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ABSTRACT

We present a framework for the design and analysis of probing
methods to monitor network performance, an important technique
for collecting measurements in tasks such as fault detection. We
use this framework to study the interaction among numerous, pos-
sibly conflicting, optimization goals in the design of a probing al-
gorithm. We present a rigorous definition of a probing-algorithm
design problem that can apply broadly to network-measurement
scenarios. We also present several metrics relevant to the anal-
ysis of probing algorithms, including probing frequency and net-
work coverage, communication and computational overhead, and
the amount of algorithm state required. We show inherent tradeoffs
among optimization goals and give hardness results for achieving
some combinations of optimization goals. We also consider the
possibility of developing approximation algorithms for achieving
some of the goals and describe a randomized approach as an al-
ternative, evaluating it using our framework. Our work aids future
development of low-overhead probing techniques and introduces
principles from IP-based networking to theoretically grounded ap-
proaches for concurrent path-selection problems.
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1. INTRODUCTION
Operators must monitor performance of their networks for many

reasons, e.g., providers may want to ensure that customers’ service-
level agreements (SLAs) are being fulfilled [22], or administrators
of a datacenter may want to detect and diagnose abnormalities af-
fecting latency-critical applications [20]. The measurement data
used to analyze performance or to detect anomalies can be inferred
from observing existing traffic, or they can be collected from an-
alyzing the properties of test packets (or probes) injected into the
network. Both types of methods have benefits and drawbacks. For
example, the former, more passive, type of measurement is lower
cost but restricts analysis to data that happens to be available. Prob-
ing can give more current and accurate information about the state
of the network; but, realizing the benefits of probing without in-
curring substantial overhead involves important design decisions,
because the injected test traffic can consume network resources.
Thus, the design of low-overhead probing methods is an important,
ongoing area of research.

However, the “correct” definition of “low-overhead” is unclear,
because overhead of a probing method can be described in many
ways, e.g.: the raw amount of additional probing traffic, the dis-
tribution of probing traffic among nodes and links in the network,
the number of monitoring stations involved, the amount of state
required to coordinate probing, etc. Optimizing any one of these
measures may come at the detriment of another. More importantly,
there may be tradeoffs among these overhead-minimization goals
and the quality of the measurements obtained or the scope of the
network that can be monitored properly. We demonstrate several
such tradeoffs in this paper.
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Our goal in this paper is neither to posit a single “correct” no-
tion of overhead nor is it to propose a single probing method that
achieves the “correct” balance among overhead and measurement
quality. Instead, we seek to build on work that investigates trade-
offs in probing-method design (e.g., [3,5,18]) by beginning a thor-
ough exploration of the space of probing algorithms and the various
tradeoffs inherent in that space. A good deal of research has studied
how to infer performance characteristics from end-to-end measure-
ments (the field of network tomography, e.g., [8, 10]), and how to
use network measurements to diagnose traffic anomalies (e.g., [9]).
However, research that studies the design and impact of the mea-
surement technique itself is more sparse and generally considers a
small set of optimization goals at a time. In this paper, we attempt
to understand the relationships among a broad set of optimization
goals in a more general sense. Towards this end, we focus here on
unicast probing along traffic-routable paths that is used to collect
end-to-end measurements; we present, and work with, an abstrac-
tion of the probing-design problem that is general enough to cap-
ture the problem of designing a probing strategy for a variety of
tasks, including anomaly detection or tomography. This allows us
to investigate the tradeoffs in the design of probing techniques.

1.1 A motivating example
Probing can be used for detecting performance anomalies by

recording transmission failures, slow speeds, etc., as probe pack-
ets travel along paths in the network. It is unreasonable to probe
all possible paths all the time; this would detect anomalies quickly,
but it could unreasonably burden the network with probing traffic
(and even exacerbate problems that it might be used to detect). In-
stead, consider a minimum set-covering approach (a variant of that
used in [5]): Precompute (or approximate) a minimum-size subset
of paths that includes all the links of interest, and then probe only
these paths at repeated time intervals. After the precomputation
phase, the probing can be decentralized with little state (because
source nodes for probing packets need only keep track of the des-
tinations of precomputed probing paths); in addition, it is guaran-
teed to measure every link of interest, resulting in reasonably fast
anomaly detection. However, as shown by Barford et al. [3], this
procedure can create unnecessary load on links, probing them from
multiple sources in the same time interval. And, as we show in
Sec. 6, because finding a minimal set of paths is NP-complete, it
may be unreasonable to perform the computation (even though a
O(logn)-approximation exists) whenever the network topology or
routing changes.

Alternately, Barford et al. [3] propose an algorithm that balances
the tradeoff among two important goals: ensuring that each net-
work link is probed “often enough” (parameterized by an impor-
tance value Iℓ for each link ℓ) and ensuring that the the link load is
kept low (measured by the number of concurrent probing streams
transiting a link). Their experimental results show an improvement
in load over the minimal set-covering technique. The algorithm se-
lects a subset of paths to probe in each time interval based on a
dynamic weight that helps track which links were probed in previ-
ous intervals; in this way, paths that contain links that have not been
probed in some time (relative to their importance) will be chosen,
but links will tend not to be “over-probed.” More formally, initial-
ize the dynamic weight wℓ of each link ℓ to be 0, and let the weight
of a path be the sum of the weights of the links it comprises. Then
in each timestep, for fixed parameters k and K, k paths selected
randomly from the K paths of largest weight are probed. For the
next timestep, link weights are updated in the following manner:
the weight of every link just probed is set to 0; the weight of every

other link is updated to wℓ
′ = min

(

Iℓ,wℓ+
Iℓ

(N−1)/k

)

, where N is

the total number of paths that can be probed.
Although this algorithm achieves a balance among the two im-

portant goals mentioned above, it comes at the expense of other
algorithm properties that might be desirable; in particular, there
are properties that the set-covering approach has that this algorithm
does not. First, this algorithm requires some additional, constantly
updated, state, because the dynamic link weights used for path se-
lection must be adjusted at every timestep. Second, it requires some
amount of centralization or communication among the nodes send-
ing probing packets, because the number of paths selected and the
updates to link weights must be coordinated; nodes cannot meet the
algorithm’s specification by independently deciding when to send
probing packets. Third, we show that there are inputs for which this
algorithm may never probe some particular links. (We give such an
example in Sec. 7.1.2.)

It is not clear whether the combinations of properties achieved by
these two different approaches are mutually exclusive or not. More
generally, it is not clear from previous work what, if any, tradeoffs
are inherent in the design of probing algorithms. This paper be-
gins to address these types of questions by identifying algorithmic
properties of interest and investigating their relationships.

1.2 Our contributions
In this paper, we rigorously develop a framework for analyzing

the design space of probing algorithms. We give a formal defi-
nition of an abstraction for the probing-algorithm design problem
(Sec. 3) that is general enough to capture various goals of unicast
probing techniques used for end-to-end measurements. Applica-
tions of our results include the design of network-tomography or
anomaly-detection algorithms. We highlight assumptions about in-
puts to the problem, often taken for granted in previous work, that
are relevant to the difficulty of solving the problem. Our framework
also includes different types of metrics (Sec. 4) that can be used to
evaluate probing-path selection; these metrics correspond to realis-
tic optimization goals and constraints that network operators may
have.

We use this framework to demonstrate some inherent tradeoffs
in the design space of probing algorithms (Sec. 5). Specifically,
there exist networks such that algorithms that perform well with
respect to some metrics will perform badly with respect to other
metrics. Further, for numerous combinations of optimization goals,
it is computationally intractable to find a sequence of paths that
achieves that combination of goals, even approximately (Sec. 6).
Finally, we consider a randomized approach (Sec. 7) as an alterna-
tive, evaluating it using the properties defined in our framework.

2. RELATED WORK
Barford et al. [2] were among the first to examine tradeoffs in

probing-strategy design. They introduce the concept of marginal
utility to probing-node selection for topology discovery. They find
that adding nodes to the set of probing sources has quickly dimin-
ishing utility (i.e., provides little additional topology information)
beyond the second node, while adding nodes to the set of probing
destinations is much more helpful. Because that work is focused
on topology discovery, issues of constant monitoring overhead are
not considered.

Bejerano and Rastogi [5] address the problem of low-overhead
probing for anomaly detection with a two-phase approach, sepa-
rately considering the number of source nodes involved in probing
and the cost of probing traffic resulting from that choice. They
show that the optimization problem in each phase is NP-hard but
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admits approximation based on well-known algorithms for Min-
imum Set Cover and Minimum Vertex Cover. Their work does
not consider the relationship between the two phases’ optimization
goals, nor does it consider how minimizing overall network load (a
sum over all paths chosen) might impact individual links in terms
of load. (We examine versions of both of these tradeoffs in Sec. 5.)
It also does not consider probing frequency (in that all chosen paths
are continually used for monitoring). Further, their formulation is
more specific than ours, in that its measurement strategy sends a
probe from the same source node to both endpoints of a link; thus
the network-coverage requirements of the selected nodes and paths
differ slightly from our setting.

Nguyen et al. [18] present a variant of the probing-design prob-
lem with a polynomial-time solution: they consider how to design
a probing strategy, by choosing the frequency at which paths are
probed, that minimizes the total number of probing packets needed
to detect two different types of reachability failures; by allowing
different coverage requirements of probes based on the type of fail-
ure being detected, they are able to reduce their optimization prob-
lem to linear programming. Their setting is more specific than most
previous work and our work because of the coverage relaxation;
similar toBejerano and Rastogi [5], Nguyen et al. use a network-
wide definition of overhead without considering per-link impacts.

As discussed above in Sec. 1.1, Barford et al. [3] propose an
algorithm for anomaly detection that attempts to balance the fre-
quency at which links are probed with the per-link load imposed by
probes. That work does not use network-wide overhead metrics,
such as the total number of paths or packets, as optimization goals.
In addition to the algorithm for anomaly detection, Barford et al.

propose a probing strategy for localization of the anomaly.
Song et al. [23] develop the NetQuest framework and apply it

to additive performance metrics (such as delay, in contrast to non-
linear metrics such as failure). They use Bayesian experimental
design to (centrally) choose the paths that would be probed in a
way that would maximize the benefit to the experiment (according
to a chosen metric). They also consider the problem, distinct from
what we consider here, of how to best infer information about the
network from a limited set of measurements.

As we do here, Breslau et al. [7] provide a theoretical treat-
ment of problems relevant to network monitoring, but they focus
on novel facility-location problems. Their work, like ours, includes
properties of IP networks in the definition of an optimization prob-
lem requiring the choice of paths to cover network resources. For
example, sets of paths are included in the problem input to account
for a preselection of forwarding paths by some underlying network-
routing mechanism.

There are several relevant theoretically grounded results about
difficult path-selection problems. However, many of these prob-
lems do not account for routing issues. For example, the Multi-
ple Edge Disjoint Paths problem [11] seeks a maximum-cardinality
subset of given source-destination pairs such that a directed path
can be assigned to each pair with no two pairs’ paths sharing an
edge in common. This problem is NP-hard in general. Although
it resembles the problem of finding a maximum-cardinality set of
non-overlapping probing paths in a network, there is an important
difference: in the network-probing setting, there is often only one
possible directed path to assign to any source-destination pair (e.g.,
the IP-forwarding path from the source to the destination computed
by some routing protocol). We show in Sec. 6 that, unfortunately,
this restriction does not make the problem easy.

Parekh and Segev [19] describe the Path Hitting problem, which
has a direct correlation to minimum covering in our setting. As-
suming that each path p ∈ D is associated with a cost cp, and say-

ing that p ∈ H hits p′ ∈ D if p and p′ share at least one edge,
the Path Hitting problem is: Given two sets of paths D and H in
an undirected graph G, find a minimum-cost subset of H whose
members collectively hit those of D . The NP-complete Minimum
Set Cover problem reduces to Path Hitting, and Path Hitting is a
special case of Minimum Set Cover, implying the same approxi-
mation results for Path Hitting as for Set Cover. We use a similar
reduction to show a hardness result for one of our probing-design
problem variants (see Sec. 6).

3. FORMALIZING THE PROBLEM
The following is our definition of the abstract problem of prob-

ing-algorithm design for a network. The output corresponds to an
implementation of selecting paths to probe over time. Like the
problem definitions in [7]—but unlike routing-agnostic formula-
tions, e.g., the Maximum Edge Disjoint Paths problem [11], in
which any set of links can be chosen to form paths between source-
destination pairs—we assume that the set of possible probing paths
is somehow constrained (e.g., by some underlying routing system)
and thus forms part of the input to the problem.

DEFINITION 3.1 (PROBING ALGORITHM). For an undirect-

ed network G=(V,E) and a set of paths P ⊆ 2E , define a (possibly

randomized) algorithm f : N→ 2P that, for each discrete timestep

t = 1,2, . . ., selects a set of paths from P . We call f a probing
algorithm for (G,P) (or just a probing algorithm), and we think of

f (t) as the set of paths that will be probed at time t.

Of course, without any additional requirements, the problem is un-
interesting; thus, at various points below, we impose different ad-
ditional restrictions on f and P , occasionally requiring additional
parameters as input to the design problem. Such additional require-
ments might also be needed to ensure that a probing algorithm is
suitable for a particular application or that it achieves certain other
goals that may also be desired. For example, consider the problem
of designing a sequence that guarantees measurement across some
of the network’s links: here, we may assume that the input speci-
fies a subset of links F ⊆ E and may require that every link in F

appears in at least one path in ∪t f (t). Sec. 4 presents five categories
of metrics and optimization goals that we use to vary the problem
definition in this way.

Specifying the set P as part of the input is motivated by the pos-
sibility of having a predefined subset of probing nodes R ⊆ V that
are the allowed sources and destinations of the probing messages
(or probes). If u ∈ R may send a probe to v ∈ R, the path that this
takes may be determined by the underlying routing system; this
path (but not necessarily all paths from u to v in G) would then be
included in P .

Some additional requirements on the structure of P that are of
interest below (but which are not, in general, assumed to hold) are:
(1) P contains a path between every ordered pair of distinct nodes
in R×R; (2) P contains only one path for each ordered probing-
node pair (u,v) (but the path for (v,u) need not be its reverse);1

(3) P corresponds to destination-based IP routing, i.e., the vari-
ous paths in P must not be inconsistent with their being parts of
routing sink trees (in particular, if P contains multiple paths with
destination v ∈ R that also include the node u ∈V , then all of these
paths coincide between u and the destination v); (4) P corresponds
to paths that are consistent with a coherent cost function [12] used

1This assumption precludes multipath routing and load balancing
due to traffic engineering, but it permits our analysis to assume,
with certainty, which links are covered by a given probe.
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as the basis for route selection.2 We will explicitly highlight when
any of these assumptions hold and when those assumptions impact
our results.

A variation of this problem (e.g., similar to that considered in [5])
is one in which the probing nodes R are not predefined but must be
chosen, perhaps to optimize some metric. This is a special case of
the problem above: let R = V , let P contain viable probing paths
between all ordered pairs of nodes, and additionally require that the
union of source and destination nodes over all sets of paths output
by the algorithm (i.e., the target R) meets the desired constraints.

In some cases, it makes sense to perform some precomputation
on the input (like the first step of the two-phase approach in [5])
to limit P to a selected subset of paths from the original network
as a starting point for designing a probing algorithm. One useful
property (that we use in some analyses below) for such a set of
paths is the following.

DEFINITION 3.2 (MINIMAL SET OF PATHS). A set of paths

P is minimal with respect to a set of edges F ⊆ E if every path

in P must be probed to cover all edges in F; i.e., every P ∈ P

traverses at least one link that does not appear in any of the other

paths in P .

This is not a strong property: given any set of paths whose union
covers all the edges in F , we may simply go through the paths in
some arbitrary order and discard any whose edges all appear in
previously seen paths. It does not guarantee that the resulting set is
of minimum possible size; however, it lets us assume that we can
always produce a minimal set and therefore decouple the problem
of finding the “best” (e.g., minimum-sized) minimal set from the
problem of designing an algorithm to probe all the paths in a given
minimal set.

4. METRICS AND OPTIMIZATION GOALS
We have five categories of metrics by which we analyze probing

algorithms. Different applications may lead to a focus on different
combinations of these (and perhaps other) metrics.

4.1 Number of probes or probing nodes used
This family of metrics corresponds to optimization goals that ap-

pear most often in previous work to represent low overhead or re-
source minimization, e.g., [5, 18].

Let X = ∪t f (t) be the set of paths probed3 by algorithm f , and
let N ⊆ R be the set of probing nodes used by the sequence; these
are endpoints of paths in X . (Note that some previous work, e.g., [2,
5], has separately categorized sources and destinations of probing
paths.) Then, |X| (the number of probing paths, which is the number
of distinct probes needed) and |N | (the number of probing nodes)
serve as natural metrics for f , with the corresponding possible op-
timization goals: (1) require that f minimize |X|; and/or (2) require
that f minimize |N|. We explore the interaction among these goals
in Secs. 5 and 6.1.

4.2 Probing frequency
This family of metrics formalizes the flexibility in probing-al-

gorithm design explored in [3, 18], i.e., that dividing probes over
time can reduce overhead while retaining effectiveness as long as
measurements are collected “often enough.” The following ways

2I.e., each directed edge is assigned a cost—with negative-cost
edges allowed as long as all directed cycles have positive cost—
and the lowest-cost directed path is chosen for routing.
3For a randomized algorithm f , we take this to be the set of paths
that f might possibly probe.

to characterize the frequency at which links are probed attempt to
make this notion precise so that we can better describe the tradeoffs
between frequent and infrequent probing. Of course, it is trivial to
minimize the delay between measurements if no additional restric-
tions are placed on the algorithm: just probe every path at every
timestep. We investigate the difficulty of combining this goal with
others in Sec. 6.

Probing probability: Assume there exists a parameter k that de-
scribes a length of time (in number of timesteps). We can then
measure the minimum probability, over all time windows of length
k (intervals of consecutive timesteps of length k), that a given link
is probed by f . For a corresponding optimization goal, assume
that each link ℓ ∈ E is assigned a parameter pℓ, and require that,
for every time window of length k and for every link ℓ, f probes
ℓ with probability bounded below by pℓ. A simpler version of this
goal (especially appropriate for deterministic f ) is to ensure that a
subset of links is probed with some regularity (or at all), i.e., there
exists a subset of “links of interest” F ⊆ E such that pℓ = 1 for
ℓ ∈ F and pℓ = 0 for ℓ /∈ F . We note that certain hardness proofs
below require setting F = E.

Probing delay: We can measure the (average, maximum, etc.)
time between probes of a given link. For an optimization goal,
assume that every link ℓ has a parameter kℓ; we can then require
that, for all links ℓ and for all times t, the expected time it will take
to next probe ℓ after t is bounded above by kℓ. A simpler condition
on f would be to require that the expected time to probe every link
is bounded (i.e., finite).

4.3 Load on links
In order to better understand the tradeoffs between additional

probing and other goals, we want to characterize the effect of gen-
erated probing traffic on network resources. For example, an al-
gorithm that probes on all paths in every timestep will minimize
measurement delay on all links covered but uses a lot of network
traffic.

The following two metrics focus on per-link effects of probing
traffic (in contrast to the more global measures in Sec. 4.1 and
in [5, 18]). We can measure, for some time parameter k and for
every link ℓ ∈ E: (1) the (expected, maximum, etc.) number of
times that probes traverse ℓ over all time windows of length k; (2)
the probability that ℓ is probed more than once (or more than some
threshold Lℓ) in a time window of size k. Analogously, we can
impose as a requirement on a probing algorithm that, given param-
eters k and per-link load limits Lℓ, the expected number of times ℓ
is probed in any time window of length k is at most Lℓ.

We note that it is also trivial to minimize per-timestep link loads
if no additional restrictions are placed on the algorithm: simply it-
erate through probing paths, probing one at each timestep. This,
of course, may probe many links with low frequency; if link load
must be kept at a minimum while simultaneously increasing prob-
ing frequency, the design problem becomes difficult (see Sec. 6).

4.4 Load on nodes
The probing nodes, i.e., source and destination nodes for mes-

sages sent to acquire measurements, incur some computational load
for having to generate and process probe traffic. Thus, we may be
interested in evaluating how many requests a probing algorithm im-
poses on probing nodes.

More precisely, we can measure the number of probe messages
for which each node r ∈ R is a source or destination in a time win-
dow of some size k; as a design goal, we may require that an al-
gorithm involve each node r as a probing source or destination at
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Figure 1: Example networks illustrating various tradeoffs among probing-algorithm design goals.

most nr times in a time window of size k, given input parameters nr

(for each node r) and k. We investigate this type of goal in Sec. 6.2.
There may also be some computational load incurred by non-

probing nodes while forwarding probing packets. This load may
not be accurately captured by link-load metrics used in previous
work; e.g., in a star topology, the central node is involved in the
communication of a probing packet for every link, even if it is not
a probing node itself. Thus, we may want to measure the total load
on non-probing nodes and perhaps try to bound it when designing
an algorithm.

It is possible to transform networks so that link-load metrics may
capture load on nodes: expand each node v into a pair of connected
nodes (i, j) such that all paths through v now traverse i then j (and
never in reverse), connecting i and j to the expanded versions of the
neighbors of v in the original network; then, the number of probing
packets traversing v corresponds to the number traversing the link
(i, j) in the transformed network.

4.5 State complexity
Different probing algorithms may require different amounts or

kinds of internal state to be implemented, as discussed in Sec. 1.1.
The algorithms that we consider will typically use some combina-
tion of fixed-length values, e.g., constants and counters, but they
might also keep track of dynamic-length values, e.g., sets of prob-
ing paths (or sequences of such sets). These might be global val-
ues, or they may be stored at each network node, stored for each
network link, or stored for each probing path. We are able to ob-
tain at least partial comparisons among different algorithms’ lev-
els of complexity and implementation difficulty by considering the
amount and type of state required by their implementations.

5. TRADEOFFS
In this section, we use three example networks (shown in Fig. 1)

to illustrate tradeoffs among some of the probing-algorithm design
goals discussed in Sec. 4. In particular, we demonstrate that opti-
mization of one metric may come at the expense of another met-
ric. Although the examples are small, toy networks, it is possible
to produce networks of larger size or of more realistic topologies
that have similar properties. However, even these small examples
are enough to show the existence of networks on which it may be
impossible to choose a probing strategy that achieves multiple op-
timization goals.

5.1 Probing frequency and number of prob-
ing paths used

Our first example is shown in Fig. 1(a), a star with four nodes.
Here, the possible probing paths (the set P) are all three of the
paths between two degree-1 vertices, shown as dashed lines. Sup-

pose we place a link-load bound of one probing message per time-
step for every link. Then, at most one path in P can be probed
in any timestep, and it is impossible to probe every link in every
timestep. However, probing any two distinct paths from this set
will cover all three links in the network over two timesteps; this can
be done using two different approaches. The first approach probes
all three paths (at different times), e.g., sending a probe from i to
i+ 1 (all indices considered modulo 3) when time t ≡ i mod 3.
The second approach selects any two of the paths (which necessar-
ily have a link in common) and then alternates between which one
is used to probe (e.g., sending a probe from node 2 to node i when
time t ≡ i mod 2).

Under each of these approaches, every link in the network is
probed at least once every two timesteps, and, in each timestep,
some link is not probed. In the first approach, every link is uni-
formly not probed every third timestep; in the second approach,
one link is probed every timestep while the other two are probed at
alternating timesteps. Uniformity of probing frequencies across all
links (which may be desirable if, e.g., the different network links
are of equal importance) comes at the cost of using all three pos-
sible probing paths. In the second approach, the set of paths that
used for probing is smaller (size 2).

This example easily generalizes to a star on 2k+2 nodes (whose
degree-1 nodes we label 0,1, . . . ,2k). With 2k+1 degree-1 vertices,
the algorithm can probe every link 2k out of every 2k+1 timesteps
if uniformity is desired. At the opposite extreme, the algorithm may
probe 1/3 of the links in every timestep (if 2k+1 is also a multiple
of 3) and the other 2/3 of the links in half of the timesteps. Both of
these approaches still ensure that no link is probed less frequently
than every other timestep and that no link carries more than one
probe per timestep.

5.2 Balancing load and frequency among var-
ious links

Our second example, shown in Fig. 1(b), illustrates the poten-
tial benefit that an increase in the link-load limit on just a single
link can have with respect to the load imposed on other links, even
while also requiring a particular probing frequency for links in the
network.

Note that, in the diagram in Fig. 1(b) for this example network,
the links, not nodes, are labeled; furthermore, assume that B and
J represent groups of links (i.e., paths containing many links). In
this network, consider the probing paths S1ABCT1, S2ADEFCT2,
S3IGEHKT3, and S4IJKT4. Suppose that links A,C, I,K all should
be probed at every timestep, while the links in B, J, and the remain-
ing links in the network need to be probed much less frequently. If
link E has a link-load limit of 1 probe per timestep, then in order
to probe A,C, I,K, we must probe one of B or J in every timestep,
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exceeding its target probing frequency and unnecessarily impos-
ing probing load. By increasing the limit on link E to 2, the paths
ADEFC and IGEHK can sometimes be used simultaneously in-
stead, equalizing the burden among E, the links in B, and the links
in J. Thus, allowing E to occasionally have a load of 2 can re-
duce the number of extra4 probes on links over some number of
timesteps.

5.3 Number of probing paths and number of
probing nodes

Our third example, shown in Fig. 1(c) (ignoring for now the
dashed links), shows a network for which the set of paths mini-
mizing the number of probing paths used has a different size than
the set of paths minimizing the number of probing nodes used. Let
P contain the paths ADG, BXEH, CFI, ADEH, CFEH, DEF; the
node-minimizing set uses all of these paths except DEF , involving
nodes A, B, C, G, H, I; the path-minimizing set uses only ADG,
BXEH, CFI, DEF requiring the use of probing nodes A, B, C, D,
F , G, H, I.

We note that, in this example, P does not contain a probing
path between every pair of nodes (e.g., between A and C). We may
modify this example by adding the dashed links and adding to P a
single probing path between every pair of nodes—all paths except
DEF , ADEH, CFEH use the new dashed links through X . The
node-minimizing and path-minimizing sets are the same as before;
in particular, different sets minimize the number of probing nodes
and the number of number of probing paths.

However, in the modified example, the paths in P no longer
form a routing tree (i.e., the paths CFEH and IFXEH both have
destination H and contain intermediate node F but different sub-
paths from F to H). We conjecture that there is a set of probing
paths covering all network links that minimizes both the number of
paths needed to do this and the number of probing nodes that must
be used to do this, under the following assumptions: (1) the union
of all probing paths covers all links in the underlying network; (2)
there is a probing path between every two probing nodes; and, (3)
for every probing node, the probing paths to that node form a rout-
ing tree.

6. HARDNESS AND APPROXIMATION

6.1 Minimizing number of probes/nodes used
Suppose we want to design a probing algorithm that covers a

target set of links F ⊆ E in the network, but does so either by using
as few probing paths or by using as few probing nodes as possible.
The results below demonstrate that these probing-design problems
are computationally difficult.

THEOREM 6.1. Given an instance of the probing-algorithm de-

sign problem along with a target set of links F ⊆ E to probe, com-

puting a set of probing paths of minimum size that covers F is NP-

complete.

PROOF. It is straightforward to show that the problem is in NP.
To show NP-hardness, we give a reduction from Minimum Set
Cover (MSC) that is a modification of the reduction from MSC to
the Path Hitting problem in [19]. Begin with an instance of MSC:
there is a universe of elements U and subsets of those elements
S1,S2, . . . ,Sn; our goal is to choose a minimum-size collection C of

4I.e., the sum over all links of the number of probes traversing the
link minus the number of probes that are required to traverse that
link based on its target frequency.

subsets such that the union of the subsets selected for C includes all
the elements in U .

Create a probing network based on the MSC input as follows:
Let G be a bipartite graph with vertices x1, . . . ,xm and y1, . . . ,ym,
where m =|U |. For each i = 1, . . . ,m, add an edge between xi

and yi, and let F consist of these edges. These edges correspond
to the elements of U , which we assume can be ordered 1, . . . ,m.
For each subset S j, create an ordered list of indices k1, . . . ,kS j

that
correspond to the order on U . Then, for every adjacent pair of ele-
ments ka,ka+1 in the ordered list, create an edge from yka

to xka+1
.

Thus there is a path connecting the corresponding (xi,yi) edges in
G for each the subsets given in the MSC problem, each of which
is added to the set of probing paths P . With this construction, a
minimum-size set of probing paths selected from P that covers F

maps directly to a minimum-size set cover.

The above argument shows that designing a probing algorithm
that minimizes the number of probing paths used to cover a target
set F of network links is computationally intractable. A similar
argument can be used to show that minimizing the number of prob-
ing nodes is, too: In the reduction above, simply modify G so that,
for any path from xi to y j corresponding to a subset in the MSC
problem, there is an extra vertex adjacent to xi and an extra vertex
adjacent to y j that serve as the probing source and destination nodes
for that path; furthermore, these extra vertices should be unique for
each subset in the MSC problem. Then, the number of probing
nodes used to probe F corresponds exactly with the number of sub-
sets that would cover U .

We note that our reduction does not construct a set of probing
paths consistent with a coherent cost function. The hardness of
finding minimizing sets when P is consistent with a coherent cost
function remains an open question.

Because these probing-design problems are special cases of Min-
imum Set Cover, the standard MSC approximation algorithms ap-
ply to finding probe- and node-minimizing sets of probing paths
(just as they do to the related Path Hitting problem [19]).

6.2 Limiting work of probing nodes
Suppose we want to limit the load of each probing node to one

probe per timestep; in other words, we insist that each probing
node send or receive at most one probing packet per timestep. This
would mean the maximum number of paths we could probe per
timestep is ⌊|R| /2⌋, although achieving this upper bound might
depend on the topology and other constraints. To minimize the
number of timesteps needed to probe all links with this node-load
constraint, we want the algorithm f to decompose the probing paths
into a minimum-length sequence of sets such that no two paths in
a set share a probing node. Unfortunately, this design problem is
computationally intractable.

THEOREM 6.2. Designing a probing algorithm that minimizes

the number of timesteps in which all possible links are probed while

limiting the probing-node load to one probe per timestep is NP-

complete.

PROOF. To simplify the proof, we use the decision version of
the probing-design problem in the theorem statement, i.e., design-
ing an algorithm in which the number of timesteps is bounded by
some parameter k. The reductions between the decision and opti-
mization versions of the problem are straightforward. It is also easy
to see that the problem is in NP.

To show NP-hardness, we give a straightforward reduction from
Minimum Edge Coloring (MEC), which is NP-complete [14]. Be-
gin with any instance of MEC: the input is a graph G = (V,E) and
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a parameter k, and we are to decide if it is possible to partition E

into k disjoint sets E1,...,k such that for each set Ei, no two edges
in Ei share a common endpoint. Now, let G be the probing net-
work; let the set R of probing nodes be equal to V , and let the set
P of probing paths be equal to E (so that each probing path con-
sists of a single edge between nodes in the network). Then there is
a sequence of sets of probing paths of length k covering the entire
network in which each probing node is a source or destination of at
most one probing path in each set if and only if the original graph
G is k-edge-colorable.

We note that this reduction creates an instance of the probing-
design problem in which the constructed probing-path set P has
no link overlap among paths; in particular, it is minimal.

6.3 Minimizing probing delay with a restric-
tion on link load

As noted in Sec. 4.2, it is trivial to minimize the number of
timesteps between probes along every network link if we do not
consider any other metrics (simply by probing all paths at every
timestep). If we additionally bound the number of probes that may
traverse a link in any timestep, then it becomes interesting to ask
whether it is possible to probe along all paths in a given probing-
path set using at most k timesteps. (In particular, if the probing-path
set is minimal, we would need to probe every path to cover all links
of interest with delay at most k).

6.3.1 Basic hardness result

We will now show that answering the above question is compu-
tationally intractable. We start with the following definition:

DEFINITION 6.3 (L-STRONG k-COLORABLE HYPERGRAPH).
A hypergraph H is L-strongly k-colorable if there is a k-coloring

of the vertices of H such that no edge of H has more than L ver-

tices of any one color.

The L-strong k-colorability problem for hypergraphs is computa-
tionally difficult to solve exactly and to approximate. The follow-
ing theorem provides reductions, in both directions, between this
problem and the probing-design problem considered in this subsec-
tion (minimizing probing delay subject to a link-load restriction).
This result and the reductions in its proof are used to justify the
computational intractability of exactly or approximately solving the
probing-design problem.

THEOREM 6.4. Polynomial-time reductions exist between the

following two problems: (1) deciding whether a hypergraph is L-

strongly k-colorable; and (2) deciding, for a given probing-design-

problem input, whether all the probing paths in P can be probed

within k timesteps without imposing a load of more than L on any

link in any timestep.

PROOF. Reduction from (2) to (1): Consider a probing problem
consisting of a graph G = (V,E) and the set P of probing paths.
Construct a hypergraph H as follows: The vertices of H corre-
spond (bijectively) to the elements of P . For each edge e ∈ G, add
as an edge in H the set of those vertices in H that correspond
to the paths in P that include the edge e. Viewing the colors of
vertices in H as assignments of elements of P to timesteps, the
colorings of H with i colors in which j is the maximum number
of vertices in any one edge with a single color bijectively corre-
spond to the assignments of elements of P to i timesteps in which
the maximum load on any edge in any timestep is j. In particu-
lar, deciding L-strong k-colorability of H decides whether P can

be probed in k timesteps without an edge load exceeding L in any
timestep.

Reduction from (1) to (2): Conversely, consider a hypergraph
H = (VH ,EH ) and fixed values of k and L; we wish to decide
whether H is L-strongly k colorable. Fix an ordering ê1, . . . , êm

of the edges of H . Construct a network with m disjoint links
e1, . . . ,em; for the purposes of our construction, make these di-
rected (we will ignore these directions when probing). For each
vertex v ∈VH that is contained in at least one hypergraph edge, let
ℓv be the number of hypergraph edges that contain v, and add to the

network the ℓv +1 nodes sv, tv, and {x(v,i)}
ℓv−1
i=1 .

Add to the network 2ℓv links as follows: Let the hyperedges that

contain v be (in order) {êi j
}ℓv

j=1. Add a link from sv to the tail of

ei1 , and add a link from the head of eiℓv
to tv. For j = 1, . . . , ℓv −1,

add a link from the head of ei j
to x(v,i j) and a link from x(v,i j) to the

tail of ei j+1
.

Once this network is constructed, let the set P of probing paths
contain the |VH | paths that were implicitly constructed above; the
probing path corresponding to a hypergraph vertex v is the (undi-
rected) path whose links are: the link from sv to the tail of ei1

(where i1 is as above for this particular v), the link ei1 , the link
from the head of ei1 to x(v,i1), the link from x(v,i1) to the tail of ei2 ,
etc., until the link from the head of eiℓv

to tv. Note that only one
path in P goes through each network node x(v,i) and the two links
incident upon it.

If we have an assignment of probing paths to timesteps 1, . . . , t,
we may view that as a t-coloring of the vertices of the original
hypergraph; vertex v is assigned the color i if and only if its cor-
responding probing path is probed in timestep i. If the maximum
number of probing paths that traverse the network link e j in any
timestep is M, then ê j has M, but no more, vertices of one color. (If
there are vertices in H that did not belong to any edge, these can
be colored arbitrarily without affecting this. Similarly, if there are
empty edges in H , there will be some isolated links in the network;
however, these are not part of any probing path.) In particular, an
assignment of probing paths to k distinct timesteps such that no link
ever carries more than L probes in a timestep is possible if and only
if H was L-strongly k-colorable. Note that the resulting network
was constructed with 2 |EH | +∑v∈EH

d(v) nodes (where d(v) is
the number of hyperedges containing v) and |EH | +2∑v∈EH

d(v)
links.

Because hypergraph L-strong k-colorability is NP-complete [1],
Thm. 6.4 shows that minimizing probing delay subject to a link-
load restriction is NP-complete as well. We note that the result
applies to the general probing-design problem; it is possible that
assumptions on the structure of the probing-path set P may admit
a feasible solution.

6.3.2 Hardness of approximation

Approximating a minimum-delay sequence of probes subject to
a link-load restriction is also computationally difficult. Numerous
results (e.g. [15]) have established the hardness of approximate hy-
pergraph coloring. For each reduction in the proof of Thm. 6.4,
note that a solution of size k′ in one problem corresponds to a solu-
tion of size k′ in the other problem. Thus, approximation results for
hypergraph coloring also carry over to the probing-design setting.

6.3.3 Link load at most one

Consider the special case of restricting the per-link probing load
to one message per timestep. Given the hardness results above, one
might attempt to use a greedy bin-packing approach to approxi-
mate an optimal selection of probing paths; intuitively, the idea is
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to “fill” a timestep with the maximum number of concurrent, dis-
joint probing paths possible before proceeding to the next timestep.

Unfortunately, it turns out that the component problem in this
approach, i.e., finding the maximum number of concurrent, disjoint
probes, is also computationally intractable.

THEOREM 6.5. Deciding whether it is possible to probe at least

k paths from a given set P simultaneously when links can carry at

most 1 probing message is NP-complete.

PROOF. It is obvious that the probing decision problem is in NP.
To show NP-hardness, we give a straightforward reduction from
Independent Set. Given a graph with |V | vertices and |E | edges
(sorted in an arbitrary order), construct a network as follows: Cre-
ate |V | disjoint paths, each with 3 |E | links. Iterate through the
edges of the graph (i = 0, . . . , |E | −1). For each edge i, let x and y

be its endpoints in the graph, and identify the (3 · i+ 2)th edges in
the paths corresponding to x and y so that these paths use the same
edge in the (3 · i+ 2)th position. Thus, the paths corresponding to
x and y may be probed in the same timestep if and only if x and
y are not adjacent in the original graph. In particular, the original
graph has an independent set of size k if and only if at least k of the
paths in the network constructed can be probed in the same timestep
without sending more than one probe across any single link.

7. RANDOMIZED PROBING
Our analysis thus far has dealt with deterministic approaches to

probing. Because, as we have shown, it is computationally diffi-
cult even to approximate an optimal probing algorithm for certain
combinations of goals, we now turn instead to randomized prob-
ing algorithms. Our focus here will not be on absolute guarantees
but on identifying what we can expect (on average) from a baseline
class of randomized algorithms.

From an analytic perspective, the class of randomized algorithms
we consider can be guaranteed to provide finite expected delay5

in detecting a network abnormality. Additionally, we can bound
the delay more precisely with more assumptions on the probing
probabilities used in the algorithm. This is in contrast to previous
work (e.g., [3]) that used randomized probing approaches.

However, randomized path selection makes it difficult to disen-
tangle the causes of poor algorithm performance. The probing-
design problem is different than problems considered in existing
analytical work on concurrent path selection in networks (e.g., [11])
because probes must follow paths determined by an underlying
routing system on the network. For example, because it is reason-
able to assume that we can only probe the whole paths that appear
in the path set (and not their proper subpaths that do not appear in
the set), we do not have link- or node-level choice over what gets
probed. If we pick paths randomly, it is difficult to say if link- or
node-level load is high because certain links or nodes appear on
many paths, or whether a particular run of the algorithm was “un-
lucky” in its random choices. Thus, in order to get more insight
into how these randomized algorithms perform with respect to the
metrics introduced in Sec. 4, we present simulations of the perfor-
mance of algorithms from this class.

7.1 Analytic results
A member of the class of randomized algorithms that we con-

sider is described by a set of probabilities {gt(P)}t≥1,P∈P . Here,

5Recall from Sec. 4.2 that the probing delay of a link is the number
of timesteps between consecutive probes of that link. In the ran-
domized setting, there may not be a fixed pattern describing when
a link is probed; thus, we focus on the expected probing delay given
the sequence of path-probing probabilities used by the algorithm.

t ranges over all possible timesteps, and P ranges over all probing
paths; gt(P) is the probability that P is probed at time t. (From such
a description, we can obtain the description of a probing algorithm
in the sense of Def. 3.1.) In particular, the decisions to probe paths
are made independently at each timestep, so nodes do not need to
retain state. (We discuss below some possibilities for using state,
the nature of which may serve as another metric.)

We now investigate the metric of expected probing delay (or ex-
pected probing frequency) under various assumptions about the se-
quence of path-probing probabilities used by the algorithm.

7.1.1 Lower-bounded probabilities

To begin, assume that the path-probing probabilities are strictly
positive for all timesteps and for all paths in the probing-path set.
We then obtain the following result.

THEOREM 7.1. If there exists some ε such that 0 < ε < 1 and

gt(P) ≥ ε for all timesteps t and for all paths P, then the expected

probing delay for any path is finite (in particular, bounded above

by 1/ε2).

PROOF. Let Et(P) be the expected number of timesteps follow-
ing timestep t until path P is probed. We may write this as:

Et(P) = 1 ·gt+1(P)+2 · (1−gt+1(P))(gt+2(P))

+ 3(1−gt+1(P))(1−gt+2(P))(gt+3(P))+ . . .
(1)

In the above expression, we know that all the gt(P) probabilities
are bounded below by ε; thus, every 1− gt(P) term is bounded
above by 1− ε . Furthermore, because each gt(P) is a probability,
we know that it is bounded above by 1. Using these bounds (and
the fact that ε < 1), we may bound the expression in (1) as:

Et(P) ≤ 1 ·1+2 · (1− ε)(1)+3(1− ε)2(1)+ . . .

=
∞

∑
i=0

i · (1− ε)i−1

=
1

ε2
.

Because this calculation is independent of the starting timestep t

and the choice of path P, this means that the expected delay for any
path P in the network is finite and bounded above by 1/ε2.

By extension, for finite networks, the above result implies that
the time until all paths in the network are probed, regardless of the
starting timestep, is also finite.

If we further assume that gt(P)= ε for every timestep t and every
path P, then we can rewrite the expression in (1) exactly as:

Et(P) = 1 · ε +2 · (1− ε) · ε +3 · (1− ε)2 · ε + · · ·

=
∞

∑
i=0

i · (1− ε)i−1 · ε

=
1

ε
.

This means that, no matter the initial timestep t or path P, the num-
ber of expected number of timesteps to probe path P is 1/ε . Be-
cause we know that each link in the network is covered by some
path in the probing-path set, we can be confident that the expected
probing delay of any link is bounded by 1/ε .

It is important that the path-probing probabilities are nonzero;
without this, as we discuss in the next section, it is possible that
some links in a network might be forever ignored by the probing
algorithm.
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7.1.2 Example algorithm with links ignored

The randomized algorithm in [3] probes k paths selected ran-
domly from the K paths of largest dynamic weight, where the dy-
namic weight of a path is the sum of the dynamic weights of con-
stituent links. Initially, the dynamic weight wℓ of each link ℓ is 0.
In each timestep after probing, weights are updated as follows: the
weight of every link just probed is set to 0; the weight of every

other link is updated to wℓ
′ = min

(

Iℓ,wℓ+
Iℓ

(N−1)/k

)

, where N is

the total number of paths that can be probed and Iℓ is a link-specific
importance parameter. Here, we provide an example in which the
algorithm never probes some particular links.

Let k = K = 1. Consider a network with three disjoint paths P1,
P2, and P3, and let Iℓ = 1 for each link ℓ in the network. Let each
path Pi have length Li (number of links), such that L1 < L2 < L3

and L2 > L1 · (N − 1)/k. Suppose P3 is probed in some timestep.
All links in P3 have their dynamic weight set to 0, making P3 have
path weight 0. The maximum dynamic weight of links in P1 is
1, so the maximum dynamic weight for P1 is L1. The minimum
dynamic weight for each link in P2 is k/(N −1) (in the case that P2

was probed in the previous timestep), so the minimum path weight
for P2 is L2 · k/(N − 1). However, because L2 > L1 · (N − 1)/k,
L2 · k/(N − 1) > L1, and as a result P2 is guaranteed to be probed
in the next timestep. Similarly, for the following timestep, since
L3 > L2 and consequently L3 · k/(N − 1) > L1, P3 will be probed
next. Thus, once P3 is probed, P2 and P3 will be alternately probed
in the following time steps, and P1 will never be probed.

7.1.3 State complexity and probing frequency

In Sec. 4.2, we considered the optimization goal of requiring that
our probing algorithm, for every time window of length k and for
every link ℓ, probes ℓ with probability bounded below by pℓ, which
is a per-link parameter.

We note that achieving a probability pℓ = 1 is impossible with a
“purely probabilistic algorithm” of the type described above (mean-
ing that all paths are probed with probabilities strictly less than 1).
In other words, to guarantee that certain links are probed for every
window of length k, it is not enough to leave probing completely to
chance.

To address this, we can use a modification to the randomized
approach such as the following: Each timestep, probe a random set
of paths combined with the set of paths not probed within the last
k timesteps (for some parameter k). This ensures that some “catch-
up” probing occurs to account for random selection of paths that
were probed in the previous k timesteps.

The downside to this workaround is that additional state is re-
quired by the probing algorithm at each node; in particular, source
nodes are required to maintain the last time that each potential des-
tination was probed. We note that, without synchronization, using
this “last time probed” value may not provide an actual guarantee
of timely measurements; thus, additional global coordination may
be necessary to achieve stronger algorithm guarantees.

7.1.4 Restriction to one probing path per timestep

Suppose we wish to restrict the number of probing paths per
timestep to 1. A randomized probing algorithm with this restric-
tion may proceed as follows: in each timestep, choose one of the
paths from the probing-path set according to some probability dis-
tribution. Such an algorithm enforces very low overhead (in terms
of the metrics of link load, node load, and number of probing nodes
and paths used), perhaps at the cost of expected probing delay.

To analyze the expected probing delay of such an algorithm, we
relate the probing algorithm to the classic coupon-collector’s prob-

lem [17]: There are n different coupons, each of which can be
drawn with equal probability; if, every day, one coupon is drawn
and then returned to the pool of coupons, in how many days will all
the coupons have been drawn at least once? The answer is known
to be O(n logn) days.

This result can be fashioned into a probing-frequency result. If
we have n paths, and, in each timestep, probing each path is equally
likely, then the coupon-collector’s result states that O(n logn) time-
steps are needed before every path is probed at least once.

An extension on the coupon collector’s result is the case in which
coupons are drawn with differing probabilities. That is, every day
a coupon is drawn with replacement (as above), however, each
coupon i has probability pi of being drawn (instead of equal prob-
abilities 1/n as in the original version). In the probing-algorithm
context, we still assume that there are n different paths, but each
path i is probed in a given timestep with probability pi. Berenbrink
and Sauerwald [6] show that the bound on the number of timesteps
needed to probe every path is O(log logn ·∑n

i=1 i ·1/pi).
To find a bound on this value, let pe be the minimum of the

probabilities pi. We use that ∑
n
i=1 i · 1/pe = 1/pe ·Hn, where Hn

is the nth harmonic number. Given the asymptotics for the har-
monic numbers, we have the bound that 1/pe ·Hn =O(1/pe · logn).
Thus, the final upper bound on expected probing delay would be
O(log logn ·1/pe logn).

7.2 Simulation results
In this section, we present empirical analysis of the basic ran-

domized probing algorithm discussed above with an expected delay
bound 1/ε , for some path-probing probability ε (0 < ε < 1).

In this basic approach, we assume the existence of this global
probability parameter p and, in each timestep, each path is probed
with probability p. (Below, we show the effect of different values
of p on the algorithm’s performance metrics.) To simulate and an-
alyze the behavior of this algorithm, we wrote a set of simulation
procedures in Python 2.7; our routines use data structures and al-
gorithms in the NetworkX [13] graph-theoretic library to represent
the network and to compute a network routing (used to induce a
probing-path set for a network).

The simulation inputs (each a network topology and set of prob-
ing paths) include some network topologies that are randomly gen-
erated6 and others taken from the Internet Topology Zoo reposi-
tory [16]. To compute path-set variations for each network topol-
ogy, we randomly selected a subset of the network’s nodes as prob-
ing nodes (potential source and destination nodes for probing traf-
fic); we then computed shortest-path routes on the entire network
and filtered out paths that did not start or end at one of the probing
nodes in the selected subset. These variations were created using
probing-node subsets ranging in size from 33–100% of the whole
set of network nodes. In all, the simulation results that we present
capture performance analysis of 6515 inputs to the basic random-
ized algorithm.

7.2.1 Probing delay

It is obvious that the higher the probability parameter p used to
determine whether a path is probed or not in a given timestep, the
more frequently network links will be probed and the shorter the
amount of time between probes of that link (i.e., the link’s probing
delay). However, because a given link may appear on any number
of the potential probing paths, depending on the underlying routing
system, the exact relationship between probability and link probing
delay is less clear.

6We used the fast version of the Erdős-Rényi graph generator [4]
implemented in NetworkX [13].

113



 0

 5

 10

 15

 20

 25

 30

 35

 40

 0  0.1  0.2  0.3  0.4  0.5

A
v

er
ag

e 
li

n
k

 p
ro

b
in

g
 d

el
ay

 (
ti

m
es

te
p

s)

Path−selection probability

1/p

Figure 2: Relationship between the number of timesteps be-

tween probes of a link (averaged over all links) and the path-

selection probability used for probing.

The basic randomized approach we tested avoids maintaining
state for coordinating probing-path selection across nodes in a given
timestep. We ran over 40 trials for each input combination of a
network and a path-set, using different path-selection probabilities
across those trials (ranging from near 1% to 50%). Each trial in-
volved running 50 timesteps of the basic randomized probing algo-
rithm. In each timestep, each probing node independently decided
to send a probe to each possible destination with the trial’s assigned
path-selection probability p.

Figure 2 shows the results of this simulation. The horizontal axis
shows the path-selection probability p for the trials, while the ver-
tical axis shows the average link probing delay for that trial. This
delay was computed by averaging, over all links, the mean amount
of time between probes of a link during that trial. Even with links
appearing in multiple probing paths, the probing frequency for a
link seems to be correlated with 1/p, where p is the path-selection
probability; however, as expected from the results of Sec. 7.1.1,
1/p does serve as a rough upper bound for probing delay.

7.2.2 Link load

Given that each path is probed or not probed independently of all
the other probing decisions, it is possible that the basic randomized
algorithm might probe all of the probing paths in a single timestep.
While this is a worst-case scenario in terms of link load, there is
still a reasonable chance that the simple approach produces unac-
ceptably (or at least undesirably) high load on some links.

Thus, we attempt to quantify the effect of path-probing probabil-
ity on link load, again realizing that the appearance of links on mul-
tiple probing paths chosen independently at random makes the con-
nection potentially unclear. Figure 3 shows the results of analyzing
link load from the simulation trials described above in Sec. 7.2.1.
The horizontal axes of both plots show the path-selection proba-
bility p, while the vertical axes show the average load on links
(computed by averaging, over all links, the mean load over the 50
timesteps in the trial).

Figure 3(a) shows results from simulation trials where p was
chosen from the set F = {0.1,0.2,0.3,0.4,0.5}, regardless of topol-
ogy. As expected, load grows with increased path-selection prob-
ability; moreover, the results suggest that it can grow to unaccept-
ably high levels. For any given probability in F , trials showed a
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Figure 3: Relationship between the probing node on links (av-

eraged over all links) and the path-selection probability used

for probing, when the probability is chosen (a) without exam-

ining the network topology or (b) after examining the network

topology.

variety of average-load levels, mostly scattered uniformly through-
out the range between 0 and 60 · p.

On the other hand, Fig. 3(b) shows the load results from sim-
ulation trials where p was set to range between two topology-de-
pendent values: In particular, in a given network G = (V,E) with a
given probing-path set P , compute for each link e ∈ E the fraction
fe of paths in P that contain e; then, the selection probability p for
this second set of trials ranged between mine∈E fe and maxe∈E fe.
This set of topology-dependent probabilities produced a significant
improvement in link load.

(Note that, although the horizontal axes of the two plots in Fig. 3
span the same range of values, the vertical axis of Fig. 3(b) spans
a smaller range of values than that of Fig. 3(a), reflecting an im-
provement in link load.)

Still, the randomized approach does not compare well with prob-
ing a subset of paths produced by using the standard O(logn)-
approximation-factor minimum-set-cover (MSC) approximation al-
gorithm [21]. In this algorithm, a subset of probing paths S ⊆ P is
chosen in the following manner:

• Initialize S = {};

114



 1

 1.1

 1.2

 1.3

 1.4

 1.5

 1.6

 1.7

 0  20  40  60  80  100

A
v

er
ag

e 
li

n
k

 l
o

ad
 (

m
es

sa
g

es
 /

 t
im

es
te

p
)

Number of nodes

Figure 4: Relationship between average link load in a mini-

mum set cover and the number of nodes, for trials involving

the randomly generated graphs.

• Iteratively pick the path P ∈ P −S that covers the most un-
covered links, and add that path P to S;

• Terminate when all links are covered.

Figures 4–6 show the average link load that would be incurred by
probing the entirety of the MSC set of paths S in a single timestep.
(Each data point represents the average link load for one of the
randomly generated inputs; recall that each input is a combination
of a network topology and a probing-path set.) Doing so would
give a probing delay of 1 (because every edge appears in the set
cover), with an average load of no more than 1.7. The figures show
that there is no strong relationship between average link load for the
minimum set cover with respect to the number of nodes, number of
links, or size of the probing-node subset for any of the randomly
generated inputs.

Of course, the set-cover approach comes with its own down-
sides, as discussed before: the approximation algorithm requires
iteratively selecting paths covering the most yet-uncovered edges,
which can be a costly pre-computation for large networks.

The randomized approach can achieve some level of balance
without the pre-computation: Simulation results point to a num-
ber of inputs where a path-selection probability of 0.2 leads to an
average load of about 2 with average delay also about 2.

8. CONCLUSIONS AND FUTURE WORK
In this paper, we have introduced a formal framework for eval-

uating probing strategies for network-performance measurement.
We have formalized metrics that capture the performance of such
algorithms with respect to various desiderata. This identifies ar-
eas for improving existing approaches. We have also identified
some formal tradeoffs among different desiderata and have showed
that achieving certain combinations are computationally intractable
(even to approximate). Our analysis includes both deterministic
and randomized approaches to network probing.

The framework and results that we present here suggest numer-
ous directions for future work, as follows:

In terms of analysis, this framework should be applied to probing
algorithms that are currently in use in order to assess their strengths
and weaknesses and to gain insight into their suitability for various
applications. At the same time, our theoretical analysis should be
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subset, for trials involving the randomly generated graphs.

extended to identify additional fundamental tradeoffs between dif-
ferent metrics (including three or more metrics taken together).

In terms of algorithms, as this framework is used to study ex-
isting algorithms in settings of current interest, it will identify the
need for new algorithms to meet certain performance goals sug-
gested by the metrics we identify here. Such algorithms will need
to be developed. This process will also make the development of
active-probing algorithms more rigorous.

The development of this framework will also promote the identi-
fication of other desiderata for probing algorithms. Those, in turn,
will suggest new metrics for evaluating the performance of algo-
rithms. Those metrics will need to be applied to existing and new
algorithms; of particular interest, their relationships to other met-
rics (correlations and tradeoffs) will need to be evaluated.
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