is at least λ2z for some λ > 0.

This completes the proof of Theorem 6.1. �

6.2 Computational Complexity

The above communication complexity hardness result required the representation of the reaction
functions to (potentially) be exponentially long. What if the reaction functions can be succinctly
described? We now present a strong computational complexity hardness result for the case that
each reaction function fi is historyless and is given explicitly in the form of a Boolean circuit.

Theorem 6.8. When the reaction functions are given as Boolean circuits, determining whether a

historyless system with n nodes is convergent is PSPACE-complete.

Proof. Our proof is based on the proof of Fabrikant and Papadimitriou [13] that checking BGP
safety is PSPACE-complete. Importantly, that result does not imply Theorem 6.8, since the model
of asynchronous interaction considered in that work does not allow for simultaneous activation
of nodes. We prove our theorem by reduction from the problem of determining whether a linear
space-bounded Turing machine (TM) will halt from every starting configuration.

For n ∈ Z+, let M be a TM that can only access the first n tape cells. Let Q be M ’s machine state
space, Γ its tape alphabet, and δ : Q × Γ → Q × Γ × {−1, 0, 1} its transition function. A configura-
tion of M is a triple (q, a, j ), where q ∈ Q is a machine state, a ∈ Γn describes the tape contents,
and j ∈ [n] gives the location of the control head.

Then we say that 〈M, 1n〉 is in shc (for space-bounded halting from all configurations) if, for
every configuration, M will halt if it begins its computation from that configuration. As Fabrikant
and Papadimitriou [13] argue, the problem of checking whether a space-bounded TM will accept
a blank input is reducible to shc, and thus shc is PSPACE-hard.

We now reduce shc to the problem of determining whether a historyless interaction system is
convergent. Given n ∈ Z+ and a TM M that can only access the first n tape cells, we construct a
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historyless system that is convergent if and only if 〈M, 1n〉 is in shc. The system has a cell node for
each of the first n tape cells and a head node to represent the control head. The cell nodes 1, . . . ,n
each have the action space Γ, and the head node n + 1 has action spaceQ × Γ × [n] × {−1, 0, 1}. For
a ∈ Γn , each cell node i ∈ [n] has the reaction function

fi (a, (q,γ , j,d )) =

{
γ if i = j
ai otherwise.

For the head node, fn+1 (a, (q,γ , j,d )) is given by the following procedure:

if aj = γ then

if j + d ∈ [n] then

j ← j + d ;
(q,γ ,d ) ← δ (q,aj );

return (q,γ , j,d );

Observe that (a, (q,γ , j,d )) is a limit state of this system if and only if q is a halting machine
state for M . Suppose the system is convergent, and let (q, a, j ) be a configuration of M . Consider
the system trajectory that begins at state (a, (q,aj , j, 0)) and follows the schedule that activates
every node in every round. This trajectory will reach a limit state, and it corresponds directly to a
halting run of M that begins from (q, a, j ), so 〈M, 1n〉 is in shc.

Conversely, suppose that 〈M, 1n〉 is in shc, and let (a, (q,γ , j,d )) be a system state. Suppose
that aj = γ . Then consider the computation by M that begins at configuration (q, a, j ′), where j ′ =
min{max{j + d, 1},n}. This computation will reach a halting machine state, and any fair trajectory
from (a, (q,γ , j,d )) will go through the same sequence of machine states as this computation,
which means that the trajectory will converge to a limit state. If aj � γ , then the system state will
remain the same until j is activated and takes action γ , after which the above argument applies.
Thus the system is convergent. We conclude that checking whether the system is convergent is
PSPACE-hard. Since it is straightforward to check convergence in polynomial space, this problem
is PSPACE-complete. �

In a preliminary version of this work [25], we conjectured that the above PSPACE-completeness
result also holds for the case of self-independent reaction functions.

Conjecture 6.9. Determining whether a system with n nodes, each with a deterministic self-

independent and historyless reaction function, is convergent is PSPACE-complete.

This conjecture has since been proved by Engelberg et al. [11].

7 CONCLUSIONS AND FUTURE RESEARCH

In this article, we have taken the first steps towards a complete understanding of strategic dy-
namics in distributed settings. We proved a general non-convergence result and several hardness
results within this model. We also discussed some important aspects such as the implications of
fairness and randomness, as well as applications to a variety of settings. We believe that we have
only scratched the surface in the exploration of the convergence properties of game dynamics in
distributed computational environments, and many important questions remain wide open. We
now outline several interesting directions for future research.

Other limitations, convergence notions, and equilibria. We have considered particular limi-
tations on reaction functions, modes of convergence, and kinds of equilibria. Understanding the ef-
fects of asynchrony on different classes of reaction functions (e.g., uncoupled dynamics, dynamics
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with outdated information) and for other types of convergence (e.g., of the empirical distributions
of play) and equilibria (e.g., mixed Nash equilibria, correlated equilibria) is a broad and challenging
direction for future research.

Other notions of asynchrony. We believe that better understanding the role of degrees of fair-
ness, randomness, and other restrictions on schedules from distributed computing literature, in
achieving convergence to equilibrium points is an interesting and important research direction.

Characterizing asynchronous convergence. We still lack characterizations of asynchro-
nous convergence even for simple dynamics (e.g., deterministic and historyless). Our PSPACE
-completeness result in Section 6 eliminates the possibility of short witnesses of guaranteed asyn-
chronous convergence unless PSPACE ⊆ NP, but elegant characterizations are still possible.

Topological and knowledge-based approaches. Topological [4, 23, 39] and knowledge-
based [19] approaches have been very successful in addressing fundamental questions in dis-
tributed computing. Can these approaches shed new light on the implications of asynchrony for
strategic dynamics?

Further exploring the environments of Section 5. We have applied our main non-convergence
result to the environments described in Section 5. These environments are of independent interest
and are indeed the subject of extensive research. Hence, the further exploration of dynamics in
these settings is important.
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