
Secure Multiparty Computation of Approximations

JOAN FEIGENBAUM

Yale University

YUVAL ISHAI

Technion

TAL MALKIN

Columbia University

KOBBI NISSIM

Ben-Gurion University

MARTIN J. STRAUSS

University of Michigan

AND

REBECCA N. WRIGHT

Stevens Institute of Technology

A preliminary version of this work appeared in Proceedings of 28th International Colloquium on
Automata, Languages and Programming (ICALP), 2001 [Feigenbaum et al. 2001]. Part of this work
was done while all of the authors were at AT&T Labs—Research. Partial support for Y. Ishai, K.
Nissim, and R. N. Wright was provided by DIMACS.

J. Feigenbaum was supported in part by ONR grant N00014-01-1-0795 and NSF grant OCR-0331548;
Y. Ishai was supported in part by grant 36/03 from the Israel Science Foundation; T. Malkin was sup-
ported in part by NSF grant CCF-0347839; K. Nissim’s work was partially done while at the Weizmann
Institute; M. J. Strauss was supported in part by NSF grant DMS-0354600; R. N. Wright was sup-
ported in part by NSF grant CCR-0331584.

Author’s addresses: J. Feigenbaum, Computer Science Department, Yale University, New Haven,
CT 06520, e-mail: joan.feigenbaum@yale.edu; Y. Ishai, Computer Science Department, Tech-
nion, Haifa 32000 Israel, e-mail: yuvali@cs.technion.ac.il; T. Malkin, Department of Com-
puter Science, Columbia University, New York, NY 10027, e-mail: tal@cs.columbia.edu; K.
Nissim, Department of Computer Science, Ben-Gurion University, Beer Sheva, 84105, Israel, e-mail:
kobbi@cs.bgu.ac.il; M. J. Strauss, Departments of Math and EECS, University of Michigan, Ann
Arbor, MI 48109, e-mail: martinjs@umich.edu; R. N. Wright, Stevens Institute of Technology,
Department of Computer Science, Hoboken, NJ 07030, e-mail: rwright@cs.stevens.edu.

Permission to make digital or hard copies of part or all of this work for personal or classroom use is
granted without fee provided that copies are not made or distributed for profit or direct commercial
advantage and that copies show this notice on the first page or initial screen of a display along with the
full citation. Copyrights for components of this work owned by others than ACM must be honored.
Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers, to redistribute
to lists, or to use any component of this work in other works requires prior specific permission and/or
a fee. Permissions may be requested from Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701,
New York, NY 10121-0701 USA, fax +1 (212) 869-0481, or permissions@acm.org.
C© 2006 ACM 1549-6325/06/0700-0435 $5.00

ACM Transactions on Algorithms, Vol. 2, No. 3, July 2006, pp. 435–472.

436 J. FEIGENBAUM ET AL.

Abstract. Approximation algorithms can sometimes provide efficient solutions when no efficient
exact computation is known. In particular, approximations are often useful in a distributed setting
where the inputs are held by different parties and may be extremely large. Furthermore, for some
applications, the parties want to compute a function of their inputs securely without revealing more
information than necessary. In this work, we study the question of simultaneously addressing the
above efficiency and security concerns via what we call secure approximations.

We start by extending standard definitions of secure (exact) computation to the setting of se-
cure approximations. Our definitions guarantee that no additional information is revealed by the
approximation beyond what follows from the output of the function being approximated. We then
study the complexity of specific secure approximation problems. In particular, we obtain a sublinear-
communication protocol for securely approximating the Hamming distance and a polynomial-time
protocol for securely approximating the permanent and related #P-hard problems.

Categories and Subject Descriptors: F.2 [Analysis of Algorithms and Problem Complexity]: Non-
numerical Algorithms and Problems

General Terms: Security

Additional Key Words and Phrases: Privacy, sublinear communication, distributed data processing

1. Introduction

There are an increasing number and variety of real-world applications that collect a
massive amount of data and wish to make use of it. For example, massive data sets
arise in physical sciences such as biology and astronomy, in marketing, in network
operations, and in Web searches. The search for efficient and effective data mining
algorithms is an important emerging area of research (e.g., see DIMACS [1997–
1999] and the many activities described therein.)

Unfortunately, many useful functions are expensive to compute. Even functions
that are efficiently computable for moderately-sized data sets are often not effi-
ciently computable for massive data sets. For example, even a quadratic algorithm
cannot generally be considered practical on inputs consisting of a terabyte of data;
such data sets are now routinely generated daily.

In addition to the efficiency of a computation, an important concern is its security.
In a distributed setting, the pieces of a distributed data set may be controlled by
different parties who wish to collaborate in order to compute some function of
their data without fully revealing their piece of the data to the other parties. To that
end, the parties may want to compute a function of their inputs securely, that is,
so that no party learns anything about the others’ inputs except what is implied by
her own output. For example, rival Internet service providers often strike peering
agreements, in which each carries the other’s Internet traffic at no cost as long as
the characteristics of the traffic carried by each peer for the other are comparable.
The prospective peers each have data sets describing the characteristics of their
own traffic and they would like to verify the similarity of these data sets without
revealing more than they have to. Several recent papers have considered the problem
of privacy-preserving data mining [Agrawal and Srikant 2000; Lindell and Pinkas
2002; Canetti et al. 2001], recognizing that it is often desirable to perform data
mining without revealing unnecessary information about the data.

Separately, efficiency and privacy concerns have been previously addressed. On
the one hand, when the cost of an exact computation of a function f is too high,
the parties may use an approximation f̂ to f . In some cases, the communication
of only a small random sample from each part of a data set stored in remote pieces
suffices for an approximation. In other cases, the communication of the result
of a local computation depending on the entire local data set is sufficient. In both

Secure Multiparty Computation of Approximations 437

situations, the approximate computation typically requires less communication and
less computation than an exact computation on the original data set. On the other
hand, secure multiparty computation (initiated by Yao [1982], Goldreich et al.
[1987], Ben-Or et al. [1988], and Chaum et al. [1988]) allows a group of parties to
compute a function f without revealing unnecessary information.

We address both concerns simultaneously. We construct approximation algo-
rithms that are more efficient than exact computation and that maintain the privacy
of the data. Note that the straightforward approach of simply computing an approx-
imation f̂ via a secure multiparty computation does not work because even a secure
computation of f̂ may leak information through its output. That is, there could be
information about players’ inputs that is deducible from the output of f̂ that is
not deducible from the output of f . To illustrate this, consider an integer-valued
function f and an approximation f̂ to f that outputs f (x1, . . . , xn) with the last
bit possibly flipped so that the last bit is 0 if x1 is even, and 1 if x1 is odd. Then
f̂ (x1, . . . , xn) is a good approximation but unnecessarily reveals the parity of x1.

1.1. OUR WORK. In this article, we provide definitions of secure approxi-
mate multiparty computation that disallow the problems of information leakage
discussed, and we present secure approximation protocols for several natural
functions.

For massive data sets, distance functions are important because they give a mea-
sure of similarity between two data sets. For example, telephone companies may
want to compute joint statistics on their calling data, ISPs may want to verify simi-
lar peering traffic characteristics, and Web search companies may want to compare
their images of the Web. Because the exact distributed computation of the Ham-
ming distance and similar distance functions requires linear communication, there
has been much recent work on sublinear-communication distance approximations
(while maintaining polynomial computation, low storage, and ideally only a sin-
gle pass over the raw data). For example, several recent papers [Alon et al. 1999;
Feigenbaum et al. 2002; Indyk 2000] present algorithms for efficiently approximat-
ing L p distances between two massive data sets. These approximations, however,
suffer the kind of information leakage previously described . One of the main tech-
nical contributions of this article is a secure two-party protocol for approximating
the Hamming distance between two n-bit strings, requiring Õ(n1/2) communication
bits. In a relaxed model allowing offline interaction before the parties know their
inputs, we also give a secure approximation for the L2 distance and the Hamming
distance, with online communication at most polynomial in log(n) log(1/δ)k/ε,
where δ is the failure probability, ε is a distortion parameter, and k is a security
parameter.1

The techniques we use for the Hamming distance protocol have some indepen-
dently interesting applications to communication complexity. In particular, they
allow two parties to decide whether the Hamming distance between their inputs is
at most d by each sending a randomized message of length O(d · polylog d) to a
referee. This solves an open problem of Yao [2003] as to whether communication
complexity better than O(d2) is possible.2

1 All logarithms in this article are base 2, unless otherwise specified.
2 This application of our techniques was brought to our attention by Ziv Bar-Yossef [personal com-
munication 2004], who, in joint work with T. S. Jayram and Ravi Kumar, has independently obtained
a similar solution to Yao’s [2003] problem.

438 J. FEIGENBAUM ET AL.

Approximation algorithms are also useful in the setting where the data involved is
only moderate in size but the function to be computed is computationally hard. We
also consider this case and provide a secure approximation to a natural and important
#P-complete problem, the permanent. We further show how our techniques can be
applied to a more general class of problems that have known (nonsecure) Monte
Carlo Markov chain-based approximations.

To summarize, the main contributions of this article are as follows:

—definitions of secure multiparty approximations;

—a sublinear-communication solution for the Hamming distance;

—polynomial-time solutions to natural #P-hard problems including the permanent.

1.2. RELATED WORK. There are several very communication-efficient algo-
rithms for approximating the L p or Hamming distance (e.g., Kushilevitz et al.
[2000], Alon et al. [2002], Feigenbaum et al. [2002], and Indyk [2000]). These
results, however, do not translate into efficient secure approximation protocols as
is discussed further in Section 5.

The approach of constructing secure sublinear-communication protocols was
initiated in the context of private information retrieval [Chor et al. 1998] and further
studied both in other specific contexts (e.g., Lindell and Pinkas [2002]) and in
more general contexts [Naor and Nissim 2001; Canetti et al. 2001]. Naor and
Nissim [2001] present a general methodology for transforming protocols in the
communication complexity model into secure protocols with a low communication
overhead. However, the secure protocols obtained by applying their methodology
to existing (nonsecure) low-communication protocols for approximate Hamming
distance yield solutions requiring super-polynomial computation.

Following the publication of a preliminary version of our work [Feigenbaum et al.
2001], Halevi et al. [2001] consider secure approximations of NP-hard functions
and show some negative results. Specifically, there exist natural NP-hard functions,
such as the size of the minimum vertex cover in a graph, which do not admit nontriv-
ial private approximation, although they do admit good approximation algorithms
without the security restriction. They also present a relaxation of our private ap-
proximation definition that allows the leakage of very little information. Under this
definition, they demonstrate that every function admitting a deterministic approxi-
mation also admits an almost private approximation of related quality. In particular,
the size of the minimum vertex cover can be approximated within factor 4 leaking
a single bit of information.

Freedman et al. [2004] gave an efficient private approximation protocol for com-
puting the intersection size of two databases. One of their protocols uses a gener-
alized version of our Private-Sample-XOR protocol (Section 5).

Indyk and Woodruff [2006] recently obtained an elegant private protocol for
approximating the L2 distance between two vectors, requiring only a polylogarith-
mic amount of communication. Their protocol generalizes and improves on our
Õ(n1/2)-communication protocol for the Hamming distance (Section 5).

Beimel et al. [2006] formalized a more general notion of private approximations
that applies to search problems such as finding an approximate vertex cover in
a graph. Their privacy requirement is roughly that the approximation algorithm
should not enable distinguishing two instances that have (exactly) the same set
of optimal solutions. Their main result is that even under this seemingly weak
requirement, vertex cover and max-3-sat do not admit private approximation.

Secure Multiparty Computation of Approximations 439

Another approach to privacy has received increasing attention since the work
of Agrawal and Srikant [2000]. Here, the input to, or outcome of, a computation
is perturbed with the goal of hiding sensitive personal data while allowing some
utility. Although perturbation may be a tool for achieving private approximations
(according to our definitions), this approach is very different from ours. In Section 4,
we discuss the limitations of some types of perturbation—rounding and adding
random noise—with respect to our notion of privacy.

1.3. ORGANIZATION. We provide background definitions for approximations
and secure multiparty computation in Section 2. We give our definitions of secure
multiparty approximations in Section 3 with additional discussion in Appendices A
and B. In Section 4, we discuss rounding and when it is and is not useful for providing
private approximations. We present our main private approximation protocols in
Section 5 (Hamming distance and L2 distance) and Section 6 (#P-hard problems).

2. Background

In this section, we present background and notation for approximation and secure
multiparty computation. Throughout this article, n serves as an input length param-
eter. We measure the complexity of our protocols, their quality of approximation,
and the success of an adversary attacking them as functions of n.

A function f : N → [0, 1] is negligible if it is asymptotically smaller than any
inverse polynomial, that is, f (n) ∈ n−ω(1). The function f is overwhelming if 1− f
is negligible. We use the standard asymptotic notation Õ(·) in a slightly nonstandard
way. By default, an assertion of the form C(n) ∈ Õ(c(n)) should be read as: “C(n) ∈
O(c(n) · nγ) for an arbitrarily small constant γ > 0”. However, it is often the case
that the stronger, more standard, assertion C(n) ∈ O(c(n)·logO(1) n) holds. In fact, if
our default cryptographic assumptions are replaced by stronger ones, then all of the
occurrences of Õ(c(n)) in this article can be replaced by O(c(n) logO(1) n). See the
discussion after Theorem 2.4 for a more concrete discussion of these assumptions.

A distribution ensemble D = {Dx}x∈X is a family of probability distributions
indexed by some infinite set X of binary strings. We sometimes take X = {1n :
n ∈ N} in which case the indices in X are viewed as natural numbers.

Definition 1. Two distribution ensembles D = {Dx}x∈X and D′ = {D′
x}x∈X

are statistically indistinguishable, (written D
s≡ D′), if there is a negligible function

μ(·) such that, for every x ∈ X ,

SD(Dx , D′
x) < μ(|x |),

where SD denotes statistical distance defined by SD(Z , Z ′) = 1
2

∑
a | Pr(Z =

a) − Pr(Z ′ = a)|.
Ensembles D and D′ are computationally indistinguishable, (written D

c≡ D′), if
for every family {Cn} of polynomial-size circuits there exists a negligible function
μ(·) such that for every x ∈ X of length n,

| Pr(Cn(Dx) = 1) − Pr(Cn(D′
x) = 1)| < μ(n).

2.1. APPROXIMATIONS. An approximation requirement is any binary relation
P between a deterministic real-valued function f , called the target function, and
a possibly randomized real-valued function f̂ , called the approximation function.

440 J. FEIGENBAUM ET AL.

The relation P defines which functions are considered good approximations. We
say that f̂ is a P-approximation to f if P(f, f̂) holds. We say that an algorithm or
a protocol P-approximates f if it outputs some P-approximation of f . A standard
requirement, referred to as 〈ε, δ〉-approximation, is defined as follows.

Definition 2. We say that f̂ is an 〈ε, δ〉-approximation of f if for all inputs x,

Pr[(1 − ε) f (x) ≤ f̂ (x) ≤ (1 + ε) f (x)] ≥ 1 − δ,

where the probability is over the randomness of f̂ .

In this article, we primarily refer to 〈ε, δ〉-approximations. In an 〈ε, δ〉-
approximation, both ε and δ may be functions of the input length parameter n.
We often omit the failure probability δ in which case it should be understood to be
negligible.

The following folklore lemma, based on a Chernoff-bound argument, is used in
several of our proofs. Informally, it says that if a random variable X has variance
small enough compared with its mean, then the mean of X can be estimated effi-
ciently through multiple samples of X . We give the proof for completeness as we
were not able to find a proof of this exact result in the literature.

LEMMA 2.1. Let X be a real-valued random variable and suppose that, for
some c, E[X2] ≤ cE2[X]. Then, for any ε, δ > 0, there exists a random variable Z
such that Pr(|Z − E[X]| ≥ εE[X]) ≤ δ, and Z is a function of O(c · log(1/δ)/ε2)
independent samples of X.

PROOF. Let Y be the average of 8c/ε2 independent copies of X . Then E[Y] =
E[X] and

var[Y] = ε2/(8c)var[X]

≤ ε2/(8c)E[X2]

≤ ε2 E2[X]/8.

By the Chebychev inequality, Pr(|Y − E[X]| > εE[X]) ≤ var(Y)/ε2 E2[X] ≤
1/8. Let Z be the median of m = 3 log(1/δ) independent copies of Y . Then
|Z − E[X]| ≥ εE[X] if and only if for at least half the Yi ’s, |Yi − E[X]| ≥ εE[X].
Let Ai = 1 if |Yi − E[X]| ≥ εE[X] and Ai = 0 otherwise; let A = ∑

Ai . For
each i , E[Ai] ≤ 1/8, so E[A] = m/8, and it follows that

Pr(|Z − E[X]| ≥ εE[X]) = Pr
(

A >
m

2

)
= Pr

(
A > (1 + 3)

m

8

)

≤
[

e3

(1 + 3)(1+3)

] m
8

(1)

≈ 1.374−m

≤ 2−m/3

= δ,

where (1) follows from a version of the Chernoff bound (e.g., see Alon and Spencer
[1992]).

Secure Multiparty Computation of Approximations 441

2.2. SECURE MULTIPARTY COMPUTATION. Secure multiparty computation al-
lows two or more parties to evaluate a specified function of their inputs while hiding
their inputs from each other. When formally defining security, it is convenient to
think of an adversary that tries to gain as much advantage as it can by corrupting
at most t parties during the execution of the protocol. Security is then defined by
requiring that whatever the adversary achieves in a real-life execution of the pro-
tocol, it can efficiently simulate in an ideal process in which a trusted party is used
to evaluate the function. Thus, the protocol prevents the adversary from gaining an
extra advantage over what it could have gained in an ideal solution.

There are several notions of security with various degrees of strength (e.g.,
Goldreich [2004], Canetti [2000], Beaver [1991] and Micali and Rogaway [1991]).
In this work, we mostly deal with the special case of private computation which as-
sumes that the adversary is passive (also called semi-honest or honest-but-curious)
and cannot modify the behavior of corrupted parties. In particular, private compu-
tation is only concerned with the information learned by the adversary and not with
the effect misbehavior may have on the protocol’s correctness. However, both our
general definitions and our results also apply to the case of an active (or malicious)
adversary who can modify the corrupted parties’ behavior arbitrarily. (See some
further discussion about this at the end of this section.) In the sequel, we use the
term secure when the discussion applies to both the active and the passive case and
the term private for the passive case only.

Another distinction between different notions of security is the extent to which
the transcript produced by the ideal-process adversary should resemble the one
produced by the real-life execution of the protocol. The three standard variants are
perfect, statistical, and computational indistinguishability. These naturally define
corresponding notions of perfect, statistical, and computational security. (In the
former two cases, the adversary is assumed to be computationally unbounded,
whereas in the latter case it is bounded to polynomial time.) In this work, we focus
mainly on the two-party case in which only computational security can be achieved.
However, our definitions and some of our results apply to the other variants as
well.

We next define private two-party computation closely following the definition of
Goldreich [2004]. An extension of this definition to the multiparty case and to the
case of security against malicious parties is sketched in Appendix A.

Functionality. A two-party computation task is specified by a (possibly ran-
domized) mapping g from a pair of inputs (a, b) ∈ {0, 1}∗ × {0, 1}∗ to a pair of
outputs (c, d) ∈ {0, 1}∗ × {0, 1}∗. We refer to such a mapping as a functionality (or
sometimes simply as a function). Without loss of generality, we assume that the
inputs a, b are both of the same length n; if this is not the case, padding may be
applied. (This convention allows us to use the input length as a security parameter.)
We sometimes refer to single-output functionalities in which case the two outputs
of the corresponding two-output functionality g are assumed to be identical.

Protocol. A two-party protocol is defined by a pair of probabilistic polynomial-
time interactive algorithms π = (πA, πB). The protocol π is executed as follows.
Initially, Alice, who operates according toπA, receives an input a and a random input
rA, and Bob, who operates according to πB , receives an input b and a random input
rB . We assume that |a| = |b| = n. The execution then proceeds by synchronous
rounds where, at each round, each party may send to the other party a message

442 J. FEIGENBAUM ET AL.

as specified by π , based on her input, her random input, and messages received
in previous rounds. At each round, each party may decide to terminate and output
some value based on her entire view (consisting of her input, random input, and
received messages).

Private computation. For defining the privacy of π with respect to a function-
ality g, it is convenient to use the following notation. Consider the probability space
induced by the execution of π on input x = (a, b) (induced by the independent
choices of the random inputs rA, rB). Let viewπ

A(x) (respectively, viewπ
B(x)) denote

the entire view of Alice (respectively, Bob) in this execution, including her input,
random input, and all messages she has received. Let outputπA(x) (respectively,
outputπB(x)) denote Alice’s (respectively, Bob’s) output. Note that the four random
variables are defined over the same probability space.

Definition 3. Let X be the set of all valid inputs x = (a, b) (i.e., pairs of
equal-length binary strings). A protocol π is a private protocol computing g if the
following properties hold:

Correctness. The joint outputs of the protocol are distributed according to
g(a, b). Formally,{(

outputπA(x), outputπB(x)
)}

x∈X
≡ {(gA(x), gB(x))}x∈X ,

where (gA(x), gB(x)) is the joint distribution of the outputs of g(x).

Privacy. There exist probabilistic polynomial-time algorithms SA,SB , called
simulators, such that:

{(SA(a, gA(x)), gB(x))}x=(a,b)∈X
c≡ {(

viewπ
A(x), outputπB(x)

)}
x∈X

{(gA(x),SB(b, gB(x))}x=(a,b)∈X
c≡ {(

outputπA(x), viewπ
B(x)

)}
x∈X

This privacy requirement asserts that whatever the real-life adversary learns by
(passively) corrupting a party, an ideal-process adversary can simulate by only
learning the input and output of that party. Note that the definition does not consider
the view of the corrupted party alone but rather concatenates this view to the output
of the uncorrupted party. When the functionality g is randomized, this serves to
ensure that the adversary does not learn additional information about the output
of the other party; for example, via correlations present in the real-life process but
absent in the ideal process.

Protocol composition. In order to design and analyze private protocols in a
modular way, it is convenient to rely on the following composition paradigm. First,
design a high-level oracle-aided protocol π f |g, which is a private protocol for f
in which the parties may call a trusted party (oracle) that computes a (presumably
simpler) functionality g. Then, substitute each oracle call in π f |g by an invocation
of a private protocol π g computing g. This approach is justified by the following
composition theorem.

THEOREM 2.2 [CANETTI 2001; GOLDREICH 2004]. Let f, g be (deterministic
or randomized) two-party functionalities. Let π f |g be a private oracle-aided proto-
col for f which uses oracle calls to g, and let π g be a private protocol for g. Let π f

be the protocol obtained from π f |g by independently invoking π g for implementing
each oracle call to g. Then π f is a private protocol for f .

Secure Multiparty Computation of Approximations 443

Feasibility results. The first general feasibility results for secure computation
were obtained by Yao [1982] and by Goldreich et al. [1987]. The following theorem
relates the complexity of privately computing a functionality g to the circuit size
of g.

THEOREM 2.3 [YAO 1982]. Let C = {Cn} be a uniform family of (determin-
istic or probabilistic)3 Boolean circuits of size s(n), s(n) ≥ n, where the input to
Cn is viewed as a pair of n-bit strings and its output as a pair of strings. Let g
denote the functionality computed by the family C. Then, assuming the existence
of enhanced trapdoor permutations4 (respectively, homomorphic encryption
schemes5), g can be privately computed in three (respectively, two) rounds with
Õ(s(n)) bits of communication.

Theorem 2.3 can also be generalized (with a larger, but still constant, number of
rounds) to the case where the adversary is active [Lindell 2003] and to computations
involving more than two parties [Beaver et al. 1990; Katz et al. 2003; Pass 2004].
In the case of constant-round multiparty computation with no honest majority, one
needs to additionally assume the existence of collision-resistant hash functions.

A particularly useful private computation task is that of oblivious transfer [Rabin
1981; Even et al. 1985], defined as follows.

Definition 4 (Oblivious Transfer). An n-choose-1 oblivious transfer protocol
(with security against a passive adversary), abbreviated as

(n
1

)
-OT, is a private pro-

tocol for the following deterministic functionality between two parties: a sender
and a receiver. The sender’s input is an n-bit string x and the receiver’s input is an
index i ∈ [n]. The receiver outputs the bit xi , and the sender has no output.

By Theorem 2.3,
(n

1

)
-OT can be implemented with nearly linear communication.

However, the
(n

1

)
-OT functionality also admits much more efficient solutions:

THEOREM 2.4 [KUSHILEVITZ AND OSTROVSKY 1997; GERTNER ET AL. 2000;
STERN 1998; MANN 1998; NAOR AND PINKAS 2005]. Assuming the existence of
a homomorphic encryption scheme, there is a 2-round

(n
1

)
-OT protocol with Õ(1)

bits of communication.

On complexity vs. assumptions. As noted at the start of this section, the asymp-
totic complexity notation Õ(c(n)) should be read by default as O(c(n) · nγ) for an
arbitrarily small constant γ > 0. In both Theorem 2.3 and Theorem 2.4, Õ(c(n))
can be read as O(c(n) · logO(1) n) if stronger cryptographic assumptions are made.
Specifically, in Theorem 2.3, it suffices to assume the existence of enhanced trap-
door permutations (or homomorphic encryption) secure against subexponential
adversaries, and, in Theorem 2.4, it suffices to assume specific number-theoretic
assumptions from Cachin et al. [1999], Gentry and Ramzan [2005], or Lipmaa

3 A probabilistic circuit includes, in addition to the standard inputs, a polynomial number of random
inputs.
4 See Goldreich [2004 Appendix C.1] of for a definition of enhanced trapdoor permutations.
5Loosely speaking, a semantically secure encryption scheme [Goldwasser and Micali 1984] is said to
be homomorphic if (1) the plaintexts are taken from some group (H, +); (2) from encryptions of group
elements h1, h2, it is possible to efficiently compute a random encryption of h1 + h2. Homomorphic
encryption can be based on a variety of intractability assumptions, including the Quadratic Residuosity
Assumption and the Decisional Diffie-Hellman assumption.

444 J. FEIGENBAUM ET AL.

[2005]. (The latter assumptions are required for implementing
(n

1

)
-OT with poly-

logarithmic communication.) Because the efficiency improvement resulting from
the stronger assumptions would not be very significant for our purposes, we use
the more conservative assumptions by default.

On passive vs. active adversaries. For simplicity, in this article, we mainly focus
on the case of security against a passive adversary. Using a theorem from Naor and
Nissim [2001], this does not compromise generality: any protocol with security
against a passive adversary can be upgraded into a protocol with security against an
active (or malicious) adversary with only a small overhead to the communication
complexity. Thus, our results are quite insensitive to the distinction between the
two types of adversaries.

3. Secure Approximations

In this section, we present our definition of secure approximations. To preclude
the computation of an approximation from leaking unnecessary information, our
definitions require not only that the computation of the approximate output does not
reveal more about other parties’ inputs and outputs than that approximate output,
but also that the approximate output itself does not reveal more about other parties’
inputs and outputs than the exact output does. We restrict our attention to an ap-
proximation of a deterministic function f , mapping an input x = (x1, . . . , xm) ∈ X
to a nonnegative number y. Each string xi is the input held by the i th party. As
before, all inputs xi are assumed to have the same length.

We start by defining a notion of functional privacy on which our main definition
relies. Informally, we say that a (possibly randomized) approximation function f̂ is
functionally private with respect to the target function f if the output of f̂ reveals no
more information about its input than f does. Note that this is an inherent property
of the function f̂ rather than of a particular protocol computing f̂ . The notion of
functional privacy is formally defined as follows.

Definition 5 (Functional Privacy). Let f (x) be as above, and let f̂ (x) be a
possibly randomized function. We say that f̂ is perfectly (respectively, statistically,
computationally) functionally private with respect to f if there exists a proba-
bilistic sampling algorithm S, running in expected polynomial time, such that, for
every input x ∈ X , the distribution S(f (x)) is perfectly (respectively, statistically,
computationally) indistinguishable from f̂ (x). In the statistical and computational
cases, the sampling algorithm S is additionally given a security parameter n, and
the indistinguishability is defined with respect to this n.

Our definition for secure approximation requires that the protocol securely com-
pute some functionally private approximation f̂ of f . Because we defined f̂ to be
a single-output function, we must fix some convention for extending it to a multi-
output function. As in the two-party case, our default interpretation of a single-
output function f̂ in a multi-party setting assumes that a single value y is sampled
from f̂ (x) and is output by all parties. We stress that other conventions are possi-
ble, and a more general treatment would allow specifying an admissible collection

Secure Multiparty Computation of Approximations 445

of multi-output approximations. Here, we prefer simplicity over generality.6 This
discussion is formalized by the following definition which may be instantiated
with any notion of security (e.g., active or passive adversary, and computational,
statistical or perfect indistinguishability).

Definition 6 (Secure Approximation). Let f be as above. The protocol π is
a secure P-approximation protocol for f if it securely computes some (possibly
randomized) function f̂ such that f̂ is both functionally private with respect to f
and a P-approximation of f . The type of functional privacy (perfect, statistical, or
computational) should match the required type of security.

Intuitively, the functional privacy of f̂ with respect to f says that the input/output
relation of the protocol does not reveal anything except what would have been
revealed by learning f , while the secure computation of f̂ ensures that nothing
additional is revealed during the computation. Secure approximations are useful
both for settings in which the inputs are small but the target function is intractable
and for settings in which the inputs are massive. For the former setting, the following
simple corollary of Theorem 2.3 and Definition 6 is useful.

THEOREM 3.1. Suppose that f admits a functionally private P-approximation
f̂ that can be computed in probabilistic polynomial time. Then f admits an efficient
privateP-approximation protocol (i.e., a protocol with poly(n) communication and
computation).

We stress again that Theorem 3.1 only addresses the feasibility of secure approx-
imations and does not deal with more refined efficiency goals such as achieving
sublinear communication complexity. Thus, given Theorem 3.1, the design of se-
cure approximation protocols can involve two distinct types of challenges.

—For polynomial-time computable functions f , the challenge is to design special
purpose protocols that outperform the efficiency of the generic approach. This
is the focus of Section 5.

—For intractable functions f , the challenge is to find an efficiently computable and
functionally private approximation f̂ that can be used for applying Theorem 3.1.
This algorithmic question is the focus of Section 6.

3.1. AN ALTERNATIVE DEFINITION. We now describe a more liberal alternative
to the previous definition which is useful for some of our protocols. To motivate
the alternative definition, consider an artificial protocol π which first invokes some
secure protocol for exactly computing f , and then instructs each party to output
some functionally private approximation f̂ which is computed from the output of
f . Should π be considered a secure approximation protocol for f ?

6Other natural alternatives include all players getting independent outputs from the same distribution,
or a single distinguished player getting the output and all other players getting nothing. We note that
any private approximation protocol for f under the latter convention (single output) can be easily
turned into a private approximation protocol for f under the other two conventions: in the case of
identical outputs it suffices for the distinguished player to send its output to other players, and in the
case of independent outputs it suffices to run the protocol multiple times, alternating the role of the
distinguished player between the players.

446 J. FEIGENBAUM ET AL.

According to Definition 6, π generally cannot be considered secure since the
value of f learned by the parties may reveal strictly more information than the
value of f̂ computed by π . However, it seems reasonable to allow the protocol
messages in a secure approximation of f to tolerate the privacy loss implied by
an exact computation of f as the functional privacy bound already allows that
much leakage. The fact that a higher level of privacy can sometimes be achieved
for the protocol’s messages than for its output when settling for an approximate
computation of f should not necessarily be turned into a requirement.

This discussion gives rise to the following definition. For simplicity, we first
formulate the definition for the case of private two-party computation, modifying
Definition 3, and then discuss the general case.

Definition 7 (Private Approximation: Liberal Definition). Let f be a deter-
ministic functionality mapping two inputs to a single output. A two-party protocol
π is a private P-approximation protocol for f in the liberal sense if there exists a
functionally private P-approximation f̂ such that the following requirements hold:

Correctness. The joint outputs of the protocol are distributed according to
(f̂ (x), f̂ (x)) (where the two outputs of f̂ are identical rather than independent).

Privacy. There exist probabilistic polynomial-time algorithms SA,SB , such
that:

{(SA(a, f (x), f̂ (x)), f̂ (x))}x=(a,b)∈X
c≡ {(

viewπ
A(x), outputπB(x)

)}
x∈X

{(f̂ (x),SB(b, f (x), f̂ (x))}x=(a,b)∈X
c≡ {(

outputπA(x), viewπ
B(x)

)}
x∈X

.

Again, distinct occurrences of f̂ in each of the two expressions are assumed to
take the same value.

Note that in Definition 7, f̂ (x) is given as an additional input to SA and SB . This
is not needed when f̂ is deterministic because, in this case, f̂ (x) can be computed
based on f (x). However, in the typical case where f̂ is randomized, this is needed
in order to properly correlate the simulator’s output with that of the uncorrupted
party.

Definition 7 addresses the special case of secure two-party computation in the
presence of a passive adversary. We now turn to the more general case. Our general
formulation of the liberal definition can be viewed as a natural relaxation of the
standard simulation-based framework for defining secure (exact) computation as
described in Appendix A. Similar to the standard case, we compare the interaction of
the real-life adversary with the real protocol to the interaction of an ideal-process
adversary with an ideal function evaluation process involving a trusted party. In
the standard definition (Definition 10 in Appendix A), the trusted party receives an
input from each party and sends the value f (x) to all parties. In the liberal definition
of secure approximations, the trusted party also computes and sends the value of
some functionally private P-approximation f̂ (x). All uncorrupted parties output
the approximate value f̂ (x), whereas the exact value f (x) is only used by the ideal-
process adversary to produce a simulated transcript. (This should be contrasted
with our default definition of secure approximations in which the adversary is only
given f̂ (x) and not f (x).) See Appendix B for a more formal treatment of the liberal
definition in a general setting for secure computation.

Secure Multiparty Computation of Approximations 447

Comparing the Two Definitions. While the results of this article are quite insen-
sitive to the distinction between the two definitions presented, it is still instructive
to compare the two and justify our choice of the stricter definition as the default
one.

The main advantage of the default definition is that it uses the standard notion
of exact secure computation as a black box and can thus be applied in conjunction
with any possible definition of security. A second advantage is more subtle and
applies only to the case where the function f is intractable. The liberal definition,
in its general form, allows the ideal-process adversary to interact with a trusted
party which computes the exact value of f . Moreover, in the case of security
against an active adversary, the ideal-process adversary may choose its inputs to
the computation of f based on its view of the original inputs x . Thus, it effectively
gains (a restricted) oracle access to an intractable function f . In contrast, the default
definition only allows the ideal-process adversary to learn the value of an efficiently
computable function f̂ . This distinction appears to be blurred by the fact that, in
defining the functional privacy requirement for f̂ , the sampling algorithmS is given
access to the exact value of f . However, towards producing f̂ (x), the sampling
algorithm S is only allowed to learn the value of f on the same input x rather than
on an input x ′ which it can control.

The latter disadvantage of the liberal definition is not very significant. First, it
only applies in the case of an intractable function f . Second, even if the simula-
tor is given some extra computational power, one still gets a meaningful security
guarantee. This is particularly true in our case where the outputs of the functions
computed are real numbers rather than cryptographic or other computational ob-
jects. Finally, it is possible to avoid this disadvantage altogether by applying the
following restriction to the liberal definition. Instead of allowing the simulator to
learn (via the trusted party) the output of f , one could only allow it to learn the
output of some function f ′ which is both functionally private with respect to f and
polynomial-time computable. (As before, the simulator also learns the output of
f̂ .) In this variant of the liberal definition, the simulator is not given a significant
computational advantage even when f is intractable.

We note that our default definition is strictly stronger than the liberal definition:
if π securely P-approximates f , then it also does so in the liberal sense, while
the converse of this statement is not true in general. Except where indicated, the
positive results obtained in the remainder of this article all apply to the default
definition and hence also to the liberal definition. However, our main protocol of
Section 5 takes a simpler and more natural form under the liberal definition.

4. Rounding and Precision

In this section, we note that the obvious approach of taking an insecure approxima-
tion and making it secure by adding in random noise or masking the low-order bits
does not work in general. There are, however, some cases in which it can be useful.
We first show that rounding does not generally provide functional privacy. Next,
we show that adding random noise can provide functional privacy, but is not gen-
erally efficient. We then show that finite-precision approximations to real-valued
functions can be done in a way that provides functional privacy. This is important
because many common functions are naturally described as symbolic, real-valued

448 J. FEIGENBAUM ET AL.

functions but are implemented in finite precision—an inherent approximation. We
give a general theorem showing that if such a function can be implemented effi-
ciently in finite precision, then it can be implemented efficiently and privately in
finite precision.

4.1. ROUNDING. Consider taking an approximation f̂ for f that is good to
within (1 ± ε/3) with high probability and rounding it down to a power of (1 +
ε/3), obtaining a modified approximation ĝ. Then ĝ is in the range (1 ± ε) f with
high probability, so ĝ is also a good approximation to f . Intuitively, much of the
information in the least significant bits of f have been lost in the rounding process
so one might hope that ĝ is functionally private with respect to f . We now show
that is not the case.

Consider a function f whose approximation takes on all real values within a
large range with high precision as both the inputs and the source of randomness
vary. Suppose there are two sets of inputs to f , x and x′, such that f (x) = f (x′) and
x1 = x ′

1. Because (x1, f (x)) = (x ′
1, f (x′)), if ĥ is to be functionally private with

respect to f , it is necessary that ĥ(x) and ĥ(x′) have indistinguishable distributions.
In general, however, the approximations f̂ (x) and f̂ (x′) may have distinguishable
distributions. That is, for one or more t , Pr(f̂ (x) < t) = Pr(f̂ (x′) < t). Furthermore,
if we are unlucky in the value(s) of t , which is likely to happen if f and f̂ take
on all values in a large range, then Pr((1 + ε/3)i ≤ f̂ (x) < (1 + ε/3)i+1) =
Pr((1 + ε/3)i ≤ f̂ (x′) < (1 + ε/3)i+1). It follows that ĝ, which is f̂ rounded down
to a power of (1 + ε/3), is not functionally private with respect to f . Thus, in
general, rounding does not provide functional privacy.

4.2. ADDING RANDOM NOISE. Suppose we are given an approximation scheme
for f , that is, for any ε, δ > 0, we can output a number that is within the factor
(1 ± ε) of f with probability 1 − δ. We can then construct a private approximation
as follows. Given security parameter k such that two distributions are considered
statistically indistinguishable if their statistical difference is no more than 2−k , first
construct an approximation z′ to an output z of f that is good to within the factor
(1±2−kε/2). Next, let ẑ = z′(1+ X), where X is uniformly random on the interval
[−ε/2, ε/2]. One can readily check that this procedure yields an approximation
scheme for f that is statistically functionally private with respect to f .

Unfortunately, this procedure is not efficient unless the approximation z′ is so
good as to be usable to obtain an essentially exact solution or unless k is very
small. By definition, if f is hard to compute, then an approximation good to within
the factor (1 ± ε) requires more time than polylog in 1/ε to compute so the pre-
vious procedure requires more time than polynomial in k. Nevertheless, if k can
be taken small enough, or if f is easy to compute, this procedure is a simple and
straightforward solution. In the remainder of this section, we exploit this solu-
tion when we consider an f that is intuitively easy to compute (in the appropriate
model).

4.3. FINITE-PRECISION APPROXIMATIONS TO REAL-VALUED OUTPUTS. If f is a
discrete-valued function, then f has exact finite-precision implementations, and all
such implementations are functionally private with respect to f . We now consider
the case of real-valued symbolic functions for which the situation is a bit more
complicated.

Secure Multiparty Computation of Approximations 449

Some approximation algorithms are most naturally described using real-valued
functions for intermediate values or outputs. For example, in the approximation of
Section 5.4, the output is a median of means of numbers of the form (

∑
i si (ai −bi))

2,
where 〈ai 〉 and 〈bi 〉 are inputs, and each si is a unit Gaussian-distributed random
variable. The functional privacy of that approximation depends on the fact that

D1 = ∑
i ai si and D2 =

√∑
i a2

i s0 are identically distributed, where s0 is also a

unit Gaussian random variable. To the extent that the si ’s are not true Gaussians (due
to rounding), the distributions of D1 and D2 are not identical—not even computa-
tionally indistinguishable, in general. One might worry that functional privacy is
thereby destroyed. More generally, one might worry that, given a simple symbolic
mathematical function f , the straightforward finite-precision implementations of
f are not functionally private with respect to f or, worse, that f may not have
any computable functionally private implementation at all, even allowing for high
cost. We now show that the approximation relation resulting from finite-precision
approximations to efficiently computable mathematical functions can always be
made private by adding noise. This means that, when designing protocols, one can
continue to work with functions symbolically if desired; the finite-precision im-
plementation can be made private automatically. We give a self-contained example
and state a theorem for a simple function in the additive approximation model; the
techniques generalize to other functions and other models.

Consider the function f (x, y) = log(xy), where, in this section, the logarithm
is to the base 10. Then, as a symbolic statement, f (1, 10) = f (2, 5) = 1. Now
consider the following protocol: Alice computes a finite-precision approximation
L(x) to log(x), Bob computes a finite-precision approximation L(y) to log(y), and
they output g(x, y) = L(x) + L(y). In many straightforward real-world imple-
mentations, g(2, 5) = g(1, 10) even though f (2, 5) = f (1, 10), so the function
computed by g is not functionally private with respect to f ; in practical terms,
an adversary can undesirably distinguish between the inputs (1, 10) and (2, 5) be-
cause g(1, 10) is always exactly 1, whereas g(2, 5) often has roundoff error. That
is, a straightforward finite-precision computation of f (an exact computation in the
finite-precision sense) is not functionally private with respect to f as a symbolic
function.

To remedy this, we exploit the real-valued exact computability of f , meaning,
for any ε, one can compute log(x) ± ε in time (|x | + log(1/ε))O(1). Then, to com-
pute a private finite-precision approximation to f (x, y), proceed as follows. Given
security parameter k, compute f (x, y) ± (ε/3)2−k , then add uniformly random
noise in the range ±ε/3. As in the previous discussion on adding random noise,
this gives statistically indistinguishability output on inputs (1, 10) and (2, 5). In this
situation, because the log is exactly computable, the cost to compute the output is
just polynomial in k as desired.

A final consideration is that Definition 5 technically does not apply to real-valued
functions as it does not make sense to say that a discrete-input simulator S takes
as input the output of a real-valued function f . In general, we have the following
theorem, whose proof follows from the forgoing discussion.

THEOREM 4.1. Let f be a multivariate function from integers to the reals with
short symbolic description. Suppose, for any integer k and any x, one can compute
a value f̂ (x) = f (x) ± 2−k in time (|x| + k)O(1). Then there exists a function g,

450 J. FEIGENBAUM ET AL.

from integers to finite-precision reals (i.e., integer multiples of fixed small unit),
such that the following properties hold.

1. Good approximation. For all x, g(x) = f (x) ± 2−k .
2. Efficiency. g(x) is computable in time (|x| + k)O(1).
3. Functional privacy in a modified sense. There is a simulator, S, such that, for

any family {ρ j } rounding functions that take real values to finite-precision real
values satisfying |ρ j (x) − x | ≤ 2− j , we have S(ρ(f (x)))

s≡ g(x).

Thus any real-valued exact computation can be made statistically functionally
private. This parallels the discrete situation in which any discrete-valued exact
computation is trivially automatically perfectly functionally private.

5. Sublinear Private Approximation for the Hamming Distance

In this section, we present a private two-party protocol for computing approximate
Hamming distance. We also give sublinear-communication protocols for related
problems. The Hamming distance protocol allows Alice, holding an input a ∈
{0, 1}n , and Bob, holding b ∈ {0, 1}n , to learn an ε-approximation of the Hamming
distance between a, b (with a negligible failure probability δ), without learning
additional information about the other party’s input beyond what follows from the
Hamming distance. Our protocol requires roughly O(n1/2) bits of communication
and three rounds of interaction. Throughout this section, we let dh(a, b) denote the
Hamming distance between a, b, and wh(x) denote the Hamming weight of an n-bit
string x .

Before we describe our private protocol, it is instructive to consider the nonprivate
variant of the problem. We first briefly survey known communication-efficient
solutions, and then explain why a naive attempt to make those solutions private
fails. There are several known methods for approximating the Hamming distance
using polylogarithmic communication [Alon et al. 1999; Kushilevitz et al. 2000;
Cormode et al. 2000; Kushilevitz and Nisan 1997]. More specifically, the best 〈ε, δ〉-
approximations require O(log n log(1/δ)/ε2) communication. These methods can
all be viewed as based on the following sketching approach.

Definition 8. A sketching protocol for a 2-argument function f : {0, 1}∗ ×
{0, 1}∗ → N is defined by:

—A sketching function, S : {0, 1}∗ × {0, 1}∗ → {0, 1}∗ mapping one input and a
random string to a sketch consisting of a (typically short) string.

—A (deterministic) reconstruction function G : {0, 1}∗ × {0, 1}∗ → R, mapping a
pair of sketches to an approximate output.

On inputs a, b ∈ {0, 1}n , the protocol proceeds as follows. First, Alice and Bob
locally compute a sketch sA = S(a, r) and sB = S(b, r) respectively, where r is a
common random input. Then, the parties exchange sketches, and both locally output
g = G(sA, sB). We denote by g(a, b) the randomized function defined as the output
of the protocol on inputs a, b. A sketching protocol is said to 〈ε, δ〉-approximate f
if g 〈ε, δ〉-approximates f .

Clearly, the communication complexity of a sketching protocol is proportional
to the sketch size.

Secure Multiparty Computation of Approximations 451

Remark. In the previous definition and in the following, it is convenient to
assume that the parties share a polynomially long common random input string.
This assumption can be dispensed with at a low cost using pseudorandomness as
is done in our protocols.

In this article, we only consider linear sketching functions, that is, such that
S(ax + by) = aS(x) + bS(y), where x and y are vectors and a and b are scalars,
and arithmetic is performed over a finite field or the reals. As a special case, S(x) may
select a sample of the positions in x (where the selected positions are independent of
x). Furthermore, in this article, G(S1, S2) always takes the form G ′(aS1 +bS2), and
we sometimes refer to the single-input function G ′ as the reconstruction function.

We briefly review an efficient sketching protocol for the Hamming distance
[Kushilevitz et al. 2000; Cormode et al. 2000].

Example 1 (Sketching Protocol for the Hamming Distance). Let the common
random input define a 0/1-valued matrix R, with O(log n) rows and n columns,
in which each entry of the i th row (independently) takes the value 1 with prob-
ability pi = β i for some constant β depending on ε. The sketching function is
defined by S(x, R) = Rx , where R and x are viewed as a matrix and a vector over
GF(2), respectively. From the sketches Ra and Rb, the distance dh(a, b) can be
approximated. (The main observation is that (Ra)i = (Rb)i with probability close
to 1/2 if dh(a, b) � 1/pi and with probability close to 1 if dh(a, b) << 1/pi .)
More generally, an 〈ε, δ〉-approximation can be obtained using a matrix R with
O(log n log(1/δ)/ε2) rows. The communication complexity of this sketching pro-
tocol is O(log n log(1/δ)/ε2) assuming a common random input is available.

Our goal is to obtain a sublinear communication private approximation protocol
for the Hamming distance. A natural approach is to seek a general method for
converting an efficient sketching protocol approximating a function f into a private
protocol approximating f .

Suppose that the randomized function g induced by the sketching protocol is
functionally private with respect to f . This is indeed the case for the sketching
protocol from Example 1 as well as for other sketching protocols for the Hamming
distance proposed in the literature. To approximate f privately, it suffices to let the
parties privately compute the randomized function g. By Theorem 2.3, a general
purpose private computation protocol can be used to evaluate g. (Note that the
randomness used for sketching is considered here as part of the input to g.) However,
the communication complexity of this protocol is at least linear in n, while we would
like to obtain a sublinear communication private protocol for g.

At first glance, the following straightforward protocol seems to work. The parties
locally compute a sketch based on individual inputs and their common random
input r , and then apply a general purpose private computation protocol to evaluate
g = G(sA, sB) from the sketches sA, sB . By Theorem 2.3, if the sketches are short
and G is not too complex, then the entire protocol can be implemented with sublinear
communication. This protocol, however, generally fails to be private. This is due
to the fact that, although g is functionally private with respect to f , the pair (g, r)
(where r is the random input for g) is not functionally private with respect to f .

We illustrate this difficulty for the case of privately approximating the Hamming
distance using the specific sketching method from Example 1. Consider a protocol
that first computes R(a − b) securely, then computes g from R(a − b) in the clear.

452 J. FEIGENBAUM ET AL.

Note that the function h : (a, b) �→ R(a − b) is functionally private with respect to
(a, b) �→ dh(a, b), but knowing the output of h together with the random input R
(which was used to generate this output) can reveal additional information about
the inputs. For instance, in the previous protocol for computing h, Alice can deduce
Rb from her input a, the output R(a − b), and the common random input R. It is
not hard to see that, based on a and dh(a, b) alone, it is impossible to generate R, y
such that R is distributed as in Example 1 and Rb = y holds with overwhelming
probability. (For instance, given that a = 0, b = ei , and dh(a, b) = 1, y should
be equal to the i th column of R which is impossible to guess with high probability
from a and dh(a, b) alone.) Thus, Alice’s view cannot be simulated in the ideal
process, and thus the naive solution fails.7

We do not know whether the sketching method of Example 1 can be made
private with sublinear communication, nor were we able to obtain a private pro-
tocol from any other efficient protocol for approximating the Hamming distance
appearing in the literature. Instead, we design a new sketching protocol whose
induced randomized approximation g can be privately computed with sublinear
communication.

Our solution is based on a combination of two different sketching protocols,
also referred to as estimators. The first estimator is based on sampling and gives a
good approximation only when the distance is high. We provide a special purpose
low-communication private protocol for computing this estimator. At its heart is a
special purpose private protocol for comparing the bits in a random location which
may be of independent interest. The second estimator gives a good approximation
only when the distance is low and, in fact, produces an exact result in this case. We
provide two alternative implementations for this estimator, one based on two-level
hashing and one based on Reed-Solomon codes. In either case, the output of the low
distance estimator is such that, even when taken together with the randomness r , no
information is revealed except what follows from the Hamming distance. Thus, in
this case, we can use general purpose private computation as in the naive approach
described earlier without loss of privacy.

In Sections 5.1 and 5.2, we describe each of the two private estimators separately;
we combine them to obtain the final protocol in Section 5.3. We consider the L2

distance in a relaxed model in Section 5.4.

5.1. THE HIGH DISTANCE ESTIMATOR. Suppose that d = dh(a, b) is guaranteed
to be larger than some threshold dmin. (We will specify later the value we use for
dmin). If dmin is large, then Alice and Bob can efficiently approximate d by randomly
sampling a small number of bits in matching positions from their inputs. Viewed
as a simple sketching protocol, the common random input includes several random
indices, the sketch contains the bits indexed by the random input, and the output is
obtained by scaling the relative distance between the sketches. Specifically, Alice
and Bob count the number 	 of differences in s = O((n/dmin) · log(1/δ)/ε2)
randomly selected matching bits of their inputs and compute the estimate g = 	·n

s .
By the Chernoff bound, g is an 〈ε, δ〉-approximation of d.

7 It turns out that, similarly, even if the parties use general purpose secure computation to evaluate
g = G(sA, sB) from sA, sB without revealing R(a −b), it is generally impossible, knowing only a and
dh(a, b), to generate R, g with R properly distributed and g = G(sA, sB). Intuitively, some information
about Rb leaks into g = g(R(a − b)) = g(Rb), and, because Rb is sensitive, so is g in general.

Secure Multiparty Computation of Approximations 453

FIG. 1. A private protocol for the function Sample-XOR.

Note that the randomized function g(a, b) induced by the sketching protocol is
functionally private with respect to dh(a, b). We now show how to privately compute
g with a small communication complexity. Our main tool is a private protocol for
comparing a randomly sampled pair of bits. Formally, the protocol computes the
randomized function Sample-XOR defined as

Sample-XOR(a, b) = ar ⊕ br , where r
R← [n].

Note that a private protocol for Sample-XOR must keep the choice of r secret from
each party.

Figure 1 describes a private protocol, Private-Sample-XOR, for the function
Sample-XOR that uses

(n
1

)
-OT as a subprotocol. In it, for any x ∈ {0, 1}n, r ∈ [n]

and m ∈ {0, 1}, we denote by x << r a cyclic shift of x by r bits to the left and by
x ⊕ m the string whose i th bit is xi ⊕ m.

LEMMA 5.1. Private-Sample-XOR is a private protocol computing the random-
ized function Sample-XOR.

PROOF. The correctness of the protocol follows by observing that z A =
(b << rB)rA ⊕ m B = b(rA+rB) ⊕ m B and, symmetrically, zB = a(rA+rB) ⊕ m A
(where addition of indices is taken modulo n). Hence, both parties output

z′
A ⊕ z′

B = z A ⊕ zB ⊕ m A ⊕ m B = a(rA+rB) ⊕ b(rA+rB),

where r = rA + rB is a uniformly distributed index.
Intuitively, the privacy of the protocol follows from the fact that in the process of

obtaining the output a(rA+rB) ⊕b(rA+rB), no party learns rA + rB , a(rA+rB), or b(rA+rB).
The privacy can be formally argued by describing a simulator for each party. In
fact, given the composition theorem (Theorem 2.2), it suffices to prove the privacy
of an oracle-aided version of the protocol in which each of the two invocations of
the

(n
1

)
-OT protocol is replaced by a call to an oracle computing the corresponding

function. A simulator for Alice’s view in this oracle-aided protocol proceeds as
follows. On input a ∈ {0, 1}n and output value z ∈ {0, 1}:

(1) pick at random m A
R← {0, 1}, rA

R← [n], and z A
R← {0, 1}.

(2) output (m A, rA) as Alice’s random input, z A as the output Alice receives from

the first call to the
(n

1

)
-OT oracle in Step 2, and z′

B
def= z ⊕ z A ⊕ m A as the

454 J. FEIGENBAUM ET AL.

message received from Bob in Step 3. (The remainder of Alice’s view follows
deterministically from her input and this simulated information.)

A simulator for Bob’s view may be obtained similarly.
We argue that the view produced by this simulator, conditioned on the inputs

(a, b) and the output z, is distributed exactly as in the real (oracle-aided) protocol.
This follows from the facts that (1) Alice’s random inputs m A, rA in the real protocol
are independent of the inputs (a, b) and the output z and are thus distributed in the
simulated view as they should; (2) the output z A received from the

(n
1

)
-OT oracle in

the real protocol is independent of a, b, m A, rA, z, as in the simulated view.

Given approximation parameters ε and δ, our private sampling estimator for the
high distance case is implemented using s = O((n/dmin) · log(1/δ)/ε2) parallel
invocations of Private-Sample-XOR. Its properties are summarized by the following
lemma.

LEMMA 5.2 (PRIVATE APPROXIMATION FOR THE HIGH DISTANCE CASE). Let
OT be an arbitrary

(n
1

)
-OT protocol (with security against a passive adversary).

Then there exists a protocol πhigh for approximating dh(a, b) whose communi-
cation complexity is Õ((n/dmin) log(1/δ)/ε2) times that of OT and whose round
complexity is 1 plus that of OT , such that:

—if d = dh(a, b) ≥ dmin, the protocol πhigh outputs an ε-approximation of d with
overwhelming probability.

—the output g of πhigh is functionally private with respect to dh.
—πhigh privately computes its output. Specifically, Alice (respectively, Bob) can

simulate her view on input (a, b), conditioned on an output g, based on g and
her input a (respectively, g and his input b) alone.

PROOF. The protocol πhigh proceeds as described previously: the parties invoke

Private-Sample-XOR s = O((n/dmin) · log(1/δ)/ε2) times in parallel, let 	 be the
sum of the s outputs, and output g = 	 · n/s. The approximation quality of the
output g follows from a Chernoff bound, and its functional privacy follows from
its symmetry.

Viewing the protocol as an oracle-aided protocol (making oracle calls to the
randomized Sample-XOR function), a simulator for Alice or Bob may proceed as
follows: (1) let 	 = gs/n; (2) pick a random s-tuple (z1, . . . , zs) ∈ {0, 1}s such
that

∑
zi = 	; (3) output (z1, . . . , zs) as the outputs of the s invocations of the

Sample-XOR oracle. Again, this simulator perfectly emulates the oracle-aided pro-
tocol. This follows from the fact that the outputs of the Sample-XOR invocations in
the real protocol, conditioned on the value of 	, are uniformly distributed subject
to the restriction that their sum is 	.

Note that the sampling estimator does not give a reliable estimate when the
distance d is significantly smaller than dmin because its variance is too high. (i.e., it
is likely that no differences will be detected.)

5.2. THE LOW DISTANCE ESTIMATOR. We next consider the low distance case,
where d ≤ dmax for some threshold dmax to be specified later. We design two
alternative private protocols for this case, each of which is based on a sketching
protocol with the following properties.

Secure Multiparty Computation of Approximations 455

(1) The induced function g is essentially determined by dh . That is, except with
negligible probability, g(a, b) takes a specific value determined by dh(a, b).

(2) The value in (1) is equal to dh(a, b) if dh(a, b) ≤ dmax and equal to fail otherwise.

Property (1) is used to implement a private computation of the low distance
estimator. Property (2) guarantees functional privacy of the output over the entire
range of inputs. It also guarantees correctness in case the distance is low. Indeed,
for any sketching protocol satisfying property (1), a private computation of g (the
randomized function induced by the sketching protocol) may proceed according to
the naive approach described previously. That is, the parties may locally compute
the sketches based on their inputs and a common random input and then apply
a general purpose private computation protocol for evaluating the reconstruction
function G on their sketches. Intuitively, in this case, the common random input
r gives almost no information about the inputs except what follows from g. More
formally, a simulator can pick r independently of the input and output and then
simulate the private protocol for G on the sketch induced by r and the original
output. This simulation is correct because r is statistically close to uniform when
conditioned on the input and output of g. Note, however, that for such a protocol
to be communication efficient, it is important that G can be computed by a small
circuit, preferably linear or nearly linear in the sketch size.

We describe two different sketching protocols. The first is based on hashing,
has a self-contained description, and only requires the private computation of a
very simple reconstruction function.8 We then give an alternate protocol based on
Reed-Solomon codes. Its reconstruction function G is more complex which makes
the communication complexity of privately computing it higher.

5.2.1. A Protocol Based on Hashing. Let the common random input define
several independent (2-universal) hash functions. Given a correctness parameter k
(where k = O(log(1/δ) log dmax) is sufficient to guarantee an error bound δ), the
sketch of an input x ∈ {0, 1}n is computed as follows.

(1) Randomly partition the n bits of x into dmax buckets of equal size. With prob-
ability 1 − 2−
(k), no bucket gets more than k log dmax bits in which a and b
differ.

(2) For each of the dmax buckets, further partition its bits into (k log dmax)2 sub-
buckets. Now, if a given bucket contains at most k log dmax differences, then
each of its sub-buckets contains at most one difference with constant probability.
Repeat this procedure k independent times, and let Bijh denote the contents of
the j th sub-bucket of the i th bucket in the hth invocation (where 1 ≤ i ≤ dmax,
1 ≤ j ≤ (k log dmax)2, 1 ≤ h ≤ k).

(3) Hash the contents of each sub-bucket Bijh to a k-bit string βijh.

The sketch of a string x consists of all dmax · k3 log2 dmax strings βijh obtained via
this process.

Let (βijh(a), βijh(b)) denote the correlated values ofβijh when the process is applied
on inputs a, b using the same random input.

8 We note that this is hashing in the basic algorithmic sense; we do not require a cryptographic hash
function.

456 J. FEIGENBAUM ET AL.

LEMMA 5.3. Suppose that dh(a, b) ≤ dmax. Then, with probability 1 − 2−
(k) ·
dmax,

dh(a, b) =
dmax∑
i=1

max
1≤h≤k

|{1 ≤ j ≤ (k log dmax)2 : βijh(a) = βijh(b)}|. (2)

PROOF. As noted in the description of the sketching function, each of the k
attempts of secondary hashing succeeds with a constant probability to isolate all
of the bit differences mapped to its bucket. Hence, with probability 1 − 2−
(k) at
least one of them succeeds. Moreover, for any instance i, j, h, the probability of the
third-level hashing mapping distinct values Bijh(a), Bijh(b) to the same k-bit string

is 2−
(k). The claim follows by a union-bound argument.

Suppose that the reconstruction function of the sketching protocol is defined by
the right-hand side of Equation (2). By symmetry, the output g is already function-
ally private. But because g fails to be almost determined by dh over the entire range
of inputs, the naive private implementation cannot be used. In this case, however,
a very simple modification to the reconstruction function can fix the situation. The
modified reconstruction first computes an estimate d̃ by applying the right-hand
side of Equation (2) to the sketches, and then it outputs d̃ if d̃ ≤ dmax and outputs
fail otherwise.

The properties of the modified sketching protocol, denoted (Shash, Ghash), are
summarized in the following lemma.

LEMMA 5.4. Letting k = Õ(1), the sketching protocol (Shash, Ghash) and the
induced randomized function ghash satisfy the following properties.

—The output length of Shash is Õ(dmax), and so is the circuit size of the reconstruction
function Ghash.

—If d = dh(a, b) ≤ dmax, then ghash(a, b) = d with overwhelming probability.
—If d > dmax, then ghash(a, b) outputs fail with overwhelming probability.

PROOF. The specified complexity bounds follow easily from the description of
(Ghash, Shash). In particular, the circuit size required for computing the right-hand
side of Equation (2) is linear in the length of the sketch.

The first correctness property follows from Lemma 5.3. The second follows
from the fact that when d > dmax, the right-hand size of Equation (2) is bigger than
dmax with overwhelming probability. This can be shown similarly to the proof of
Lemma 5.3.

5.2.2. A Protocol based on Reed-Solomon Codes. We now describe an alter-
native to the sketching protocol (Shash, Ghash) in Section 5.2. This protocol satisfies
all the properties of (Shash, Ghash) guaranteed by Lemma 5.4 except that the circuit
size of its reconstruction function G is Õ(dmax

2) instead of Õ(dmax).
We start by describing a simpler variant of this protocol which does not give a

reliable indication for its failure in the case where the distance is high. This variant
relies on error-correcting codes for finding the locations in which two strings differ.
A similar use of error-correcting codes in a related context was previously made
in the communication complexity literature (see Feder et al. [1995] and references
therein).

Secure Multiparty Computation of Approximations 457

Let F be a finite field with |F | > n. We view the inputs a, b as vectors in Fn .
Let H be the parity-check matrix of a Reed-Solomon code over F with distance
2dmax + 1, dimension n, and length n + 2dmax. The matrix H has 2dmax rows
and n columns. For any x ∈ Fn such that wh(x) ≤ dmax, x can be uniquely
recovered from the syndrome H x (as x can be viewed as a corrupted encoding of 0).
These facts imply the following (non-private) sketching protocol for the Hamming
distance, given the promise that it is smaller than dmax. The sketching function is
deterministic and is defined by S(x) = H x . Reconstruction proceeds as follows.
From the syndromes Ha and Hb, one can compute the syndrome H (a − b). The
output dh(a, b) is computed by recovering a − b from its syndrome and outputting
its weight. By choosing a field F of size O(n), the sketch size is O(dmax log n). The
circuit complexity of recovering the errors from the syndrome can be made as low
as Õ(dmax

2) (see Dodis et al. [2004] and references therein) or even slightly sub-
quadratic (using the polynomial factorization algorithm from Kaltofen and Shoup
[1995]).

The output function g induced by the preceding sketching protocol does not
reliably indicate failure when the distance is larger than dmax. This follows from
the fact that there exist x, x ′ such that wh(x) = wh(x ′) > dmax and yet applying the
decoding procedure to H x and H x ′ yields a different number of errors. We now
modify this construction such that, if d > dmax, it outputs fail with overwhelming
probability.

The modified sketching protocol uses a k-bit random input r , where r is inter-
preted as a key to a pseudorandom function hr : [n] → GF(2)k , and where k = Õ(1).
The n possible outputs of hr define a pseudorandom k × n matrix R over GF(2),
satisfying the following properties: (1) the i th column of R can be computed from
r by a circuit of size Õ(k) = Õ(1); (2) for any nonzero x ∈ GF(2)n , the probability
that Rx = 0 is negligible in k, where the probability is over the uniform choice
of r from {0, 1}k . (We use general pseudorandom functions for simplicity; more
efficient constructions can be based on small-bias probability spaces [Kushilevitz
and Nisan 1997].) The sketching function is defined by S(x, r) = (H x, Rx, r),
where R is the k × n matrix defined by hr . Reconstruction proceeds as follows.
First, Ha and Hb are used as before to decode H (a − b). However, instead of only
counting the number of errors, this time we also use their locations to test reliably
whether a, b differ exactly in the specified places. Let ve denote the error vector
produced by the decoding algorithm from H (a − b). Note that wh(ve) ≤ dmax, and
that ve = (a − b) if and only if dh(a, b) ≤ dmax. The reconstruction procedure
tests whether Ra − Rb − Rve = 0. If the test succeeds, the reconstruction func-
tion outputs the number of errors, and otherwise it outputs fail. From the previous
properties of hr , we may conclude that (1) reconstruction can be implemented by a
circuit of size Õ(kO(1) ·dmax

2) = Õ(dmax
2); (2) if d = dh(a, b) ≤ dmax, g(a, b) = d

with probability 1; (3) if d > dmax, then g(a, b) outputs fail with overwhelming
probability. Our final sketching protocol thus satisfies all the desired properties
guaranteed by Lemma 5.4, up to a quadratic blowup in the cost of reconstruction.

Remark (Application to Communication Complexity). Our sketching methods
for the low distance case can be applied to solve the following communication
complexity problem posed by Yao [2003]. Suppose that Alice and Bob each hold
an input string of length n as well as a common random input. They wish to
determine whether the Hamming distance between their inputs is bounded by d.
To this end, they each send a message to a referee who should output the correct

458 J. FEIGENBAUM ET AL.

answer with high probability (say greater than 2/3). Our sketching methods for
the low distance case directly yield solutions to this problem. The first method
gives a protocol whose communication complexity is O(d · polylog d), whereas
the method based on Reed-Solomon codes gives a protocol whose communication
complexity is O(d log n).9 We note that the dependence of the latter bound on log n
is inherent to the coding-based approach as the sketch reveals not only the number of
places where the two inputs differ but also their locations. In contrast, the hashing-
based approach reveals only the Hamming distance between the inputs. Finally, a
similar complexity can also be obtained in the standard two-party communication
complexity model via a suitable derandomization of the common random string
either under cryptographic assumptions (using a general purpose pseudorandom
generator) or unconditionally (using limited independence).

5.2.3. Using the Protocols. Based either on the hashing-based sketching pro-
tocol or the Reed-Solomon-based sketching protocol, a private protocol for the low
distance case can be constructed as outlined in the beginning of this section. In
the following, we restrict our attention to the hashing-based variant because of its
better efficiency and simplicity.

LEMMA 5.5 (PRIVATE APPROXIMATION FOR THE LOW DISTANCE CASE). Sup-
pose any of the assumptions of Theorem 2.3 holds. Then, for any 1 ≤ dmax(n) ≤ n,
there exists a three-round protocol πlow with Õ(dmax) communication, such that:

—if d = dh(a, b) ≤ dmax, the protocol πlow outputs the exact value of d with
overwhelming probability;

—if d = dh(a, b) > dmax, the protocol πlow outputs fail with overwhelming proba-
bility.

—the output g of πlow is statistically indistinguishable from some function g′ that
is functionally private with respect to dh.

—πlow privately computes its output.

PROOF. Let (S, G) be any sketching protocol satisfying the properties of
Lemma 5.4. The required protocol πlow proceeds as follows. In the first round,
Alice sends to Bob a seed (of length Õ(1)) to a pseudorandom generator which is
used to produce a sufficiently long common random input. Then, each party locally
applies the sketching function S to its input and the common random input, and
together they invoke a protocol for privately evaluating the reconstruction function
G on their sketches. Using Theorem 2.3, this requires Õ(dmax) communication and
either two additional rounds, assuming homomorphic encryption, or three rounds,
assuming trapdoor permutations. (In the variant based on trapdoor permutations,
the first round does not depend on the inputs and can thus be done in parallel to the
first message from Alice to Bob. Therefore, the main protocol can be implemented
in three rounds under either type of assumption.)

We now argue that πlow satisfies the four required properties. The first two follow
immediately from the assumptions on (S, G) and from the properties of a pseudo-
random generator. The functional privacy property follows by defining g′(a, b) as

9The method based on Reed-Solomon codes was independently used in a similar context by Gavinsky
et al. [2004].

Secure Multiparty Computation of Approximations 459

dh(a, b) if this distance is at most dmax and fail otherwise. Finally, the following
simulator shows the privacy of πlow. As before, we describe Alice’s simulator of
the oracle-aided version of the protocol having oracle access to G; Bob’s simulator
is similar. On input a and g:

—pick a random seed α to the pseudorandom generator.

—output α as Alice’s random input and g as the output of the G-oracle. (The
message sent by Alice to the G-oracle is determined by a and α.)

The correctness of the simulator follows from the fact that all but a negligible
fraction of the possible seeds α would lead to the same output g. Thus, in the real-
life execution of πlow, the distribution of the seed α conditioned on the inputs (a, b)
and the output g is statistically close to uniform.

5.3. THE COMBINED PROTOCOL. Using the protocols πlow and πhigh of
Lemma 5.2 and Lemma 5.5 as subprotocols, our full protocol πh proceeds as fol-
lows. Given the desired approximation quality ε:

—invoke protocol πhigh of Lemma 5.2 with parameters ε and dmin = n1/2/ε. Let
d1 denote its output.

—in parallel, invoke protocol πlow of Lemma 5.5 with parameter dmax = n1/2/ε.
Let d2 denote its output.

—if d2 = fail, output d1; else output d2.

LEMMA 5.6. The protocol πh is a private ε-approximation protocol for dh in
the liberal sense.10

PROOF. The randomized function d̂ computed by πh is obtained from the out-
puts d1 and d2 of πhigh and πlow, respectively. By the functional privacy properties

of d1 and d2 with respect to dh (see Lemmas 5.2 and 5.5), the final output d̂ is also
(indistinguishable from being) functionally private with respect to dh .

The ε-approximation property of d̂ follows from the facts that (1) if d > dmax,
then (with overwhelming probability) the final output d̂ is produced by πhigh, and,
because d > dmax ≥ dmin, this output is ε-correct; (2) if d ≤ dmax, then the low
distance subprotocol produces d̂ which is guaranteed in this case to be correct with
overwhelming probability.

It remains to show that πh satisfies the liberal privacy requirement of Definition 7.
As usual, we describe a simulator for Alice, replacing πhigh and πlow by oracle calls
to the functions computed by these protocols. This is justified by Lemmas 5.2
and 5.5 and Theorem 2.2.

On inputs a, d = dh(a, b), and d̂, the simulator proceeds as follows.

—Sample d1 conditioned on d and d̂. That is, if d > dmax, let d1 = d̂; otherwise,
sample d1 from a binomial distribution with parameters s and d/n (where the
number of trials s is as in πhigh), then multiply by n/s.

—Compute d2 from d. That is, let d2 = d if d ≤ dmax and d2 =“fail” otherwise.

10 This refers to the relaxed notion of private approximation defined in Definition 7. Modifications of
πh that satisfy the strict definition are discussed in the remark following the proof of Lemma 5.6.

460 J. FEIGENBAUM ET AL.

—Output d1 as the output of the oracle corresponding to πhigh and d2 as the output
of the oracle corresponding to πlow.

The correctness of the preceding simulator follows from the fact that the joint
distribution of (d̂, d1, d2) induced by the simulator is statistically indistinguishable
from that of the real-life protocol.

Remark (On Strict vs. Relaxed Privacy). As described, πh does not satisfy
the stricter notion of private approximation defined in Definition 6. Indeed, the
intermediate outputs d1 and d2 may give more information than is implied by the
protocol’s final output d̂. Specifically, when the output d̂ is slightly lower than the
threshold dmax, the output alone does not determine whether d > dmax, whereas the
output d2 of πlow does. Thus, πh does not privately compute its output d̂. However,
πh can be easily modified to satisfy the stricter privacy requirement. One way of
achieving this is by hiding all intermediate results except the final outcome. This
can be done by modifying πhigh and πlow so that their outputs are secret-shared

between the parties and applying another private protocol to compute d̂ from the
shared outputs of the subprotocols. A more efficient alternative is to incorporate
the additional information revealed by πh into its output d̂. This can be achieved by
slightly perturbing the output so that its value encodes d1, d2 without significantly
changing the approximation quality.

Substituting the complexity parameters of the two subprotocols and the
(n

1

)
-OT

protocol of Theorem 2.4 yields the main result of this section.

THEOREM 5.7. Assuming the existence of homomorphic encryption, the Ham-
ming distance function can be privately ε-approximated with communication com-
plexity Õ(n1/2/ε) and three rounds of interaction.

In Section 5.4, we show that it is possible to obtain improved efficiency in a
relaxed model with offline communication.

Remark (On Computational Complexity). A naive implementation of the com-
bined protocol πh (corresponding to Theorem 5.7) has computational complexity
of Õ(n3/2/ε). This complexity is dominated by Õ(n1/2/ε) invocations of the

(n
1

)
-OT

primitive, each requiring Õ(n) time. However, the cost of these invocations can be
amortized [Ishai et al. 2004], yielding a protocol with the same asymptotic com-
munication complexity and (an essentially optimal) computational complexity of
Õ(n/ε).

Remark (On using Reed-Solomon Codes). Recall that the reconstruction func-
tion of our sketching protocol based on Reed-Solomon codes is less efficient than
that of our hashing-based sketching protocol. Nonetheless, it can still be used to
give a private approximation protocol for the Hamming distance with sublinear
communication complexity. Specifically, setting dmin and dmax in the combined
protocol πh to Õ(n1/3) and using Reed-Solomon-based sketching in πlow, the re-
sulting communication complexity is Õ(n2/3).

5.4. POLYLOGARITHMIC L2 PROTOCOL WITH OFFLINE COMMUNICATION. In
this section, we obtain efficient private approximation protocols for the following
scenario. Suppose that Alice and Bob are allowed to communicate Õ(n) bits at zero
cost before they receive their inputs. We charge them only for online communication

Secure Multiparty Computation of Approximations 461

performed after they learn their inputs. In this model, we give private protocols with
only Õ(1) communication cost.

We consider the L2 distance (
∑ |ai − bi |2)1/2, where 〈ai 〉 and 〈bi 〉 are sequences

of integers.11 A solution for the Hamming distance follows as a special case. Es-
sentially, we verify that the protocol from Indyk [2000] is functionally private and
can be efficiently implemented by a private protocol in this model.

Alice and Bob share a vector 〈si 〉 of n samples from a Gaussian distribution.12

These samples are encrypted using homomorphic public-key encryption13, that is,
anyone can form an encryption E(α, κ) of α that can be decrypted only by knowing
the secret key κ , and, from encryptions E(α, κ) and E(β, κ) of α and β for the same
secret key κ , anyone can form an encryption E(α + β, κ) of α + β for κ . Using a
threshold homomorphic encryption scheme, Alice and Bob split κ so that neither
can decrypt alone but together they can decrypt.

As prescribed in Indyk [2000], Alice should form
∑

i ai si . In our context, she
forms E(

∑
i ai si , κ), as follows. She forms E(ai si , κ) from E(si , κ) and ai , in

time kO(1) log ai , using the homomorphic properties of the encryption and repeated
doubling. She then forms E(

∑
i ai si , κ), using the homomorphic properties of the

encryption. Alice and Bob then form E(
∑

i si (ai − bi), κ), again using the homo-
morphic properties of the encryption. The insecure protocol prescribes that they
compute (

∑
i si (ai −bi))

2, repeat, and take the median of means, using Lemma 2.1.
In our setting, Alice and Bob perform the median of means of squares of decryp-
tions of E(

∑
i si (ai − bi), κ) values using a secure multiparty computation. (This

can be described with a small circuit). Correctness is easy to verify, using the fact
that the expected value of si s j is 1 if i = j and 0 otherwise. Privacy of the messages
is immediate by construction.

As for functional privacy, first observe that the result depends on 〈(a − b)i 〉,
but not otherwise on 〈ai 〉 or on 〈bi 〉. Also, Alice and Bob are allowed to learn
‖〈ai 〉 − 〈bi 〉‖2, that is, the Euclidean distance between their inputs. It is a well
known property of the Gaussian distribution that the product 〈si 〉 of Gaussians is a
spherically symmetrical distribution. Functional privacy follows immediately.

6. Secure Approximations of #P-Hard Functions

We now turn our attention to securely approximating natural #P-hard problems
where the goal is to achieve polynomial-time secure approximations. This is in
contrast to problems on massive data sets that we have been focusing on thus far
where polynomial-time exact computation is possible, and the goal is to achieve

11 The square of the L2 distance,
∑ |ai − bi |2, is equivalent to the L2 distance from the perspective of

computation and privacy. Henceforth, we consider the easier-to-read square of the L2 distance.
12 Actually, the samples are indistinguishable from finite-precision approximations to real-valued
Gaussian samples. This suffices; see Section 4.
13 As is the case throughout this article, we assume that an adversary with resources polynomial
in n cannot break the encryption. In this section, however, we need to assume that cryptographic
operations such as decryption (with the key) and homomorphic transformation can be done in time
polylogarithmic in n, that is, in time comparable to the time needed for other operations. Similarly,
we assume that a ciphertext is longer than a cleartext by at most a factor polylogarithmic in n. That is,
we assume exponential-strength cryptographic operations. If only weaker cryptographic operations
are available, the cryptographic operations become the efficiency bottleneck.

462 J. FEIGENBAUM ET AL.

lower complexity (sublinear in the Hamming distance case). Thus, throughout this
section, efficient should be interpreted as probabilistic polynomial time. By Theo-
rem 3.1, in the current setting, it is sufficient to design any efficiently computable
private approximation for the problem at hand.

We start by observing that artificially constructing #P-hard problems which sat-
isfy this property is straightforward. For example, consider any #P-hard problem
f (x) with output in the range [0, 2n]. Then g(x) = f (x) + 22n is computationally
equivalent to f (x), and, in particular, is computationally interesting if and only if
f is. Although, for many values of ε, 22n is a (1 ± ε)-factor private approximation
to g(x), this approximation does not approximate any interesting quantity. Thus, in
general, while some exact #P-hard problem may be interesting, their approximate
versions may not be.

In this section, we give private approximations to natural #P-hard problems most
notably the permanent, the most well known #P-complete problem (Section 6.1).
We also discuss extensions of our methods to other #P hard problems (Section 6.2).

6.1. SECURE APPROXIMATION OF THE PERMANENT. The permanent of a matrix
M is defined as per(M) = ∑

π

∏n
i=1 M(i, π (i)), where all permutations π on

{1, . . . , n} contribute to the sum. For a 0/1-valued matrix M , per(M) counts the
number of perfect matchings in the corresponding bipartite graph (defined by the
adjacency matrix M).

Counting the number of perfect matchings is a #P-hard problem. As one might
expect of #P-hard problems, the permanent has applications to a wide variety of
counting problems, including some that arise naturally in physics. Less obvious
(but true nevertheless) is that many natural problems reduce to the permanent in
an approximation-preserving way, namely, any approximation to the permanent
yields (a polynomially related) approximation to these problems. Clearly, a private
approximation to the permanent immediately yields a private approximation to
any problem that reduces to the permanent in an approximation-preserving way.
For example, the number of tilings of certain lattices can easily be expressed as a
permanent so that an approximation to the permanent gives an approximate count
of the number of tilings. As another example, the Pauling bond order of an edge in
a certain graph representation of a molecule reduces to a permanent computation
in an approximation-preserving way. We omit the definition of the Pauling bond
order here but note that it serves as a useful theoretical prediction of the physical
strength of a molecular bond.

In this section, we show how to privately compute an approximation of the
permanent of a shared matrix in polynomial time. Specifically, let f (M1, M2) =
per(M1+M2), where M1 and M2 are n×n matrices with n-bit nonnegative entries.14

By Theorem 3.1, it is sufficient to obtain an efficiently computable functionally
private approximation for the permanent.

6.1.1. NonSecure FPTAS for the Permanent. A string of results [Jerrum et al.
1986; Broder 1986; Jerrum and Sinclair 1989], culminating in the recent result of
Jerrum et al. [2004], provides efficient approximation algorithms for the permanent
of an arbitrary matrix with non-negative entries. We build on their techniques to
construct our functionally private approximation. For our purposes, the algorithm

14 We are slightly deviating from our previous notation in which n is the total length of each input.

Secure Multiparty Computation of Approximations 463

of Jerrum et al. [2004] may be viewed as consisting of the following stages.

(1) Design an efficient randomized algorithm A satisfying the following require-
ment. For any n×n matrix M and 1 ≤ i ≤ n, the output of A(M, i) is Bernoulli
random variable with success probability negligibly far from pi such that:

—
∏

i 1/pi = per(M);
—for all i , pi ≥ 1/ poly(n).

(2) Use sampling to approximate each pi efficiently.

(3) Multiply these approximations to obtain an approximation of the product (and
thus of 1/per(M)).

(4) Invert to get an approximation of per(M).

We note that the central technical component of Jerrum et al. [2004] (and its prede-
cessors) is the construction of the random variables in stage (1) which uses a Monte
Carlo Markov chain method to sample from the set of all perfect matchings on a
graph with a distribution that is statistically indistinguishable from uniform.

6.1.2. Achieving Functional Privacy. Our goal is to obtain a functionally private
approximation to the permanent. Considering the algorithm of Jerrum et al. [2004]
just outlined, we first observe that the sampling-based approximation of each pi
given by stage (2) is already functionally private with respect to pi . However, the
product of approximations does potentially leak information about its factors (e.g.,
the standard deviation depends on the factors), and, thus, stage (4) results in a
nonprivate output.

To avoid this leakage, one might be tempted to estimate the product at once;
that is, if Xi is a Bernoulli random variable with success probability pi , one might
be tempted to estimate the expectation of Y = ∏

Xi by sampling Y . This indeed
results in an estimator with the right distribution perfectly simulatable from the
product

∏
pi . However, approximating the product in this way is not efficient as

the product may be exponentially small (thus using only a polynomial number of
samples, the produced approximation is likely to be zero).

Our goal then, reduces to designing an efficient, functionally private approxima-
tion for the product

∏
1/pi given coins with biases pi . The bulk of the technical

work involves designing, for each i , a coin with bias negligibly far from p1/n
i . This

is done by manipulating biases of coins to produce coins with new biases. We first
describe some elementary manipulations and then combine them to construct the
nth root. Finally, in Theorem 6.1, we show how to use the nth root construction.

Given success probabilities q0, q1, and q2, let Ai denote an event with probability
qi for i = 0, 1, 2. One can form an event with success probability q0q1 by taking
the joint event A0 A1 = A0 ∧ A1 of A0 and A1, one can form an event with success

probability 1 − q0 by taking the complementary event A0 of A0, and one can form
an event with success probability q0q1 + (1 − q0)q2—a convex combination—by
taking event A1, if A0 holds, and taking event A2, if A0 fails, an event that we
denote by (A0 ? A1 : A2). In this way, we have implemented functions on the
real numbers q0, q1, q2 by manipulating events algorithmically without the need
to know q0, q1, q2. We refer to the functions x �→ 1 − x , (x, y) �→ xy, and
(x, y, z) �→ xy + (1 − x)z as elementary manipulations of biases.

We now use these elementary manipulations to construct an event with success
probability negligibly far from p1/n , given a coin with (unknown) bias p, which is

464 J. FEIGENBAUM ET AL.

used to generate independent events with success probability p. We use the Taylor

series for x1/n at x = 1, which is
∑

j (−1) j
(

1/n
j

)
(1− x) j . The coefficient of (1− x) j

is

(−1) j

(
1/n

j

)
= (−1) j

(
1
n

) (
1
n − 1

) (
1
n − 2

) · · · (1
n − j + 1

)
j!

= −
(

1
n

) (
1 − 1

n

) (
2 − 1

n

) · · · (j − 1 − 1
n

)
j!

= − 1

nj

(
1 − 1

n

) (
1 − 1

2n

)
· · ·

(
1 − 1

(j − 1)n

)
,

which is negative and is at most 1/(nj) in absolute value. Thus, the sum of the
absolute values of all but the leading coefficient in a O(nk)-term Taylor poly-

nomial T (x) is at most
∑kn

j=1
1
nj ≤ log(kn)

n which we can assume is less than 1.

(Otherwise, k > 2n/n, and we can solve the permanent exactly in time poly-
nomial in k, by Minc [1982].) Thus T (x) is 1 less a subconvex combination of
(1 − x), (1 − x)2, . . . , (1 − x)kn . We now make two important observations. First,
for x ≥ 1/(2n), an O(nk)-term Taylor expansion for x1/n around x = 1 has error
bounded by 2−2k = O(2−k/n). So O(nk) terms suffice for our purposes. Second,
an -term approximation to T (x) can be written as a circuit of gates of the form
x �→ 1 − x , (x1, x2) �→ x1x2, and (x, y) �→ r x + (1 − r)y; all of these gates
compute functions that are implementable as elementary manipulations of biases
as desired. It follows that, given a coin with bias negligibly far from unknown p,
one can construct an experiment with success probability negligibly far from p1/n ,
using tosses of the original coin. From the form of the expression for T (x), it fol-
lows that we need at most poly(nk) tosses of the original coin and at most poly(nk)
computation.

As an illustration, consider the three-term expansion to the square root of x at
x = 1, namely

√
x ≈ T (x) = 1 − (1 − x)

2
− (1 − x)2

8
.

Isolating the leading 1 and using convex combinations instead of sums, we get

T (x) = 1 −
[

1

2
(1 − x) + 1

2

(1 − x)2

4

]
.

Suppose event A has unknown probability p, and Ft (a coin flip) has success
probability t . Then the following event, which can be constructed directly from
the above expression for T (x), has probability T (p) where all occurrences in the
formula of A’s and F’s are independent.

E = (F1/2 ? A : A
2
F1/4). (3)

For a polynomial of degree , the appropriate generalization of Event (3) uses just
O(2) experiments of type A (i.e., at most O(2) random variables, all independent
and distributed identically to the indicator random variable for A) and constantly
many F experiments for each A experiment, though, in general, constructing Ft
from F1/2 may require
(k) repetitions to achieve the desired accuracy (1 ± 2−k).

Secure Multiparty Computation of Approximations 465

The coefficients other than the leading 1 sum to less than 1 so the sum of this part
of the series can be implemented using the (· ? · : ·) construction and the product
construction.

Finally, we show how to use the new p �→≈ p1/n construction. Because∏
p1/n

i = 1/per(M)1/n ≥ 1/ poly(n), this product can be efficiently approximated

by sampling directly from the joint distribution of coins with biases p1/n
1 , . . . , p1/n

n ,
and, by raising to the power −n, we are done. This yields the following theorem.

THEOREM 6.1. Let f (M1, M2) = per(M1 + M2), where M1, M2 are n × n
matrices with n-bit non-negative entries. Then, for any ε(n) ≥ 1/ poly(n), there is
a polynomial-time private ε(n)-approximation for f .

PROOF. Consider the overall algorithm from Jerrum et al. [2004] described
earlier, in which we want to compute

∏
1/pi and, for each i , we have a coin with

bias within the factor (1 ± 2−k/n) of pi . Now consider the construction described
earlier in which we construct an event Ai with probability p′

i within the factor
(1 ± 2−k/n) of p1/n

i , given a coin with bias pi . Then the joint event
∧

i Ai has

probability (
∏

pi)
1/n(1± O(2−k)). Because each pi is at least 1/ poly(n) in Jerrum

et al. [2004], so is their geometric mean so that Pr(
∧

i Ai) ≥ 1/ poly(n). Using
Lemma 2.1, estimate Pr(

∧
i Ai) from poly(n log(1/δ)/ε) samples, getting per(M1+

M2)−1/n(1 ± O(ε/n)) with probability at least 1 − δ, and then take the −n power.
By the preceding discussion, the result is efficient, approximately correct, and
private.

6.2. EXTENSIONS TO OTHER #P-COMPLETE PROBLEMS. As discussed at the start
of Section 6.1, secure approximation of the permanent immediately implies secure
approximation for the large array of problems that reduce to the permanent in an
approximation-preserving manner, some examples of which were presented. We
now turn to showing how to generalize the techniques we used in the permanent
approximation to work for a more general class of problems.

6.2.1. General Secure Approximations Based on Monte-Carlo Methods. Our
proof for the permanent built on a (nonsecure) approximation based on Monte Carlo
Markov chains. We now want to extend our techniques to work for other intractable
functions f (a, b) that have polynomial-time approximation schemes based on a
similar Monte Carlo Markov chain approach. Indeed the technique of rapidly mixing
Markov chains is inherently suited for use in functionally private approximations
since by the definition of rapidly mixing, the Markov chain supports sampling
from a distribution of items that is statistically indistinguishable from uniform.
If we then sample to estimate the fraction of items satisfying some property, the
resulting estimate depends only on the fraction, not otherwise on the set of items
or the input used to generate them. Often, as in the case of the permanent, we do
not want to estimate the fraction of objects satisfying some property but rather
some function of several such fractions (such as the product). To this end, our
techniques of manipulating probabilities and using j th roots (through a Taylor
expansion estimation) are useful as described in more detail in the following.

We assume that there is an underlying size n and security parameter k. Com-
putations must be correct to within the factor (1 ± ε) with probability 3/4. Two
distributions are statistically indistinguishable if their statistical difference is at
most 2−k (and a condition of similar strength in k applies for computational

466 J. FEIGENBAUM ET AL.

indistinguishability). Polynomial time means time polynomial in n, k, and 1/ε,
and is denoted here by poly. The success probability 3/4 can be boosted up to 1−δ
by performing O(log(1/δ)) repetitions.

We begin with a definition that intuitively says that ψ is an approximation-
preserving function.

Definition 9. A deterministic real function ψ is polynomially relatively con-
tinuous if, for all x and for all ε > 0, there exists η > 1/ poly such that
ψ(x · (1 ± η)) ⊆ ψ(x) · (1 ± ε).

LEMMA 6.2. Let ψ be a polynomially relatively continuous function that is
easy to compute and to invert. Suppose f (a, b) = ψ(Pr(E)), Pr(E) ≥ 1/ poly,
where E is an event (parameterized by a and b) under a probability distribution,
D, such that one can sample in polynomial time from a distribution that is statis-
tically (respectively, computationally) indistinguishable from D. Then f (a, b) has
a statistically (respectively, computationally) functionally private approximation
computable in polynomial time.

PROOF. One can estimate Pr(E) to within the factor (1 ± η) in polynomial time
using Lemma 2.1 and then apply ψ . To see that this is functionally private, note that
from f (a, b) alone a sampling algorithmS can construct an
(k)-bit approximation
to Pr(E) = ψ−1(f (a, b)). It can then apply Lemma 2.1 to a Bernoulli random
variable with success probability negligibly far from Pr(E) and apply ψ . The result
follows.

Before proceeding, we consider another transformation, not needed for the
permanent.

LEMMA 6.3. Fix known r ≥ 1 and small τ1, τ2 > 0. Suppose we can make
independent tosses of a coin with unknown bias p, where p ≥ τ1 ≥ 1/ poly.
Suppose further that r p is known to be at most 1 − τ2 ≤ 1 − 1/ poly. Then we can
construct a coin with bias indistinguishable from r p.

PROOF. Suppose we are given a number r and a coin with bias p bounded as
before. We enrich the coin by the factor r when we do the following experiment.
Toss the original coin N ≈ (k + ln(1/τ1))r2/τ 2

2 times, and let S denote the number
of heads obtained. Toss one more coin, with bias min(1, r S/N), and output the
result of the last coin. Let p′ denote the overall probability of success. We now
show that p′ = r p(1 ± 2−k).

Write the probability that the constructed coin succeeds as

p′ =
∑

s

Pr(1|S = s) Pr(S = s) =
∑

s

min
(

1,
rs

N

)
Pr(S = s).

One direction is easy, namely,

p′ =
∑

s

min

(
1,

rs

N

)
Pr(S = s)

≤
∑

s

rs

N
Pr(S = s)

= r

N
E[S]

= rp,

Secure Multiparty Computation of Approximations 467

as desired. Thus we need to show that p′ ≥ rp(1 − 2−k) which we do by bounding
the probability that min(1, r S

N) = 1.
Note that r S/N > 1 if and only if S exceeds its mean of pN by at least (1/r −

p)N . By the Chernoff inequality, because (1/r − p) = (1 − rp)/r ≥ τ2/r , this

occurs with probability at most e−�((1/r−p)2 N) ≤ e−�(τ 2
2 N/r2), and, next we want this

to be less than τ12−k . For that, it suffices that N = �(k + log(1/τ1))r2/τ 2
2 .

Next observe that if Bp′ is a Bernoulli random variable with success probability
p′, then

p′ = E[Bp′] =
∑

s

min(1, rs/N) Pr(S = s)

=
∑

s

(rs/N) Pr(S = s) −
∑

rs/N>1

(rs/N − 1) Pr(S = s)

≥
∑

s

(rs/N) Pr(S = s) −
∑

rs/N>1

(rs/N) Pr(S = s)

≥ r

(∑
s

(s/N) Pr(S = s) −
∑

rs/N>1

(s/N) Pr(S = s)

)

≥ r

(∑
s

(s/N) Pr(S = s) −
∑

rs/N>1

Pr(S = s)

)

≥ r (p − Pr(r S/N > 1))

≥ r (p − τ1/2k)

≥ rp(1 − 2−k).

We now return to general Monte Carlo Markov chain methods. In general, as in
the case of the permanent, a Monte Carlo Markov chain approach to approxima-
tions involves making several estimates from separate Markov chain experiments
and combining the estimates in an arbitrary way. While we cannot claim that any
function with a Monte Carlo Markov chain-based approximation also has a func-
tionally private approximation, we do exhibit functionally private approximations
for a large class of such functions.

THEOREM 6.4. Let ψ be a polynomially relatively continuous function that is
easy to compute and to invert. Suppose f (a, b) = ψ(φ(Pr(E1), Pr(E2), . . . Pr(E j))),
where each event has probability at least 1/ poly in a probability distribution that
can be nearly sampled in polynomial time, and where φ is a polynomial-sized,
constant-depth arithmetic formula with gates of the following form:

—t → 1 − t
—t1, t2 → t1t2
—⊥ → r , where r ∈ [1/ poly, 1 − 1/ poly] (Here ⊥ denotes the empty input. The

number r must be efficiently constructible; for example, the th bit of r should
be computable in time polynomial in .)

—(t1, t2, . . . , t) → ∑
i ri ti , where

∑
i ri = 1

—t → tr , for 1/ poly ≤ r ≤ 1

468 J. FEIGENBAUM ET AL.

—t → r t , for r ≥ 1 under the promise that 1/ poly < t and rt < 1 − 1/ poly

—(t1, t2, . . . , t) → ∏
i tri

i , where
∑

i ri = 1 and each ri > 1/ poly.

Then f (a, b) has a functionally private approximation that can be computed in
polynomial time.

PROOF. We show that each gate in φ satisfies the following invariant: If each
input takes values in [1/ poly, 1 − 1/ poly], each input can be approximated in
polynomial time by sampling, and, for each input, there is a polynomial-time-
constructible Bernoulli experiment with success probability negligibly far from the
ideal value, then the output satisfies the same three conditions:

(1) it takes values in [1/ poly, 1 − 1/ poly],

(2) it can be approximated in polynomial time by sampling,

(3) it has associated with it a Bernoulli experiment with success probability negli-
gibly far from the ideal value.

The first conclusion is clear for each of the gates. The second conclusion follows
from the first and third conclusions, the hypothesis about estimation of events Ei
by sampling, and Lemma 2.1. As for the third conclusion, we consider the allowed
types of gates in turn. We show, for each gate g, that we can construct a coin with
bias differing negligibly from the output value of g, given coins with biases equal to
the input values to g such that the total number of coins required by g is polynomial.
Each gate was discussed in Section 6.1 or in Lemma 6.3.

As in Lemma 6.2, it follows that we can estimate f by estimating φ and then
applying ψ . Also as in Lemma 6.2, to see that this approximation is functionally
private, from f (a, b), a sampling algorithm S can compute

ψ−1(f (a, b)) = φ(Pr(E1), Pr(E2), . . . Pr(E j)),

apply Lemma 2.1 to a Bernoulli random variable with success probability indistin-
guishable from ψ−1(f (a, b)), then apply ψ . The result follows.

Appendix

A. General Definition of Secure Computation

In this section, we sketch the standard simulation-based approach for defining se-
cure computation. This definition generalizes Definition 3 in that it also addresses
the case of multiple parties and the case of an active (malicious) adversary. Our
definition refers to the stand-alone setting (i.e., it does not consider protocol com-
position) and refers to the case of a nonadaptive adversary who picks the set of
corrupted parties in advance. We do not address the relaxed notion of security with
abort, which is necessary when the adversary is active and may corrupt at least half
of the parties. We refer the reader to Canetti [2000, 2001] and Goldreich [2004] for
more general and detailed definitions.

Let π be an m-party protocol and let A be an adversary corrupting at most t
parties. The following definition compares the interaction of the adversary in the
real-life protocol with the interaction of an adversary with an ideal process for
evaluating the target function f .

Secure Multiparty Computation of Approximations 469

Real-Life Model. The interaction of the adversary in the real-life model is
captured by a random variable REALπ,A(x), set to the view of A when attacking
the execution of π on input x, concatenated with the outputs of the uncorrupted
parties and their identities. The adversary’s view includes all inputs, random inputs,
and messages viewed by corrupted parties. The concatenation of this view with the
outputs on uncorrupted parties serves two purposes. First, it captures the information
that the adversary may learn about the outputs of uncorrupted parties. Second, it
captures the correctness requirement of the protocol (possibly in the presence of an
active adversary who tries to alter the outputs of uncorrupted parties).

Ideal Process. The ideal process is parameterized by a target function f which
may be a general, possibly randomized, mapping from m inputs to m outputs. In
our context, it is convenient to restrict f to a deterministic, single-output function.
An adversary A′ corrupting the ideal process is referred to as an ideal-process
adversary or a simulator. The ideal process proceeds as follows. First, S decides
on a set T of at most t parties to corrupt, where t is the given security threshold. If
the adversary is active, it may first modify the inputs of the parties it corrupts based
on their observed values. Subsequently, all parties send their inputs to a trusted party
who evaluates the function f and hands each of its outputs to the corresponding
party. (If f is a single-output randomized function, then our convention is that each
party receives an identical instance of its output.) Based on the inputs and outputs
of corrupted parties, the adversary produces some output which is supposed to
emulate the transcript of the real-life protocol. The interaction of the adversary A′
with the f -ideal process on input x is captured by a random variable IDEALπ,A′, f (x),
containing the adversary’s output concatenated with the outputs of uncorrupted
parties and their identities.

We now formalize our definition of a secure protocol.

Definition 10. A protocol π is said to be a perfectly/statistically/
computationally t-secure protocol for f , if for any adversary A corrupting at most t
parties in the real-life model, there exists a probabilistic polynomial-time simulator
A′ corrupting at most t parties in the ideal process, such that

{REALπ,A, f (x)}x∈X ≡ {IDEALπ,A′, f, f̂ (x)}x∈X ,

where “≡” denotes perfect/statistical/computational indistinguishability. In the case
of computational security, the adversary A is restricted to probabilistic polynomial
time. In the other two cases, it may be computationally unbounded and the time
resources of A′ are allowed to be polynomial in those of A.

In this article, we consider by default the case of a computationally 1-secure two-
party protocol, whose security holds against a passive adversary.

B. A Liberal Definition of Secure Approximation

In this section, we detail the general formulation of the liberal definition of secure
approximations discussed in Section 3.1.

The liberal definition of secure approximations modifies the simulation-based
definition of secure (exact) computation from Appendix A as follows. The real
model remains unchanged. The f -ideal model is modified to what we call the
(f ′, f̂)-ideal model. For a single-output, possibly randomized function f̂ , the

470 J. FEIGENBAUM ET AL.

corresponding random variable IDEALπ,A′, f ′, f̂ (x) is defined similarly to
IDEALπ,A′, f (x) from Appendix A with the following modification. Instead of send-
ing the values of the single function f to all parties, the trusted party evaluates
both f ′ and f̂ on the inputs it receives and sends the two values to all parties. All
uncorrupted or passively corrupted parties output the value of f̂ alone.

The function f ′ models the information that we allow the adversary to learn,
whereas f̂ captures the correctness requirement for the outputs of uncorrupted
parties. Our liberal definition lets f ′ be the same as the target function f by default.
This is philosophically justified by the fact that when approximating a function f ,
one is implicitly willing to pay the privacy compromise implied by the knowledge
of f . However, in some cases it may be desirable to choose f ′ so that it reveals
strictly less information than f ; this formulation provides a convenient means for
formalizing the type of extra security provided in such cases. Taking f ′ = f̂ yields
precisely the strict notion of Definition 6.

We now give the general formulation of the liberal definition of a secure approx-
imation protocol.

Definition 11 (Secure Approximation: General Liberal Definition). A proto-
col π is said to be a perfectly/statistically/computationally t-secure P-
approximation protocol for f in the liberal sense, if there exists a functionally
private P-approximation f̂ of f such that the following holds. For any probabilis-
tic polynomial-time adversary A corrupting at most t parties in the real-life model,
there exists a probabilistic polynomial-time simulator A′ (corrupting at most t
parties) in the ideal process, such that

{REALπ,A, f (x)}x∈X ≡ {IDEALπ,A′, f, f̂ (x)}x∈X ,

where “≡” denotes perfect/statistical/computational indistinguishability.

In this article, we consider by default the case of a computationally 1-secure two-
party protocol whose security holds against a passive adversary.

ACKNOWLEDGMENTS. We thank the anonymous TALG referees for many helpful
comments and suggestions. We thank Dana Randall for suggesting applications of
the permanent described in Section 6.1 and Jessica Fong for helpful discussions
and collaboration in early stages of this work. Finally, we are grateful to Adam
Smith for helpful discussions and pointers concerning the complexity of decoding
Reed-Solomon codes from their syndrome.

REFERENCES

AGRAWAL, R., AND SRIKANT, R. 2000. Privacy preserving data mining. In Proceedings of the ACM
SIGMOD Conference on Management of Data. ACM Press, 439–450.

ALON, N., GIBBONS, P. B., MATIAS, Y., AND SZEGEDY, M. 2002. Tracking join and self-join sizes in
limited storage. J. Comput. Syst. Science 64, 3, 719–747.

ALON, N., MATIAS, Y., AND SZEGEDY, M. 1999. The space complexity of approximating the frequency
moments. J. Comput. Syst. Science 58, 1, 137–147.

ALON, N. AND SPENCER, J. 1992. The Probabilistic Method. John Wiley.
BAR-YOSSEF, Z. 2004. Personal Communication.
BEAVER, D. 1991. Foundations of secure interactive computing. In Advances in Cryptology

(CRYPTO’91) Lecture Notes in Computer Science, vol. 576. Springer-Verlag, 377–391.
BEAVER, D., MICALI, S., AND ROGAWAY, P. 1990. The round complexity of secure protocols. In Pro-

ceedings of the 22th Annual ACM Symposium on the Theory of Computing. 503–513.

Secure Multiparty Computation of Approximations 471

BEIMEL, A., CARMI, P., NISSIM, K., AND WEINREB, E. 2006. Private approximation of search problems.
In Proceedings of the 38th Annual ACM Symposium on the Theory of Computing. 119–128.

BEN-OR, M., GOLDWASSER, S., AND WIGDERSON, A. 1988. Completeness theorems for non-
cryptographic fault-tolerant distributed computation. In Proceedings of the 20th Annual ACM Symposium
on the Theory of Computing. ACM Press, 1–10.

BRODER, A. 1986. How hard is it to marry at random? In Proceedings of the 18th Annual ACM Symposium
on the Theory of Computing. 50–58. (Erratum in 20th STOC, p. 551.)

CACHIN, C., MICALI, S., AND STADLER, M. 1999. Computationally private information retrieval with
polylogarithmic communication. In Advances in Cryptology (EUROCRYPT’99). Lecture Notes in Com-
puter Science, vol. 1592. Springer-Verlag, 404–414.

CANETTI, R. 2000. Security and composition of multiparty cryptographic protocols. J. Cryptology 13, 1,
143–202.

CANETTI, R. 2001. Universally composable security: A new paradigm for cryptographic protocols. In
Proceedings of the 42nd IEEE Symposium on Foundations of Computer Science. 136–145.

CANETTI, R., ISHAI, Y., KUMAR, R., REITER, M., RUBINFELD, R., AND WRIGHT, R. 2001. Selective
private function evaluation with applications to private statistics. In Proceedings of the 20th Annual ACM
Symposium on Principles of Distributed Computing. ACM Press, 293–304.

CHAUM, D., CRÉPEAU, C., AND DAMGÅRD, I. 1988. Multiparty unconditionally secure protocols. In
Proceedings of the 20th Annual ACM Symposium on the Theory of Computing. 11–19.

CHOR, B., GOLDREICH, O., KUSHILEVITZ, E., AND SUDAN, M. 1998. Private information retrieval. J.
ACM 45, 965–981.

CORMODE, G., PATERSON, M., SAHINALP, S., AND VISHKIN, U. 2000. Communication complexity of
document exchange. In the 11th Annual ACM/SIGACT-SIAM Symposium on Discrete Algorithms. 197–
206.

DIMACS. Special year on massive data sets. 1997–1999. http://dimacs.rutgers.edu/
SpecialYears/1997_1998/.

DODIS, Y., REYZIN, L., AND SMITH, A. 2004. Fuzzy extractors: How to generate strong keys from bio-
metrics and other noisy data. In Advances in Cryptology (EUROCRYPT’04) Lecture Notes in Computer
Science, vol. 3027. Springer-Verlag, 523–540.

EVEN, S., GOLDREICH, O., AND LEMPEL, A. 1985. A randomized protocol for signing contracts. Comm.
ACM 28, 637–647.

FEDER, T., KUSHILEVITZ, E., NAOR, M., AND NISAN, N. 1995. Amortized communication complexity.
SIAM J. Comput. 24, 4, 736–750.

FEIGENBAUM, J., ISHAI, Y., MALKIN, T., NISSIM, K., STRAUSS, M., AND WRIGHT, R. N. 2001. Secure
multiparty computation of approximations. In Proceedings of the 28th International Colloquium on
Automata, Languages and Programming. Springer-Verlag, 927–938.

FEIGENBAUM, J., KANNAN, S., STRAUSS, M., AND VISWANATHAN, M. 2002. An approximate L1-
difference algorithm for massive data streams. SIAM J. Comput. 32, 1, 131–151.

FREEDMAN, M., NISSIM, K., AND PINKAS, B. 2004. Efficient private matching and set intersection. In
Advances in Cryptology (EUROCRYPT’04) Lecture Notes in Computer Science, vol. 3027. Springer-
Verlag, 1–19.

GAVINSKY, D., KEMPE, J., AND DE WOLF, R. 2004. Quantum communication cannot simulate a public
coin. http://xxx.lanl.gov/abs/quant-ph/0411051.

GENTRY, C., AND RAMZAN, Z. 2005. Single-database private information retrieval with constant com-
munication rate. In Proceedings of the 32nd International Colloquium on Automata, Languages and
Programming. 803–815.

GERTNER, Y., ISHAI, Y., KUSHILEVITZ, E., AND MALKIN, T. 2000. Protecting data privacy in private
information retrieval schemes. J. Comput. Syst. Sciences 60, 3, 592–692.

GOLDREICH, O. 2004. Foundations of Cryptography Volume II: Basic Applications. Cambridge Univer-
sity Press, Cambridge, UK.

GOLDREICH, O., MICALI, S., AND WIGDERSON, A. 1987. How to play any mental game. In Proceedings
of the 19th Annual ACM Symposium on the Theory of Computing. ACM Press, 218–229.

GOLDWASSER, S., AND MICALI, S. 1984. Probabilistic encryption. J. Comput. Syst. Sciences 28, 270–299.
HALEVI, S., KUSHILEVITZ, E., KRAUTHGAMER, R., AND NISSIM, K. 2001. Private approximations of

NP-hard functions. In Proceedings of the 33th Annual ACM Symposium on the Theory of Computing.
550–559.

INDYK, P. 2000. Stable distributions, pseudorandom generators, embeddings and data stream computa-
tion. In Proceedings of the 41st IEEE Symposium on Foundations of Computer Science. 189–197.

472 J. FEIGENBAUM ET AL.

INDYK, P., AND WOODRUFF, D. P. 2006. Polylogarithmic private approximations and efficient matching.
In Proceedings of the 3rd Theory of Cryptography Conference. 245–264.

ISHAI, Y., KUSHILEVITZ, E., OSTROVSKY, R., AND SAHAI, A. 2004. Batch codes and their applications.
In Proceedings of the 36th Annual ACM Symposium on the Theory of Computing. 262–272.

JERRUM, M. AND SINCLAIR, A. 1989. Approximating the permanent. SIAM J. Comput. 18, 6, 1149–1178.
JERRUM, M., SINCLAIR, A., AND VIGODA, E. 2004. A polynomial-time approximation algorithm for the

permanent of a matrix with nonnegative entries. J. ACM 51, 4, 671–697.
JERRUM, M., VALIANT, L., AND VAZIRANI, V. 1986. Random generation of combinatorial structures from

a uniform distribution. Theoret. Comput. Science 43, 169–188.
KALTOFEN, E. AND SHOUP, V. 1995. Subquadratic-time factoring of polynomials over finite fields. In

Proceedings of the 27th Annual ACM Symposium on the Theory of Computing. 398–406.
KATZ, J., OSTROVSKY, R., AND SMITH, A. 2003. Round efficiency of multi-party computation with a

dishonest majority. In Advances in Cryptology (EUROCRYPT’03) Lecture Notes in Computer Science,
vol. 2656. Springer-Verlag, 578–595.

KUSHILEVITZ, E. AND NISAN, N. 1997. Communication Complexity. Cambridge University Press, Cam-
bridge, UK.

KUSHILEVITZ, E. AND OSTROVSKY, R. 1997. Replication is NOT needed: SINGLE database,
computationally-private information retrieval. In Proceedings of the 38th IEEE Symposium on Foun-
dations of Computer Science. 364–373.

KUSHILEVITZ, E., OSTROVSKY, R., AND RABANI, Y. 2000. Efficient search for approximate nearest neigh-
bor in high dimensional spaces. SIAM J. Comput. 30, 2, 457–474.

LINDELL, Y. 2003. Parallel coin-tossing and constant-round secure two-party computation. J. Cryp-
tol. 16, 3, 143–184.

LINDELL, Y. AND PINKAS, B. 2002. Privacy preserving data mining. J. Cryptol. 15, 3, 177–206.
LIPMAA, H. 2005. An oblivious transfer protocol with log-squared communication. In Proceedings of

the 8th Information Security Conference (ISC’05). J. Zhou and J. Lopez, Eds. Lecture Notes in Computer
Science, vol. 3650. Springer-Verlag, 314–328.

MANN, E. 1998. Private access to distributed information. M.S. thesis, Technion (Israel Institute of
Technology), Haifa, Israel.

MICALI, S. AND ROGAWAY, P. 1991. Secure computation. In Advances in Cryptology (CRYPTO’91)
Lecture Notes in Computer Science, vol. 576. Springer-Verlag, 392–404.

MINC, H. 1982. Permanents. In Encyclopedia of Mathematics and its Applications, vol. 6. Addison-
Wesley.

NAOR, J. AND NAOR, M. 1993. Small-bias probability spaces: efficient constructions and applications.
SIAM J. Comput. 22, 4, 838–856.

NAOR, M. AND NISSIM, K. 2001. Communication preserving protocols for secure function evaluation.
In Proceedings of the 33th Annual ACM Symposium on the Theory of Computing. 590–599.

NAOR, M. AND PINKAS, B. 2005. Computationally secure oblivious transfer. J. Cryptol. 18, 1, 1–35.
PASS, R. 2004. Bounded-concurrent secure multi-party computation with a dishonest majority. In Pro-

ceedings of the 36th Annual ACM Symposium on the Theory of Computing. 232–241.
RABIN, M. O. 1981. How to exchange secrets by oblivious transfer. Tech. rep. TR-81, Aiken Computation

Laboratory, Harvard University, Cambridge, MA.
STERN, J. P. 1998. A new and efficient all-or-nothing disclosure of secrets protocol. In Advances in

Cryptology (ASIACRYPT’98) Lecture Notes in Computer Science, vol. 1514. Springer-Verlag, 357–371.
YAO, A. 1982. Protocols for secure computation. In Proceedings of the 23rd IEEE Symposium on Foun-

dations of Computer Science. 160–164.
YAO, A. 2003. On the power of quantum fingerprinting. In Proceedings of the 35th Annual ACM Sym-

posium on the Theory of Computing. 77–81.

RECEIVED SEPTEMBER 2004; ACCEPTED SEPTEMBER 2005

ACM Transactions on Algorithms, Vol. 2, No. 3, July 2006.

