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a b s t r a c t

We consider the problem of private efficient data mining of vertically-partitioned
databases. Each of several parties holds a column of a data matrix (a vector) and the parties
want to investigate the componentwise combination of their vectors. The parties want to
minimize communication and local computation while guaranteeing privacy in the sense
that no party learnsmore than necessary. Sublinear-communication private protocols have
primarily been studied only in the two-party case. In contrast, this work focuses on multi-
party settings.
First, we give efficient private multiparty protocols for sampling a row of the data

matrix and for computing arbitrary functions of a random row, where the row index
is additively shared among two or more parties. These results can be used to obtain
private approximation protocols for several useful combination functionalities. Moreover,
these results have some interesting consequences for the general problem of reducing
sublinear-communication securemultiparty computation to two-party private information
retrieval (PIR).
Second, we give protocols for computing approximations (summaries) of the

componentwise sum, minimum, and maximum of the columns. Here, while providing a
weaker privacy guarantee (where the approximation may leak up to the entire output
vector), our protocols are extremely efficient. In particular, the required cryptographic
overhead (compared to non-private solutions) is polylogarithmic in the number of rows.

© 2009 Elsevier B.V. All rights reserved.

1. Introduction

1.1. Overview

Our problem. We are interested in the following problem. A collection of M parties P1, . . . , PM have length-N (column)
vectors x1, . . . , xM , respectively, as private inputs. For some M-ary function f (a commonly-known parameter to our
problem), the parties want to compute a length-N vector ywhose nth component yn is given by f (x1n, x

2
n, . . . , x

M
n ). We write

this as y = f (x). We say that the vector y is a combination of the parties’ inputs and that each party holds a piece of the
database. Examples of combination functions are the identity function (where anM-ary identity function simply returns its
M inputs as outputs), or the sum function (that returns the sum of itsM inputs).

I A preliminary version of this paper appeared in [Y. Ishai, T. Malkin, M.J. Strauss, R.N. Wright, Private multiparty sampling and approximation of vector
combinations, in: Proc. 34th International Colloquium on Automata, Languages and Programming — ICALP’07, 2007, pp. 243–254].
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We are interested in the case where N is large, so that y is a large object, while M is considered small. Thus the parties
want to keep costs sublinear in N , where possible. We consider the following general resource bounds:

• Local computation at most polynomial in N andM1;
• Communication at most polynomial inM and log(N). Less desirable, but sometimes acceptable, is communication which
is sublinear in N (preferably with dependence on N that can be made Nε for arbitrary ε > 0).

Because computing y exactly typically requires communication at least linear in N , the parties do not compute y = f (x),
but rather some ‘‘approximation’’ or ‘‘summary’’ g(y) which is moderately sized. Examples of useful approximations g(y)
that the parties may wish to compute are:

• A sample of components in y. (More generally, a sample of a known transform of y, such as the Fourier transform of y.)
• Statistical summaries of y, such as (an approximation of) a norm of y.
• An approximate reconstruction of y, such as a piecewise-constant approximation with error nearly optimal according to
some norm.
• A succinct data structure to which one can pose queries about y.

Such approximations are abundant in the literature (see below). Generally, however, they are not private, meaning
that some of the parties may learn more than what follows from their inputs and intended outputs. In this paper, we
present private approximations for various functions f and g (including the general case of an arbitrary f ), in two different
frameworks of privacy (see details below).
Motivating examples. The above problems are motivated by real-life scenarios in which several mutually distrusting entities
(e.g., credit agencies, hospitals, or network carriers) have a common interest in obtaining useful summaries of their combined
data. For instance, the parties may want to learn basic statistics on the combined data, measure the amount of similarity
between their inputs, or detect irregularities or fraud by means of identifying major discrepancies in common entries.
An exact solution to most problems of this type provably requires an amount of communication that is linear in the size

of the data (even if there are no privacy requirements). It turns out, however, that the communication complexity can be
dramatically improved by settling for an approximate solution and allowing a small error probability. This has been the
theme of a very rich and productive recent body of work (c.f., [1,36,43,25,24,8,15,12] and references therein).
As one concrete class of examples, we focus on the quantity ‖y‖a =

(∑
n y
a
n

)1/a, which we call a norm of y and denote
by `a. (Technically, it is only a norm for certain values of a.) One can regard a norm of y as an approximation to the vector y.
A useful special case is the problem of multiparty set intersection size. The parties have subsets A1, A2, . . . , AM of a known
universe of size N and we want to compute

∣∣⋂
m Am

∣∣. (In this case the vector combination function f is the bitwise-AND,2
namely y = f (x1, . . . , xM) =

∧
m x
m, and the output the parties are interested in is ‖y‖1 =

∑
n yn.) Even in the two-

party case and without any privacy requirements, it is impossible to achieve a constant multiplicative approximation with
a sublinear amount of communication. We thus settle for an additive approximation, up to an error of±εN .

1.2. Privacy

When mutually-suspicious parties conduct joint data mining, they want to guarantee that the privacy of their inputs is
protected, in the sense that the protocol leaks nothing more than their inputs and their outputs. In our context, where the
actual output of the parties is not the combination vector y = f (x) but some type of an approximation of it g(y), we consider
two types of privacy guarantees.
Privacywith respect to the output. This is the traditional privacy guarantee for inputs x and output g(f (x)), following standard
definitions of secure computation from the literature [9,26]. Given a functionality mapping the parties’ inputs to (possibly
randomized) outputs, the requirement is that no set of parties can learn anything about the inputs of other parties from
protocol messages beyond their own inputs and outputs. (By default, we assume that all parties receive an identical output.)
Thus, this privacy guarantee is the desired one in applications where the parties are willing to disclose the approximation
of f , namely g(f (x)), but do not want to reveal any other information.
Privacy with respect to the combination vector. The second kind of guarantee, introduced in [17], is ‘‘privacy of
approximations’’. A protocol is a private approximation protocol for f if its output is (with high probability) a good
approximation3 for the exact output of f , andmoreover each set of parties learns nothing additional from protocol messages
(including the actual output of the protocol) beyond their own inputs and the ideal output, f (x). See [17] for motivation.
Stated in our context, while the output of the protocol is g(f (x)), the privacy guarantee is that nothing is leaked that does not
follow from f (x). This is a weaker privacy guarantee (which allows us to achieve muchmore efficient results in some cases).

1 SinceN is large, it is also desirable to have parties read the data as a data stream, using only a small amount of local storage.Whilemost of the protocols
we present satisfy this extra requirement, we do not consider it explicitly.
2 Throughout this paper we use

∧
to denote the component-wise minimum. In the case of binary values, like in this example, this is the same as the

bitwise-AND.
3 In this paper, we do not insist on a specific notion of approximation, such as an additive or multiplicative one. Instead, we accept whatever function g
the parties want to compute as a useful approximation of f , and focus on guaranteeing privacy of the protocol. For example, statistical summaries such as
the norm of the vector are often used as an approximation of a vector.
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This guarantee is appropriate in applications where the parties do not mind disclosing f (x) (they compute g(f (x)) only for
efficiency reasons), but do not want any further information leaked.
Adversary model. Below, we consider the semi-honest model, in which parties follow the protocol but infer whatever they
can from the information they receive. In [45], the authors showed how to upgrade security in the semi-honest model
into security in the malicious model with a low communication and computation overhead. Specifically, assuming the
existence of strong collision-resistant hash functions, this transformation incurs a polylogarithmic additive overhead in
communication and a polylogarithmic multiplicative overhead in computation. (While [45] explicitly consider the two-
party setting, their approach applies to the multiparty setting as well.) Thus, from a theoretical point of view it suffices to
focus on privacy in the semi-honest model, as we do in this work. From amore practical point of view, most of our protocols
provide reasonable security guarantees even against malicious adversaries. In particular, the highly efficient protocols from
Section 4 are fully private against amalicious adversary in the sense that it cannot learnmore about the inputs of uncorrupted
parties than is allowed in an ideal function evaluation. While in these protocols a malicious adversary can violate the
correctness, e.g. by forcing the output to be random, this is not very significant for the type of functionalities we consider.
These functionalities typically have the property that even in an ideal implementation, a malicious adversary can render the
computation essentially useless by adversarially choosing its inputs.
All of the protocols we present in this paper are computationally private against a non-adaptive, semi-honest (passive)

adversary corrupting an arbitrary subset of the M parties. Thus, we cannot make use of Multi-Party Computation (MPC)
techniques that apply to the case of an honest majority.

1.3. Our results

We present communication-efficient solutions to a large class of useful special cases of the general problem described
above. Our results also have useful consequences for the general theory of secure multiparty computation with sublinear
communication, and highlight some qualitatively interesting differences between the two-party and the multiparty case.
We describe our results in two parts, corresponding to the two privacy frameworks discussed above (privacy with respect
to the output, and with respect to the combination vector).

1.3.1. Private multiparty sampling
In Section 3 we consider the challenge of extending a private sampling technique, which lies in the core of previous two-

party protocols for private approximations, to the multiparty setting. Specifically, we provide protocols for sampling a row
of the data matrix and for computing arbitrary functions of a random row, where the row index is additively shared among
two or more parties. This corresponds to the case where g is the fixed randomized function selecting a random (and secret)
entry of y, and f can be an arbitrary function.
We show how to implement this primitive using any (two-party) private information retrieval (PIR) protocol [10,37] as a

building block. This general transformation makes a non-black-box4 use of the underlying PIR protocol, which can be quite
costly (though still satisfying our requirements such as sublinear communication).
In the case where the underlying PIR protocol only has a single round of interaction, we show a more efficient variant of

this transformation which makes a black-box use of the PIR query generation and answering algorithms, but still requires a
non-black-box use of the PIR reconstruction algorithm.5
Our multiparty sampling protocols can be used as building blocks in a wide range of private approximation scenarios.

For instance, they can be used in a straightforward way to obtain communication-efficient approximations for multiparty
set intersection. Indeed, letting f be the bitwise AND function, the intersection size can be efficiently approximated (up to
a small additive error) by making multiple invocations of the sampling primitive and outputting the fraction of 1’s in the
outputs. This generalizes a (two-party) protocol of [20]. The sampling protocols can also be used, following the technique
of [32], to obtain polylog-communication private approximation of the `2 norm of the sum of theM inputs. In Section 1.4 we
briefly describe how our results can be used as a generalization of these and other previous works in the two-party setting,
into the multi-party setting.

Applications to general secure computation. Our private sampling protocols of Section 3 are based on a natural
generalization of PIR and sublinear-communication OT (SPIR) to the multiparty setting. The latter primitive distributes
the role of the receiver between the M parties, taking the actual selection as the sum (modulo N) of M selection indices
held by the different parties. Our efficient implementations of this primitive can be used as a basis for general sublinear-
communication protocols for secure multiparty computation, following the approach of Naor and Nissim [45] in the two-
party case. In contrast to the two-party case, where an arbitrary PIR protocol can be used as a black box as a basis for general
sublinear-communication secure computation, we do not know whether this is the case also in the multiparty setting. The
possibility of making a black-box use of PIR in the context of sublinear-communication multiparty computation remains an
intriguing open question.

4 By this we mean that the protocol cannot use R as an oracle, and must depend on its implementation; see [51] for formal definitions and discussion of
black-box reductions in cryptography.
5 This corrects an error in the conference version of this paper [33], see Section 3.3.
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1.3.2. Private approximation of vector combinations
In Section 4 we focus on the case where f is either the (componentwise) sum over the integers or the minimum or the

maximum of M vectors, and the goal is to approximate f (x1, . . . , xM), while leaking nothing more than this combination
vector. This problem is usually not very well motivated in the two-party case, as the input vector of one party together with
the output vector allows him or her to determine most (if not all) of the other party’s input, and thus privacy does not mean
much. However, when there is a larger number of parties this problem becomes natural.
Towards reducing the communication complexity, we consider approximation functions g which may be any of a

wide array of natural ‘‘summary’’ functions of the combined data vector y (e.g., an approximation of the `2-norm, or an
approximate t-term Fourier representation). We show how to exploit the fact that the entire (long) vector ymay be leaked
in order to obtain simple private protocols for the above problems, inwhich the cryptographic overhead in computation is at
most polynomial in the size of the small approximation andpolylogarithmic in the number of rows. This should be contrasted
withmost previous protocols for sublinear-communication secure approximation (aswell as the results of Section 3), which,
given state-of-the-art PIR, require a cryptographic computational overhead which is linear in the number of rows (the size
of the entire data).
Going back to the example of multiparty set intersection, the protocol obtained from the results of Section 4 is much

more efficient and practical than the one obtained from the private sampling primitive of Section 3, but provides a weaker
privacy guarantee.
The results of Section 4 are based on the observation that most (non-private) approximations from the literature can

be derived from short local randomized sketches that can be efficiently combined to yield the desired approximation.
In previous uses of such sketches in the context of private approximations, it was necessary to hide the randomness
that was used for generating the samples. Since in our setting we allow leaking the entire vector y, we can use public
(pseudo)randomness for locally producing the sketches, and then obtain the output via secure computation of simple
functions (addition, maximum or minimum) on the short sketches.

1.4. Related work

The approach of constructing secure sublinear-communication protocols was initiated in the context of private
information retrieval [10] and further studied both in other specific contexts (e.g., [40]) and in more general settings [45].
The notion of secure approximations was introduced by Feigenbaum et al. [17], who provide sublinear-communication

protocols for Hamming distance among two parties. As one of their tools, they show how to compute the XOR of x1n and x
2
n

at a random position n unknown to the parties. Our results in Section 3 can be regarded as a generalization of this primitive
to more than two parties and to functions other than the XOR of bits. They also provide a secure approximation protocol for
the permanent and related #P-hard problems.
Halevi et al. [30] consider secure approximations of NP-hard functions and show some negative results. Specifically, they

show there exist natural NP-hard functions, such as the size of theminimumvertex cover in a graph,which donot admit non-
trivial secure approximation, although they do admit good approximation algorithms without the security restriction. They
also point out that this phenomenon does not hold for all NP-hard functions, by presenting an artificial NP-hard function
that can be securely approximated.
Definitions and protocols for privately approximating search problems (for which many exact solutions may exist) were

given in [32,4–6]. In thisworkwe are only concernedwith the private approximation of functionswith a unique exact output.
Freedman et al. [20] give an efficient two-party protocol for approximating the size of an intersection of sets from a

universe of size N with additive error that is small compared with N . To do this, they compute the AND of x1n and x
2
n at some

random position n unknown to the parties. Again, our results in Section 3 can be regarded as a generalization of this result
to more than two parties and to functions other than the AND of bits.
Indyk and Woodruff [32] give a two-party, polylog communication private protocol for approximating the `2-norm of

the difference (or sum) of vector inputs. Our results of Section 3 can be used to extend this result to more than two parties.
Naor and Nissim [45] present a general compiler of any two-party protocol into a private protocol that preserves

the communication, up to polynomial factors. This compiler, however, generally requires an exponential amount of local
computation and thus it is not directly useful for the approximation problems we consider. Nevertheless, for the classes of
functions for which the compilation technique of [45] efficiently applies, our results of Section 3 can be used to efficiently
generalize the protocols of [45] from two parties to more than two parties, providing security against any strict subset of
the parties. (See more details in Section 3.1.1.)
In recent and independent work, Franklin et al. [19] consider a problem similar to the distributed oblivious transfer

problemwe consider in Section 3.1. They present a sublinear-communication protocol for this problem that extends concrete
(two-party) PIR protocols from the literature to the multi-party setting by relying on a threshold homomorphic encryption
scheme, rather than the standard homomorphic encryption scheme used in the original PIR protocols. In contrast, we focus
on the goal of extending an arbitrary PIR protocol to the multi-party setting while keeping the communication complexity
sublinear in N . Combined with concrete PIR protocols, our general non-black-box construction has a similar asymptotic
communication, computation, and round complexity as the construction from [19], though the more specialized approach
of [19] can typically be tailored to yield better dependence on the number of parties and better concrete efficiency.
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2. Background and preliminaries

In this section, we present background, notations and definitions that we use in this paper. Throughout this paper, N
serves as an input length parameter andM serves as the number of parties. As mentioned in Section 1, we consider N to be a
large polynomial (so linear communication in N is prohibitive), whileM is reasonably small. Accordingly, we seek efficient
protocols, where the local computation of each party is polynomial in N andM , while the communication is polynomial in
M and sublinear in N , preferably polynomial in log(N).
A function f : N→ [0, 1] is negligible if it is asymptotically smaller than any inverse polynomial, i.e., f (n) ∈ n−ω(1). The

function f is overwhelming if 1 − f is negligible. A distribution ensemble D = {Dx}x∈X is a family of probability distributions
indexed by some infinite set X of binary strings. We sometimes take X = {1n : n ∈ N}, in which case the indices in X are
viewed as natural numbers.

Definition 1. Two distribution ensembles D = {Dx}x∈X and D′ = {D′x}x∈X are statistically indistinguishable, (written D
s
≡ D′)

if there is a negligible function µ(·) such that, for every x ∈ X ,

SD(Dx,D′x) < µ(|x|),

where SD denotes statistical distance defined by SD(Z, Z ′) = 1
2

∑
a | Pr(Z = a)− Pr(Z

′
= a)|.

Ensembles D and D′ are computationally indistinguishable, (written D
c
≡ D′), if for every family {Cn} of polynomial-size

circuits there exists a negligible function µ(·) such that for every x ∈ X of length n,

| Pr(Cn(Dx) = 1)− Pr(Cn(D′x) = 1)| < µ(n).

2.1. Secure multiparty computation

Secure multiparty computation allows two or more parties to evaluate a specified function of their inputs while hiding
their inputs from each other. When formally defining security, it is convenient to think of an adversary that tries to gain
as much advantage as it can by corrupting at most t parties during the execution of the protocol. Security (specifically, t-
security for an adversary whomay corrupt up to t parties) is then defined by requiring that whatever the adversary achieves
in a real-life execution of the protocol, it can efficiently simulate in an ideal process, in which a trusted party is being used
to evaluate the function. Thus, the protocol prevents the adversary from gaining an extra advantage over what it could have
gained in an ideal solution.
There are several notions of security and various degrees of strength (e.g., [26,9,2,44]). In this work, we mostly deal with

the special case of secure computation in the semi-honest model, or private computation. In this model it is assumed that
the adversary is passive (or honest-but-curious) and cannot modify the behavior of corrupted parties. In particular, private
computation is only concernedwith the information learned by the adversary, and notwith the effectmisbehaviormay have
on the protocol’s correctness. In [45], the authors showed how to convert any private protocol into a secure protocol, roughly
preserving the computation and communication cost. (As noted in Section 1.2, this approach applies to themultiparty setting
as well.)
Another distinction between different notions of security is the extent to which the transcript produced by the ideal-

process adversary should resemble the one produced by the real-life execution of the protocol. The three standard variants
are perfect, statistical, and computational indistinguishability. These naturally define corresponding notions of perfect,
statistical, and computational security. Finally, there is a distinction between a non-adaptive adversary, who corrupts a
number of parties before the computation starts and cannot corrupt any more parties later on, and an adaptive adversary,
who may corrupt parties during the execution of the protocol, according to what has transpired so far.
In this work we focus on computational privacy against a non-adaptive passive adversary, who may corrupt an arbitrary

subset of the M parties (namely, protocols achieving (M − 1)-privacy).6 When we specify an M-party functionality g that
should be privately computed, we will either denote the output of g by an M-tuple (y1, . . . , yM), in which case yi is the
output of party Pi, or by a single value, in which case this value should be known by default to all parties. (We also consider
single-output functionalities in which the output is given to only one party.)
The formal definitions we use follow the standard ones of, e.g., [9,26]. We also refer to the (standard) notion of privacy

discussed above as privacy with respect to the output. (In our context, the output is of the form g(f (x)) for some combination
vector f (x), namely the protocols are private computations of gf .) This is to differentiate this notion from the weaker one of
privacy with respect to the combination vector (discussed in Section 1 and again below) that we use in Section 4 for private
approximations of some combination functions.
The first general feasibility results for secure computation were obtained by Yao [54] and by Goldreich, Micali, and

Wigderson [27]. Yao’s constant-round two-party protocol was generalized to the multiparty case by Beaver et al. [3]. The
following theorem relates the complexity of privately computing a functionality g to the circuit size of g .

6 For our (non-adaptive) model, this is equivalent toM-privacy, namely the adversary may corrupt as many parties as he wants, up to allM parties. We
chose to state our theorems with (M − 1)-privacy rather than M-privacy, as privacy for an adversary who corrupted all M parties is meaningless in this
setting.
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Theorem 2.1 ([54,27,3]). Let C = {Cn} be a uniform family of (deterministic or probabilistic7) Boolean circuits of size s(n),
where the input to Cn is viewed as an M-tuple of n-bit strings and its output as an M-tuple of strings. Let g denote the
functionality computed by the family C. Then g can be privately computed in a constant number of rounds with Õ(M2 · s(n))
bits of communication by making (a black-box) use of an arbitrary oblivious transfer protocol.8

A similar statement holds also when the adversary is active [39,34,49].
The asymptotic complexity notation Õ(c(n)) above should be read as O(c(n) · nε) for an arbitrarily small constant

ε > 0. However, Õ(c(n)) can be read as O(c(n) · logO(1) n) if stronger cryptographic assumptions are made. Specifically,
in Theorem 2.1 it suffices to assume the underlying oblivious transfer primitive to be secure against sub-exponential
adversaries.
Notice that any protocol that uses Theorem 2.1 to privately compute g is necessarily non-black-box with respect to

g (as the specific circuit for g is needed, and not just oracle access to it). Indeed, this is what makes our reductions in
Section 3.3 non-black-box (at least with respect to the reconstruction algorithm of PIR in the case of our ‘‘almost black-
box’’ construction).

2.2. PIR and oblivious transfer

There has been a large body of work on obtaining sublinear-communication protocols for private information retrieval
(PIR) and oblivious transfer (OT). A PIR protocol [10,37] allows a receiver to retrieve a selected item from a large database
held by a sender without revealing which item he or she is after, and while using only a small amount of communication
(sublinear in the size of the database). A symmetric PIR (SPIR) protocol [23], or 1-out-of-N oblivious transfer [50,16,26],
further guarantees that the receiver cannot learn more than a single entry of the database. Specifically, OT is defined as
follows.
Definition 2 (Oblivious Transfer). An n-choose-1 oblivious transfer protocol (with security against a passive adversary),
abbreviated as

(n
1

)
-OT or just OT, is a private protocol for the following deterministic functionality between two parties

called a sender and a receiver. The sender’s input is an n-bit string x and the receiver’s input is an index i ∈ [n]. The receiver
outputs the bit xi, and the sender has no output.
By Theorem 2.1,

(n
1

)
-OT can be implemented with nearly linear communication under standard assumptions. However,

the
(n
1

)
-OT functionality also admits much more efficient solutions:

Theorem 2.2 ([37,23,52,42,46,13]). Assuming the existence of a homomorphic encryption scheme,9 there is a 2-round
(n
1

)
-OT

protocol with Õ(1) bits of communication.
As in Theorem 2.1, Õ(1) above should be read asO(Nε) for an arbitrarily small constant ε > 0, but can be read asO(logO(1) N)
if stronger cryptographic assumptions aremade, in this case specific number-theoretic assumptions from [7,41,22].We refer
the reader to the above papers for a more concrete analysis of the complexity tradeoffs and to [21] for a general survey of
PIR protocols.
Theorem 2.2 uses the fact that any PIR protocol can be used in a black-box way to obtain an OT protocol with similar

communication complexity [46,13], and that PIR on a database containing N short entries (say, bits) can be achieved with
communication complexity Õ(1), based on the corresponding assumptions. In the following, when referring to OT (and its
variants) we always assume the communication to be sublinear in N .
We refer the reader to the papers referenced above for the formal definition of PIR, but note that some of the PIR

definitions (e.g., [7,41]) also require that the computational complexity of the receiver be sublinear. This property is needed
by our constructions in Section 3.3, and is achieved by all known PIR protocols. In fact, in almost all PIR protocols from the
literature the receiver’s computational complexity is Õ(1). (The only exception we are aware of is the protocol from [22], in
which the receiver needs to spend Õ(n1/2) time to compute discrete logarithms.)

2.3. Secure computation of approximations and privacy with respect to the combination vector

The notion of secure computation of approximations was introduced in [17], which gives two definitions and several
protocols (that lay the basis for some of the applications of our private computation results of Section 3). Secure computation
of an approximation allows two ormore parties to evaluate a specified approximation g applied to a function f of their inputs
x, where the parties do not want to leak anymore information than given by f (x). The motivation is to enjoy the advantages
of approximations (where exact computation is prohibitively expensive) in a setting where the parties want to maintain
their privacy. See [17] for more discussion and motivation.

7 A probabilistic circuit includes, in addition to the standard inputs, a polynomial number of random inputs.
8 Oblivious transfer is a standard cryptographic primitive defined in the next section. It is implied by standard cryptographic assumptions, such as the
existence of (enhanced) trapdoor permutations. See [26].
9 Loosely speaking, a semantically-secure encryption scheme [29] is said to be homomorphic if: (1) The plaintexts are taken from some group (H,+),
and (2) From encryptions of group elements h1, h2 it is possible to efficiently compute a random encryption of h1 + h2 . Homomorphic encryption can be
based on a variety of intractability assumptions, including the Quadratic Residuosity assumption and the Decisional Diffie–Hellman assumption.
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In Section 4weuse a definition given in [17] (Definition 7 there),10 and call it privacywith respect to the combination vector.
The notion of privacy with respect to the combination vector requires that the parties correctly compute the approximation
g(f (x)), and that an ideal-world adversary (simulator), given the inputs of the corrupted parties, the approximate output
g(f (x)), and the ideal output (exact combination function) f (x), can simulate the view of the real world adversary. This privacy
guarantee is appropriate in applications where the parties do not mind disclosing f (x) (they compute g(f (x)) only for
efficiency reasons), but do not want any further information leaked.

3. Private multiparty sampling

In this section we study the complexity of a private multiparty sampling primitive, which serves as a useful building
block for private approximation protocols. This primitive allows M parties, each holding a database xm, to privately obtain
f (x1r , . . . , x

M
r ) where f is some fixed M-argument functionality (say, exclusive-or) and r is an index of a random entry that

should remain secret. (This is an instance of the general scenario described in Section 1 where g is a randomized projection
function. Recall that in this scenario we assume M is much smaller than N .) A similar primitive was previously used in a
two-party setting in the context of private approximations [17,20,32].
More formally, the sampling functionality induced by f is defined below. We define private multi-party sampling of f as

an (M − 1)-private protocol for this functionality.
Definition 3 (Functionality Sample-f). Let f be an M-party functionality. (The functionality f is a deterministic or
randomized mapping fromM inputs toM outputs.) The randomized functionality Sample-f is defined as follows:

• Inputs: Each partym, 1 ≤ m ≤ M , holds a database xm = (xmn )n∈[N].
• The functionality picks a secret, uniformly random index r ∈ [N] and outputs f (x1r , x

2
r , . . . , x

M
r ), where the ith output of

f is given to party Pi.

When the only restriction on the communication complexity is to be polynomial, a private multiparty sampling protocol
can be constructed by making a black-box use of an arbitrary OT protocol, as follows from general techniques for secure
multiparty computation [27,28,35]. Interestingly, such a construction becomes more challenging to obtain in the domain
of sublinear-communication protocols. Even more interestingly, this difficulty does not arise in the two-party setting and
only seems to crop up when there are three or more parties. Indeed, a simple black-box construction of two-party private
sampling from an arbitrary OT protocol is given in [17]. This construction maintains the communication complexity of
the underlying OT protocol.11 Thus, sublinear-communication OT (alternatively, PIR) can be used as a black box to realize
sublinear-communication two-party private sampling. We do not know whether the same is true in the multiparty setting;
this is an interesting question left open by our work. Instead, we show the following constructions of communication-
efficient, multiparty private sampling protocols from PIR:

1. An ‘‘almost black-box’’ construction (in a sense to be explained below) of private sampling from a one-round (two-
message) PIR protocol.

2. A non-black-box construction of private sampling from an arbitrary PIR protocol.12

The rest of this section is organized as follows. In Section 3.1 we define a distributed-OT primitive (and show an
interesting application of it). In Section 3.2 we reduce general private multi-party sampling to distributed OT, and in
Section 3.3 we reduce distributed OT to PIR (or sublinear OT).

3.1. Oblivious transfer with distributed receiver

Towards implementing the private multiparty sampling primitive, we introduce and study a distributed variant of
oblivious transfer which is of independent interest. (We describe one application Section 3.1.1.)
In this distributedOTprimitive the role of the receiver is distributedbetween theM parties.13 Specifically, a large database

x of N entries is held by a distinguished party, say P1, who functions as a sender. The entries of the database are indexed
by some finite group of size N , which is taken to be ZN by default. The index n of the entry to be retrieved is distributed
between theM parties in an additiveway. That is, n =

∑M
m=1 nm, where each nm is a local input of Pm and addition is taken

over the underlying group. (Our approach can be applied to non-Abelian groups as well; however, since we only need to

10 We note that [17] only gave the definition for a function g that satisfied some specific approximation requirement with respect to f , e.g., ε-
approximation. In this paperwe accept as an approximationwhatever function g the parties had agreed in advance to compute as a useful summary of f , and
focus on guaranteeing privacy of the protocol. Also, [17] gives the definition only for two parties, but the extension to multiple parties is straightforward.
11 The protocol from [17] is described for the special case where f is the exclusive-or function but can be generalized (as was done in [20,32]) to arbitrary
functions f . The following discussion is quite insensitive to the particular choice of f and in fact applies also to the simpler ‘‘distributed OT’’ primitive
defined in Section 3.1.
12 To guarantee that the communication complexity of the sampling protocol is sublinear, we must assume that the receiver’s computational complexity
in the PIR protocol is sublinear. This is required by some definitions of PIR (e.g., [7,41]) and is achieved by all known constructions.
13 A very different variant of distributed OT was considered in [47]. The protocols from [47] distribute the role of the sender (rather than the receiver)
and do not address the question of obtaining sublinear communication complexity.
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employ Abelian groups, we use additive notation for convenience.) At the end of the protocol some distinguished party, say
PM , should learn the selected entry xn. More formally, we define distributed-receiver oblivious transfer (or distributed OT for
short) as an (M − 1)-private protocol for the followingM-party functionality.
Definition 4 (Functionality DistOTG). Let G be a finite group of size N . The functionality DistOTG is defined as follows:

• Inputs: Each party m, 1 ≤ m ≤ M , holds a group element nm ∈ G. The first party P1 additionally holds a database
x = (xn)n∈G.
• The last party PM outputs xn1+···+nM . Other parties have no output.

We will sometimes assign the identities of the ‘‘sender’’ and ‘‘receiver’’ (the party obtaining the output) to other pairs of
parties (rather than P1 and PM ), or even assign both roles to the same party.

3.1.1. An application to sublinear-communication multi-party protocols
We now interrupt the presentation of the steps leading to our main result, in order to describe an application of DistOT

which is of independent interest. The reader who is eager to continue may skip ahead to Section 3.2, where we show how
to use DistOT for implementing private multiparty sampling (Sample-f).
TheDistOT primitivewe defined above can also be used as a basic building block for sublinear-communicationmultiparty

protocols. Specifically, we describe here how it can be used to provide a communication-preserving multiparty general
transformation of non-private to private protocols, generalizing the protocol compiler from [45] to the multiparty case.
The protocol compiler from [45] transforms a non-private two-party protocol π into a private two-party protocol π ′

with roughly the same communication complexity. Our multi-party variant does the same in the case of M parties, where
π ′ is private against arbitrary collusions. In the following we allow the amount of local computation in π ′ to be exponential
in the communication; as in [45], the computation can be made polynomial in the communication for a restricted class of
protocols π .
For simplicity, suppose that in each round j of π a prescribed party Pij sends the same message mj to all other parties,

where this message depends on the input xij of Pij and the transcript cj−1 of the communication exchanged in the first j− 1
rounds. The idea is to maintain the invariant that all parties have a share of the entire history at every step. Now, for round j
of π , rather than sendingmj in the clear, the protocol π ′ additively sharesmj among the parties. This is done by using DistOT
with party Pij holding a database of all possible next messages mj indexed by the possible histories cj−1, and all parties use
their shares as the shares of the index. We describe this in more detail below.
The protocol π ′ has a phase for each round of π . In the beginning of phase j, the transcript cj−1 is additively shared

between the M parties. The goal of phase j is to additively share mj between the parties without revealing any additional
information. This is done using DistOT in the following way. Let DistOT′ be a variant of DistOT in which the receiver’s output
is additively shared between theM parties. (A simple reduction from DistOT′ to DistOT is to let the sender mask all entries
of xwith the same random group element, and additively share the mask between all parties other than the receiver.)
Phase j of π ′ proceeds as follows. Party ij, playing the role of the sender in DistOT′, prepares a database with N = 2|cj−1|

entries, where entry n contains the messagemj that Pij would send given its input and assuming that the shares of cj−1 held
by allM−1 other parties add up to n. Now the parties invoke DistOT′, where Pij uses 0 as its share of the selection index and
all other parties use their shares of cj−1. As a result, the next messagemj is additively shared between all parties, as required.
In [45], the authors point out that certain special protocols can be made into private protocols with less computational

cost than the general result. This is the case, for example, if only a limited number of transcripts are possible at some stage
in the protocol. We note that our generalization to more than two parties captures this efficiency as well.

3.2. Private multiparty sampling from distributed OT

We now present an efficient black-box construction of private multiparty sampling protocols from distributed OT. We
start by observing that Sample-f can be efficiently reduced to a simpler (randomized) functionality Sample-AS, and then
complete the proof by showing how to reduce Sample-AS to DistOT.
Consider the randomized functionality AS (for ‘‘additive sharing’’), which on M inputs, outputs an M-tuple of strings

that are random subject to the restriction that their exclusive-or is the concatenation of the M inputs. Now, consider the
randomized sampling functionality Sample-AS (namely Definition 3 with the functionality AS).
Proposition 3.1. For any polynomial-time computable M-argument function f there is a constant-round black-box (M − 1)-
private reduction of Sample-f to Sample-AS.
Proof. Westart by noting that 1-out-of-2 OT can be implemented fromSample-AS, using a result in [13]. Thus, the reduction
may use 1-out-of-2 OT in addition to Sample-AS.
The reduction proceeds by first invoking Sample-AS to obtain an additively shared representation of the M inputs to f ,

and then running the general-purpose constant-round protocol of Theorem 2.1 (based on 1-out-of-2 OT) to compute f from
these shares. �

We now turn to reducing Sample-AS to DistOT. To gain intuition, we first give a reduction of the simpler Sample-ID to
DistOT, where ID is the identity function (namely each output is a concatenation of all M inputs directly — not additively
shared as inSample-AS). Oncewepresent this reduction,we showwhy anaive approach to completing the proof by reducing
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Sample-AS to Sample-ID does not work. However, this approach (together with the Sample-ID reduction) is the one that
inspires and helps understand our final construction, directly reducing Sample-AS to DistOT.
The following is a reduction ofSample-ID toDistOTGwhereG is an arbitrary group of sizeN . In the following,we arbitrarily

identify elements of Gwith indices in [N].

Proposition 3.2. There is a constant-round black-box (M − 1)-private reduction of Sample-ID to DistOT. The reduction makes
M calls to DistOT.

Proof. A simple reduction as required proceeds as follows.

Reducing Sample-ID to DistOT

1. Each party Pm picks a random group element rm ∈R G.
2. In parallel, the parties makeM calls to DistOT, where in call i party Pi acts as the sender with database xi and every party
Pm (including Pi) lets nm = rm. As a result, party PM obtains theM values xmr1+···+rM for 1 ≤ m ≤ M and sends them to all
parties.

3. Each party outputs theM values obtained in the previous step.

The correctness of the above reduction is straightforward to verify. Privacy follows from the fact that a coalition involving a
strict subset of the parties can learn just a strict subset of the random choices ri, which are jointly independent of the final
selection index r1 + · · · + rM . �

Given this reduction, it would suffice to reduce Sample-AS to Sample-ID. For simplicity, we restrict the attention to the
casewhere each entry of a database xm is a single bit. (The general case of `-bit entries can be handled analogously.) A natural
approach that comes to mind is to let each party Pm mask every bit of xm with a random bit bm, invoke Sample-ID on the
resulting masked databases, and then use a private computation of a (randomized) linear function to convert the masked
entries xmr ⊕ bm together with the masks bm into the required additive sharing. This approach fails for the following reason:
an adversary corrupting Pm learns both xmr ⊕ bm (from the output of Sample-ID) and the mask bm, which together reveal xmr
and thus (together with xm) give partial information about r . This is not allowed by the ideal functionality Sample-AS. Other
variants of this approach fail for similar reasons.
To get around the above problem, we need to generate the masks in a completely distributed way. We achieve this by

using DistOT over the group G′ = G× Z2. The reduction proceeds as follows.

Reducing Sample-AS to DistOT

1. Each party Pm prepares an extended database (x′)m of size 2N such that for each n′ = (n, b) ∈ G′ we have (x′)mn′ = x
m
n ⊕b.

In addition, each Pm picks a random group element rm ∈R G andM random bits bm,m′ , 1 ≤ m′ ≤ M .
2. In parallel, the parties make M calls to DistOTG′ . In call i party Pi acts as sender with database (x′)i and every party Pm
(including Pi) lets n′m = (rm, bm,i). As a result, party PM obtains theM values (x

′)m(r1,b1,m)+···+(rM ,bM,m) = x
m
r1+···+rM ⊕(b1,m⊕

b2,m ⊕ · · · ⊕ bM,m) for 1 ≤ m ≤ M .
3. Each party Pm, m < M , outputs the M-tuple (bm,1, bm,2, . . . , bm,M). Party PM outputs the exclusive-or of
(bM,1, bM,2, . . . , bM,M)with theM-tuple obtained in Step 2 above.

Note that this reduction is totally non-interactive, namely there are no messages sent between the parties outside of the
black-box invocation of DistOT.

Proposition 3.3. The reduction described above is a non-interactive, (M − 1)-private black-box reduction from Sample-AS to
DistOT.

Proof. The correctness and privacy of the above reduction are similar to the reduction of Sample-ID to DistOT given in
Proposition 3.2.
For correctness, consider the jth output bit of theM parties for some 1 ≤ j ≤ M . The firstM − 1 of these output bits are

random and independent bits bm,j, 1 ≤ m ≤ M − 1, whereas the last bit is x
j
r1+···+rM ⊕ (b1,j ⊕ b2,j ⊕ · · · ⊕ bM,j) ⊕ bM,j =

xjr1+···+rM ⊕ (b1,j ⊕ b2,j ⊕ · · · ⊕ bM−1,j). Thus, the parties hold random additive shares of x
j
r1+···+rM as required.

Privacy follows from the fact that any strict subset of the parties learns no information about any of the xj or the selection
index r1 ⊕ · · · ⊕ rM . Thus, the view of any strict subset of the parties can be simulated by picking their random inputs
(rm, bm,j) as well as theM outputs of DistOT, if PM is corrupted, uniformly at random. �

Putting the reductions together, we obtain the following.

Theorem 3.1. For any polynomial-time computable M-argument function f , there is an efficient, constant-round, black-box
(M − 1)-private reduction of Sample-f to DistOT.

Proof. The theorem follows directly by combining Propositions 3.1 and 3.3. �
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Fig. 1. A reduction of DistOT to one-round OT.

3.3. Implementing distributed OT from PIR

It remains to implement DistOT. In this section we show a general construction based on (sublinear 1-out-of-N) OT
(equivalently, PIR).
We use the following notation. For n ∈ G we use x <<G n to denote the database x′ obtained from x by applying the

permutation induced by adding n to each index. That is, x′n′ = xn′+n, where addition is in the group G. Note that in the
default case where G = ZN the notation ‘‘<<’’ corresponds to the usual notation of a cyclic shift to the left. When there is
no ambiguity or when the choice of the group does not matter, we simplify notation by omitting the group subscript.

3.3.1. An ‘‘almost black-box’’ construction of DistOT using one-round PIR.
A one-round OT for a database xwith N entries, each of length `, with receiver interested in entry n, can be specified by

three algorithms: a randomized query algorithm Q (n, `, ρ) (where ρ is the receiver’s secret randomness), an answering
algorithm A(x, q) and a reconstruction algorithm R(a, n, `, ρ). We denote the length of the answers of A as α(`). (We
make the security parameter k and the size N of the database implicit in the above notation.) We note that the general
transformation from [46,13] gives a black-box construction of one-round sublinear-communication OT from one-round PIR.
In the following we present an efficient construction of a DistOT protocol from any one-round OT protocol. This

construction makes a black-box use of the query algorithm Q and the answering algorithm A, but requires a non-black-
box use of the reconstruction algorithm R. In particular, to obtain DistOT protocols with sublinear communication the
computational complexity of R should be sublinear; as mentioned before, this is required by some definitions of PIR (e.g., [7,
41]) and is achieved by all known constructions.
The DistOT protocol proceeds as follows. Each party Pm sends an OT query pointing to its input nm to the sender P1. Each

such query can be used to ‘‘obliviously shift’’ the database x by the amount nm; more precisely, the jth entry of a shifted
database y is simply the answer to the OT query on y << j. The result of each such oblivious shift may be viewed as being
encrypted using the key owned by the originator of the OT query. At the end of theM − 1 oblivious shifts, the sender holds
an (M−1)-iterated encryption of x << (

∑M
m=2 nm), where each entry is of size α

M−2(`) (where αi(·) is the function defined
by i iterations of α). The (n1)th entry of this array contains an iterated encryption of the output xn1+···+nM . This output is
privately computed and delivered to PM using a general-purpose MPC protocol. This step requires a non-black-box use of
the reconstruction algorithm R. The reduction is formally described in Fig. 1.
The correctness of the reduction is easy to verify. We now argue its privacy.

Proposition 3.4. The reduction described in Fig. 1 is (M − 1)-private.

Proof. The intuition for the privacywas already given above. Formally, we construct a simulator whose input consists of the
inputs of corrupted parties and, if PM is corrupted, the output xn1+···+nM . By a composition theorem for secure computation [9,
26], it suffices to describe the simulator in a hybridmodel in which Step 4 is replaced by an ideal function evaluation process
that directly delivers the output to PM . In thismodel simulating the view of any strict subset of parties is straightforward. The
OT random inputs ρi are picked uniformly at random. If PM is corrupted, then the message it receives in the ideal function
evaluation process is simply the output ofDistOT. Finally, if P1 is corrupted then theOT-query received fromany uncorrupted
party Pi is simulated as qi = Q (0, αM−i(`), ρi), where ρi is picked at random. Note that the only difference between the
simulation and the real protocol execution is that in the latter qi is generated by using the actual input ni instead of 0. The
security of the PIR protocol (together with a standard hybrid argument) imply that the simulated view is indistinguishable
from the real view. �

The complexity of the above reduction depends on the numberM of parties, the function α (namely the relation between
the size of the answers of the OT protocol and the length of the database entries `), and the computational complexity of the
OT reconstruction algorithm R. Ideally, we haveα(`) = `+k·polylog(N), where k is the security parameter. (Indeed, such an
OT protocol can be based on the Damgård–Jurik encryption scheme [14,41].) In this case, the length of the input to the MPC
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protocol run in Step 4 is `+O(M)k ·polylog(N). Thus, the protocol is efficient also for non-constantM . When the numberM
of parties is viewed as constant, theDistOT protocol can bemade communication-efficient even if, say,α(`) = poly(`, k)·Nε
for a small ε > 0. Such an OT protocol can be based on an arbitrary homomorphic encryption scheme [37,52].
The above leads to the following theorem.

Theorem 3.2. There is a constant-round (M − 1)-private reduction of DistOT to any one-round OT protocol (Q , A, R). The
reductionmakes a black-box use of the query generation algorithmQ and the answering algorithmA. The resultingDistOT protocol
has sublinear communication if one of the following two properties holds:

• The communication complexity and the circuit size of R are `+ k · polylog(N), or
• The number of parties M is constant, and the above complexities are poly(`, k) · No(1).

Remark 1. In the conference version of this paper [33], it was suggested to implement the final step of the above DistOT
protocol in a black-boxway by passing the iterated encryption of the output between the parties, letting each party in its turn
peel off its own layer of encryption using the OT reconstruction algorithm R. The underlying intuition is that it is safe to pass
these encryptions between the parties because they contain no more information than the output. However, this intuition
is flawed (and the protocol is insecure) for the following reason: Since the intermediate encryptions revealed during the
peeling process were all generated by P1, it is easy for P1 to collude with, say, P3 and completely break the privacy of P2.

3.3.2. A non-black-box construction of DistOT from arbitrary OT.
The previous construction was restricted to OT (or PIR) protocols with only one-round. We now sketch a simple non-

black-box approach for obtaining DistOT from an arbitrary OT protocol, which may involve multiple rounds of interaction.
Combined with PIR-based OT protocols from the literature, this approach yields constant-round DistOT protocols in which
the communication complexity is polylogarithmic in N and the computational complexity is quasilinear in N . However, the
protocols obtained via the previous ‘‘almost black-box’’ approach have a better concrete efficiency.
For general R-round OT, we use general-purpose constant-round MPC for distributing all the secret information held by

the OT receiver. More concretely, the reduction proceeds as follows.

Reducing DistOT to OT (non-black-box reduction)

1. Each party Pm, m ≤ M , picks a random additive share rm for the receiver’s randomness in the OT protocol. Party P1
additionally picks randomness ρ for the sender in the OT protocol. Parties P1 and PM initialize empty transcripts T1 and
TM , respectively.

2. For 1 ≤ h ≤ R the parties do the following:
• The parties use the constant-round OT-based (M − 1)-private MPC protocol guaranteed by Theorem 2.1 to compute
themessage sent by the OT receiver in Round h given input n

∑
j≤M nj, randomness r =

∑
j≤M rj and the transcript TM

ofmessages received so far. (The OT calls made by theMPC protocol are emulated by invoking the given OT primitive.)
The output Qh is revealed to P1, who appends it to the transcript T1.
• Party P1 locally computes its hth OT answer Ah based on its input x, its private randomness ρ, and the queries in T1
received in previous iterations. The answer Ah is sent to PM , who appends it to the transcript TM .

3. The parties use the constant-round (M − 1)-private MPC protocol guaranteed by Theorem 2.1 to compute the output of
the OT receiver given its input n =

∑
j≤M nj, randomness r =

∑
j≤M rj, and transcript Th of Rmessages received from the

OT sender. The output is revealed to PM .

The correctness of the above DistOT protocol follows in a straightforward way from that of the OT protocol and the MPC
protocol. We now argue its privacy.

Proposition 3.5. The above protocol is an (M − 1)-private realization of DistOT.

Proof. Similarly to proof of Proposition 3.4, it suffices to show simulation in a hybrid model in which the invocations of
the MPC protocol are replaced by ideal oracle calls to the corresponding functionality. Intuitively, privacy in this model
follows from the fact that a strict subset of the parties cannot learn any information about the effective randomness r of the
distributed receiver.
More precisely, let T ⊂ [M] be the set of corrupted parties. The simulator picks the random strings ri, i ∈ T , at random.

Suppose first that P1 is uncorrupted. If PM is also uncorrupted, then there is nothing else to simulate (since only P1 and PM
receive any messages). If PM is corrupted with output y, the simulator runs the OT simulator, feeding it with some default
value for the receiver’s (unknown) input and with y as the receiver’s output. The simulator returns the sequence TM of
messages from the OT sender to the OT receiver produced by the OT simulator, along with y as the final message received by
PM in the DistOT protocol. Note that the only difference between the simulation and the real protocol (in the hybrid model
discussed above) is that the receiver’s selection in the OT protocol is fixed to some default value instead of the correct value
i. The privacy of the OT protocol guarantees that the messages TM sent by the sender in the two cases are computationally
indistinguishable.
Suppose now that P1 is corrupted. If PM is uncorrupted, the simulator runs the sender’s OT simulator (with x as sender’s

input) and outputs the sender’s randomness ρ and sender’s incoming messages T1 produced by the simulator. If PM is also
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corrupted, the simulator can simply run the OT protocol (picking the sender and receiver’s randomness) and obtain ρ, T1, TM
from the output of this execution. Here too, the correctness of the simulator follows from the privacy of the OT protocol and
the independence between the randomness ri of parties in T and the receiver’s randomness r . �

The round complexity of DistOT is quadratic in the round complexity R of OT, since there are R iterations in which a
constant-round MPC protocol is invoked, and in each round of the latter protocol OT may be invoked. The communication
complexity of DistOT is dominated by the circuit size of the functionalities being computed via general-purposeMPC, which
is bounded by the total computational complexity of the OT receiver (measured in terms of circuit size). Note that we
only emulated the role of the receiver in a distributed way; thus, the communication complexity is not affected by the
computational complexity of the OT sender. We conclude that the following theorem holds.

Theorem 3.3. There is an (M−1)-private, non-black-box reduction ofM-partyDistOT to (two-party) OT satisfying the following
efficiency requirements. If OT has round complexity R and receiver computational complexity C, then the resultingDistOT protocol
has round complexity O(R2) and communication complexity poly(C,M).

4. Private approximation of vector combinations

In this section, we consider M ≥ 3 parties holding length-N vectors x = x1, . . . , xM who, ideally, want to compute
(and are willing to disclose to the other parties) y = f (x) for a combination function f being either the componentwise
sum (denoted y =

∑
m x
m), componentwise minimum (denoted y =

∧
m x
m), or componentwise maximum (denoted

y =
∨
m x
m) of their vectors. Because the lengthN of all vectors is presumed to be large, the parties settle for an approximate

size-t summary Y = g(y) for y (e.g., an estimate of the `2-norm, or an approximate t-term Fourier representation), but the
parties want very efficient protocols.
We show how to exploit the fact that the entire (long) vector y = f (x) may be leaked in order to obtain simple

private protocols for the above problems, in which the cryptographic overhead is at most polynomial in the size of the
small approximation and polylogarithmic in N . This should be contrasted with most previous protocols for sublinear-
communication private computation of approximations (as well as the results of Section 3), which given state-of-the-art
PIR require a cryptographic computational overhead which is linear in N . Typically, the linear overhead is unavoidable for
the stricter notion of privacy (private computation of an approximate function g(f (x))). As discussed, we avoid it by using
themore liberal definition of private approximation (namely computing g(f (x))with privacy with respect to f (x)). We note
that while our result for component-wise sumworks for vectors over any domain (as long as the elements are of polynomial
length), the main result for component-wise minimumworks only for positive valued vectors, and we show how to extend
it to work for domains including 0, such as Boolean values.
Technical outline. The results of this section are based on the observation that most (non-private) approximations from
the literature can be derived from short local randomized sketches that can be efficiently combined to yield the desired
approximation. In previous uses of such sketches in the context of private approximations, it was necessary to hide the
randomness that was used for generating the samples. Since in our setting we allow leaking the entire vector y, we can use
public (pseudo-)randomness for locally producing the sketches, and then obtain the output via generic secure computation
of simple functions (addition, maximum or minimum) on the short sketches.
All results in this section use the above outline to privately approximate different norms of the desired combination

vector, which are then used as in previous work to estimate the desired outputs. Specifically, we first show how to privately
sample a Gaussian random variable with parameter the `2-norm of the sum: the sketch uses a pseudorandom Gaussian
vector r , local computation of an inner product

∑
n rnx

m
n (over long vectors), followed by a generic secure computation of a

sum function of the short sketches. This can then be used to estimate the `2-norm of the sum, and consequently produce
several summaries of vector sum, exactly in the same way as in the non-private literature.
We then use similar techniques to privately sample an exponential random variable with parameter the harmonic mean

(−1-norm) of the vector minimum; here, the sketch uses a pseudorandom exponential vector r , local computation of∧
n rnx

m
n , and secure computation of a minimum function over the short sketches. This can then be used as in the non-

private literature to estimate the−1-norm of the vector minimum, and, consequently, the vector minimum itself. We also
show how to extend the above protocol for privately estimating the p-norm of the vector minimum for any p < 0. Finally,
we use an analogous technique to estimate the p-norm of the vector maximum for any p > 0 (in particular, estimating the
vectormaximum). The same technique holds for other estimators built from linear projections of the data, including [31,38].

4.1. Vector sums

Following the approach outlined above, we start by showing a protocol for sampling a Gaussian random variable with
variance the `2-norm of the vector sum.
Here and in the following, when we refer to a Gaussian or exponential random variable we actually refer to discrete

approximations of these variables, since we are limited to finite precision. In standard algorithmic contexts this distinction
is not important, but in the context of private approximations this might be a source of trouble—for example, the sum of two
discretized Gaussian random variables is typically distinguishable from a single discretized Gaussian random variable. Below



1742 Y. Ishai et al. / Theoretical Computer Science 410 (2009) 1730–1745

Fig. 2. A protocol for computing an additive sketch.

we give an efficient protocol that is perfectly private in the model of computation over the reals. In [17], we showed how to
convert such protocols into statistically private protocols in the model of computation over finite-precision arithmetic.

Proposition 4.1. There is an (M − 1)-private approximation of the sum function y = f (x) =
∑
m x
m, which generates a

Gaussian random variable with mean zero and variance
∑
n y
2
n, satisfying the following properties. The protocol uses two-party

OT in a black-box manner, has local computation complexity of NMO(1), communication MO(1), and round complexity O(1).

Proof. It is known [18] that, if each component rn of a vector r is a unit normal random variable, then
∑
n rnyn is a Gaussian

random variable Y withmean zero and variance equal to our desired value,
∑
n y
2
n. This was exploited in [31]. In particular, Y

together with r leak nothing else about the inputs xm beyondwhat is implied by their sum y. The sum
∑
n rnyn can in turn be

computed by first letting each party compute a local sum sm =
∑
n rnx

m
n and then using an (M − 1)-private constant-round

protocol (with black-box use of two-party OT) for adding up the M (short) integers sm (e.g., the general-purpose private
protocol of [3]). The protocol is described in Fig. 2.
It is straightforward to confirm that the communication of the protocol in Fig. 2 is as claimed, because the secure-sum

protocol is applied toM numbers sm, and not length-N vectors. It is also straightforward to confirm that the protocol does not
leak anything beyond y to any subset of parties, as long as the underlying general-purpose private sum protocol on the short
sketches is indeed private. Specifically, a simulator on input y samples r , computes

∑
n rnyn, and then invokes the simulator

of the underlying private computation protocol to simulate the transcript. �

4.1.1. Vector sum summaries
From a small number of samples of a Gaussian random variable Y with mean zero, the variance

∑
n y
2
n can be estimated

with high accuracy. This is because, if Z is a sample of Y 2, then E[Z] =
∑
m y
2
n and var(Z) ≤ O(E

2
[Z]). Thus the average

W of O(1/ε2) independent copies of Z is, with probability at least 7/8, in the range (1 ± ε)
∑
n y
2
n. If we take a median of

O(log(1/δ)) independent copies ofW , the result is in the range (1± ε)
∑
n y
2
n with probability at least 1− δ.

Note that
(∑

n y
2
n

)1/2 is itself a useful summary of y. It is also possible to use these and similar sketches of y to
estimate other quantities, such as individual components yn, t-term heavy-hitter, Fourier, wavelet, piecewise-constant,
etc., approximation; `2 error within (1 + ε) of optimal [1,36,43,25,24,8,15]. For example, yi can be approximated [1] as
Yi = ri

∑
n rnyn since E[Yi] = yi and E[Y

2
i ] ≤ O

(∑
n y
2
n

)
; as above, taking a median of O(log(1/δ)) means of O(1/ε2)

independent copies of Yi yields an estimate in the range yi ± ε
√∑

n y2n with probability at least 1 − δ. As for privacy, we
note that any approximation built from a sketch of y leaks at most y and does not otherwise depend on the individual vector
contributions xm. Since our protocol in Fig. 2 is private with respect to y, it follows that any other summary produced from
the output of the protocol (independent of the inputs) is also private with respect to y.

4.2. Vector minima

In this section, we generalize the above protocol to the componentwise minimum instead of the componentwise sum.
Here, instead of approximating the quantity

∑
n y
2
n, we approximate the harmonicmean, or its inverse,

∑
n y
−1
n . See, e.g., [11]

for example uses in algorithms of estimating the parameter of an exponential random variable. (We also give a toy example
below.)
Recall that

∧
denotes the minimum. We have:

Proposition 4.2. There is an (M− 1)-private approximation of the minima function y = f (x) =
∧
m x
m over vectors of positive

integers, which generates an exponential random variable with parameter
(∑

n y
−1
n

)
, satisfying the following properties. The

protocol uses two-party OT in a black-box manner, has local computation complexity of NMO(1), communicationMO(1), and round
complexity O(1).

Proof. It is known [18] that, if each component rn of a vector r is a unit exponential random variable, then
∧
n rnyn is an

exponential random variable Y with parameter equal to our desired value of
∑
n y
−1
n . In particular, Y together with r leak

no more than y.
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Fig. 3. A protocol for computing a minimum sketch.

The parties use the protocol of Fig. 3. The sub-problem for which a secure protocol is needed is computing the minimum
of M short integers, for which efficient (M − 1)-private protocols exist (e.g., using the general-purpose constant-round
protocol of Theorem 2.1). Otherwise, it is straightforward to check, in a way completely analogous to the protocol in Fig. 2,
that all the desired properties of this protocol hold. �

As above, from O(log(1/δ)/ε2) of samples of an exponential random variable X , the parameter can be estimated
accurately. This is because the parameter is E[X] and var(X) ≤ O(E2[X]).

4.3. Extensions to vector maxima and other approximations

Note that the harmonic mean of y is the −1st p-norm of y. We can use these techniques instead to estimate other p-
norms, for p < 0, as follows. Party m holds xm and takes the −pth power of each component, getting (xm)−p. Then the
parties proceed as above to estimate the−1st norm of

∧
m(x

m)−p, i.e.,
∑
n
∧
m(x

m
n )
p
=
∑
n

(∧
m x
m
n

)p
=
∑
n y
p
n. Finally, the

parties take the pth root, getting
(∑

n y
p
n
)1/p. Here we have exploited the fact that, for p < 0 and any two positive numbers

a and b, we have (a∧ b)−p = a−p∧ b−p. Similarly, for p > 0, we can estimate the pth norm of the componentwisemaximum
of the xm, by observing that, for p > 0, we have (a∨ b)−p = a−p ∧ b−p, where∨ denotes the maximum. This was presented
in [53]. In [53], it is also shown how to use (several independent copies of) an exponential random variable Y with parameter(∑

n y
−1
n

)
to estimate other quantities, such as individual components yi for i chosen after the creation of Y .

Additional advantages of the min-sketch over the sum-sketch can be found in the Appendix. Specifically, we show that
rounding can be done on min-sketches without destroying privacy, whereas rounding destroys privacy in general for sum-
sketches. Furthermore, min-sketches fit nicely into the order- and duplication-insensitive framework of [48]; i.e., when
combining themin-sketches of several parties by taking a minimum, it does not matter if some party’s contribution is taken
more than once. By contrast, a sum-sketch is ruined if a party contributes twice. (The order in which the contributions are
taken is immaterial for both min- and sum- sketches.)
As an illustration, we briefly sketch an application of these techniques to the private approximation of set intersection

size. 14 There areM parties and themth party holds the 0/1-valued, length-N vector zm, regarded as the characteristic vector
of a set over a universe of size N . We assume each set has size N/4. The goal is to estimate the size of the intersection of the
sets, i.e.,

∑
n
∧
m z
m
n . To proceed, the parties each form a vector x

m with xmn = z
m
n +1, so x

m takes values in {1, 2}. Let y denote∧
m x
m. Then yn = 2 if all sets contain n, and yn = 1 otherwise, so that

∑
n y
−1
n = N − |I|/2, where I is the set intersection.

The parties can use the above protocol with cost polynomial in 1/ε to estimate |I| up to εN additively, leaking only I itself.
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Appendix. More simple sketch-based data mining

A.1. Rounding

We now address a particular efficiency available to min-sketches. Some protocols for computing the minimum of input
numbers have cost that depends on the number of bits in the input. In our approximate setting, it is often possible to round

14 There are other solutions to this problem that aremore straightforward. For example, one party broadcasts in the clear a random index into the vectors
and then the parties do a private AND on just thoseM bits; the parties can repeat the protocol to drive down distortion and failure probability.
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input numbers z to dze, a power of (1+ ε) for some parameter ε. In the case of sum-sketches, this kind of rounding destroys
privacy [17]. For min-sketches, however, privacy is preserved.
For example, consider exponential random variables, which are (

∧
, `−1)-stable. Without the rounding, our sketch

is
∧
m
∧
n x
m
n rn, an exponential random variable, where rn are exponential random variables. Note that the process of

rounding up to a power of (1+ ε) (denoted here by d·e) distributes over minimization, so it follows that
∧
m

⌈∧
n x
m
n rn
⌉
=⌈∧

m
∧
n x
m
n rn
⌉
=
⌈∧

n rn
∧
m x
m
n

⌉
=
⌈∧

n rnyn
⌉
, a value that depends only on y, which is allowed to leak.

A.2. Loosely connected network

In the non-private situation, min-sketches are advantageous in loose networks because they are (order- and) duplication-
insensitive (ODI) as first studied for sensor networks in [48]. That is, supposeM parties are in a network with less-than-full
connectivity, such as a sensor network. To compute theminimum ofM numbers, parties can simply broadcast their number
to whichever other parties are in earshot. When a party hears a broadcast, the party replaces a currently stored value with
theminimumof that value and the broadcast value. Such a protocol is correct provided all the relevant parties are connected
and the number of rounds is at least twice the diameter of the graph. Precise connectivity information is not needed by the
algorithm or its analysis, since it does not matter if a party’s contribution counts more than once toward the final sketch.
Note that the sum of contributions cannot be computed in the straightforward way in this model, since we do not want a
contribution to count more than once. Nevertheless, an approximation algorithm for the sum of non-negative numbers was
presented in [48] based on sketches that are ODI.
In our context, we note that there are privacy advantages to ODI sketches for loosely networked parties. Each party only

needs to know about its neighbors and the diameter of the network; global connectivity information is not needed and does
not leak in the protocol.
Finally, we note that some security guarantees must necessarily be weakened in the loose-connectivity model. For

example, if the removal of a small set of one or more vertices disconnects the graph, then the corresponding set of parties
can mount a denial of service attack, at the very least. This will be the subject of future work. In this paper, our goal is to
reduce the problem of private approximate computation on large data vectors to the problem of private exact computation
on short sketches; this reduction holds in an ODI-preserving way in the loose connectivity model for min-sketch-based
approximation, but not immediately for sum-sketch-based approximation.
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