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Abstract

We present a simple I/O-efficient k-clustering algo-
rithm that was designed with the goal of enabling a
privacy-preserving version of the algorithm. Our ex-
periments show that this algorithm produces cluster
centers that are, on average, more accurate than the
ones produced by the well known iterative k-means al-
gorithm. We use our new algorithm as the basis for a
communication-efficient privacy-preserving k-clustering
protocol for databases that are horizontally partitioned
between two parties. Unlike existing privacy-preserving
protocols based on the k-means algorithm, this protocol
does not reveal intermediate candidate cluster centers.

1 Introduction

Privacy-preserving distributed data mining allows the
cooperative computation of data mining algorithms
without requiring the participating organizations to re-
veal their individual data items to each other. Most
of the privacy-preserving protocols available in the lit-
erature convert existing (distributed) data mining al-
gorithms into privacy-preserving protocols. The result-
ing protocols can sometimes leak additional informa-
tion [12, 5, 7].

Privacy-preserving data mining algorithms, the first
of which were introduced by Agarwal and Srikant [1]
and Lindell and Pinkas [8], allow parties to cooperate
in the extraction of knowledge, without any party
having to reveal individual data items. Since Yao’s
general-purpose secure circuit-evaluation protocol [14]
is impractical, many secure special-purpose protocols
have been developed for specific data mining problems.

Clustering is a well-studied combinatorial prob-
lem [6]. The task is to group similar items in a given
data set into clusters with the goal of minimizing an ob-
jective function. The error-sum-of-squares (ESS) objec-
tive function is defined as the sum of the squares of the
distances between points in the database to their nearest
cluster centers. The k-clustering problem requires the
partitioning of the data into k clusters with the objective
of minimizing the ESS. Lloyd’s (k-means) algorithm [9]
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for k-clustering and Ward’s algorithm for hierarchical
agglomerative clustering make use of the notion of ESS.
Although Ward’s algorithm has been observed to work
well in practice, it is rather slow (O(n?)) and does not
scale well to large databases. Recently there have been
a number of data mining algorithms (e.g., BIRCH [15]
and STREAMLS [4]) designed for input that is too large
to fit entirely in main memory.

In this paper, we present a simple deterministic al-
gorithm, Recluster, for I/O-efficient k-clustering. This
algorithm, which was explicitly designed with conver-
sion to a privacy-preserving version in mind, examines
each data item only once and uses only sequential ac-
cess to the data. For fixed k, Recluster runs in O(n) time
and uses O(logn) space. Our experimental results show
that Recluster is, on average, more accurate in identi-
fying cluster centers than the k-means clustering algo-
rithm. Although there are other clustering algorithms
that improve on the k-means algorithm, this is the first
for which an efficient cryptographic privacy-preserving
version has been demonstrated.

We also present a privacy-preserving version of
the Recluster algorithm, for two-party horizontally-
partitioned databases. This protocol is communication
efficient and it reveals the cluster centers (or the clus-
ter assignments to data, if both parties desire) to both
parties only at the end of the protocol. Unlike existing
privacy-preserving protocols based on the k-means algo-
rithm, this protocol does not reveal intermediate can-
didate cluster centers. These existing solutions can be
made more secure but only at the cost of a high commu-
nication complexity. An alternate solution would be to
develop privacy-preserving versions of other k-clustering
algorithms [10, 15, 4]. However, these algorithms do not
scale well to large databases [10], involve complicated
data structures [15], or can be complicated to transform
into a privacy-preserving protocol [4]. In comparison,
our privacy-preserving version of Recluster is simple and
communication efficient, and produces good clusters.

2 Preliminaries

Two parties, Alice and Bob, own databases D; =
{d1,...,dn} and Dy = {dm+1,...,d,}, respectively.
They wish to jointly compute a k-clustering of D1 U Do
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(that is, the data is horizontally partitioned). Both
parties learn the final k£ cluster centers, and nothing
else. Alternatively, with additional computation and
communication, each party could learn the cluster to
which each of their data objects belongs.

If there were a trusted third party to whom Alice
and Bob were both willing to send their data, this
party could then compute the clustering and send the
cluster centers to Alice and Bob. However, in many
settings, there is no such party. Secure multiparty
computation seeks protocols that can carry out the
required computation without requiring a trusted third
party. In this paper, we assume that Alice and Bob are
semi-honest, meaning that they follow their protocol as
specified, but may try to use the information they have
learned (such as messages they receive) in order to infer
information about the other party’s data.

Our solution makes use of several cryptographic
concepts. We say that Alice and Bob have random
shares of a value x drawn from a field F of size N (or
simply Alice and Bob have random shares of x) to mean
that Alice knows a value a € F' and Bob knows a value
b € F such that (a + b) mod N = z, where a and b are
uniformly random in field F'. Throughout the paper, we
assume that a finite field F' of a sufficiently large size N
is chosen such that all computations can be done in that
field, and all computations throughout the remainder of
the paper take place in F.

An encryption scheme is additively homomorphic if
there is some operation ® on encryptions such that for
all cleartext values a and b, F(a)® E(b) = E(a+b). Our
solutions make use of a semantically secure additively
homomorphic encryption scheme (such as [11]). We also
make use of a secure scalar product protocol [3] and
Yao’s circuit evaluation protocol [14] for small circuits.

3 The k-Clustering Algorithm

Our algorithm runs in the typical “divide, conquer and
combine” fashion. This strategy would require us to
divide the database into two equal halves, recursively
produce k cluster centers from each of the halves, and
then merge these 2k centers into the k final centers.
However, we take a slightly different tack—we produce
2k cluster centers from each recursive call, and then
merge the total of 4k centers thus received (by the two
recursive calls at each level) into 2k centers. Finally,
we use the same merge technique to produce the k final
centers from the 2k clusters returned from the top-most
level of the recursion tree (similar to [4]). See Figure 1.

The key step is the merging of 4k centers into 2k
centers after the two recursive calls (MergeCenters). We
do this by repeatedly choosing a best pair of clusters C;
and C for merging, and replacing them in the clustering

Algorithm Recluster

Input:
Output:

1. S’ = RecursiveCluster(D, 2k) // Produce 2k clusters
2. S = MergeCenters(S’, k) // Compress to k clusters
3. Output §

Database D, Integer k
Cluster centers S

Subroutine RecursiveCluster

Input: Database D, Integer k
Output: Cluster centers S

If (|D|<k)thenS=D

Else

1. D1 = First half of D

2. D5 = Second half of D

3. S1 = RecursiveCluster(D1, k)

4. So = RecursiveCluster(D2, k)

5. S = MergeCenters(S1 U S2, k)

Output S

Subroutine MergeCenters

Cluster centers S, Integer k
Cluster centers S, such that |S| = k

Input:
Output:
While ( [S| >k )

1. Compute the merge error for all pairs of centers in S.
2. Remove from S the pair with the lowest merge error,
and insert the center of the merged cluster, with its weight
as the sum of the weights of the pair.

Output S

Figure 1: The Recluster Algorithm

with C; U C;. A best pair of clusters is one with least
error. We use a variation of the notion of error defined
in Ward’s algorithm [13]. Let Cy and C5 be two clusters
being considered for a merge. Let C.weight denote the
number of objects in cluster C. In [13] the error of
CiUCy is

C1.weight s Cy.weight * dist?(Cy, Cy)

w(C1UCy) = : i ’
error, (C1 UC%) C4.weight + C5.weight

where dist(Cy, C2) is the distance between the centers
of C1 and C5. Recluster defines the error as

error,.(Cy U Cy) = C;.weight x Cy.weight x dist2(6'17 Cy).

Usually the pair of clusters chosen for merging is
the same whether we use error,, or as error,., but this
is not always the case. Our experiments show that
the use of error, makes the algorithm less susceptible
to noise, although the best choice of error measure
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Figure 2: Cluster centers as identified by Recluster (O), the
best run of k-means (¢), and the worst run of k-means (A)
on a typical noisy data set. Each circle represents a cluster
of about 10,000 points.

may be application dependent. Since the MergeCenters
subroutine acts as a global optimizer, our algorithm is
not subject to data ordering issues.

4 Experimental Results

We ran our algorithm on a large number of synthetic
data sets. Each data set uses either a uniform distribu-
tion over some intervals, or Gaussian distributions. We
do not show the Gaussian results, as the performance
was qualitatively indistinguishable from uniform distri-
butions. Some of the data sets include noise at the level
of 5%. In most cases, the number of clusters was rel-
atively small (between 3 and 10); four of the data sets
had 25 clusters. We tested the ability of Recluster to
identify cluster centers in the presence of noise and to
minimize the error sum of squares.

All algorithms were coded in Java and executed
on a Dell Inspiron running Windows XP with 512MB
RAM and a mobile-Pentium 3GHz processor. For each
data set, we ran the k-means algorithm 10 times with
different randomly chosen initial cluster centers. We
compare the performance of Recluster against the best
and worst performance of the k-means algorithm. We
ran experiments on three types of data: random, grid,
and offset grid.

Random Data. We created 50 two-dimensional
data sets with 5% random noise, each of which had three
clusters, with their radii and centers chosen randomly.
On average, each cluster had 10,000 points. In 25 of the

50 cases, we distributed data points using a uniform dis-
tribution with each cluster; the remaining data sets used
a Gaussian distribution. Results from the experiments
on a typical data set are in Figure 2. Recluster does very
well in identifying cluster centers, even in the presence
of noise. When averaged over all data sets that used
the uniform distribution, more than two runs out of the
10 runs of k-means algorithm resulted in the misidenti-
fication of cluster centers. There were, however, a few
data sets (four out of these 25) in which Recluster placed
the center of a cluster outside the cluster, albeit close to
the cluster itself. The average running time for Recluster
over all the uniform data sets (which had about 31,000
points on average) was 219 ms, and the average running
time for the k-means algorithm was 532 ms.

Grid data sets. We used two data sets with 5%
random noise, each consisting of 25 clusters arranged
in a 5 x 5 grid, while two other data sets had 9
clusters arranged in a 3 x 3 grid. Each cluster had
the same radius and the same number of uniformly
distributed points (1000). Figure 3 shows the output
from experiments on one of the 5 x 5 grid data sets.
Recluster accurately identifies the centers of all clusters.
For this data set, not even the best run of the k-means
algorithm identified all 25 cluster centers. On the 9-
cluster data sets, Recluster took an average of 270 ms,
while k-means took an average of 420 ms. The average
running time for Recluster on the 25-cluster data sets
was 4530 ms, and for k-means it was 1720 ms. Recluster
is slower (although far more accurate) than k-means
when k gets larger because Recluster’s running time is
cubic in k.

Offset grid data sets. These are similar to the
grid data sets, except that the clusters are randomly
and slightly perturbed from grid intersection points.
Recluster was quite successful in identifying all cluster
centers, as was k-means on its best runs.

Minimizing the Error Sum of Squares. To
check the quality of the clusters created by Recluster,
we created 10 data sets, each containing between 3
and 9 clusters, with each cluster of random radius
and containing a different number of points. We ran
Recluster once with error,. as the error measure, and once
with error,,. The ESS for the centers found by Recluster
were almost identical to those the ESS for the known
cluster centers. In all but two of the data sets, the ESS
was the same whether we used error, or error,, as the
error function. In the two cases in which error,, was
better, the increase in ESS was marginal.

5 Privacy-Preserving k-Clustering Protocol

Alice and Bob first locally use the Recluster algorithm
to compute k-clusters each from their own part of the
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Figure 3: Cluster centers identified in a noisy grid data set
by Recluster () and by k-means, showing the best (¢) and
worst (A) runs of the k-means algorithm.

data. Next, they randomly share their cluster centers
using the permute_share protocol (see Section 5.1). All
computations are done in a finite field of size V. Alice
and Bob now have random shares of 2k cluster centers.
They again use the permute_share protocol twice to
prevent each party from keeping track of the cluster
centers across iterations. Alice and Bob then participate
in the secure merge_clusters protocol (see Section 5.2) to
iteratively merge the 2k clusters into k clusters. At the
end of m iterations, Alice and Bob obtain a random
sharing of the 2k — m cluster centers. See Figure 4.

5.1 Secure Protocol to Permute Shares. When
Alice has a wvector of clusters C' of the form
((e1,w1), ..., (ck,wy)), this protocol helps Bob to ob-
tain a permuted random share of the vector C. (Here
each ¢; is a cluster center, and w; is its weight.) At
the beginning of the protocol Alice and Bob agree
on a homomorphic encryption scheme. Bob chooses
a random permutation ¢ and a random vector R =
((r1,81),---,(rk,sk)) and outputs ¢(C + R). This pro-
tocol (Figure 5) is similar to the permutation protocol
introduced by Du and Atallah [2].

5.2 Secure Protocol to Merge Clusters. We now
describe a protocol that securely merges m clusters
into m — 1 cluster where the cluster centers are shared
between Alice and Bob. Let {(c{',wi}),..., (c2, wA)}
denote Alice’s share of the cluster centers and

{(cB,wB),... (B, wB)} denote Bob’s share of the

Protocol Private_k-clustering

Input: Database D of n objects, where Alice owns
(di,...,dm) and Bob owns (dm+1,...,dn)
integer k£ denoting the number of clusters

Output: Assignment of cluster numbers to objects

1. Alice computes k cluster centers (c1,w1),. .., (Ck, wk)

from {di,...,dm} and Bob computes k cluster centers

(Ch+1, WEt1)s - - -, (Cok, wag) from {dm+1,...,dn}.

2. Alice and Bob randomly share these cluster centers
with each other.

a. Bob chooses a random permutation ¢1 and random
values i, si,1 < 1 < k. Using permute_share they obtain
random shares of Alice’s k-cluster centers.

b. Alice chooses a random permutation ¢2 and random
values p;,qi, 1 <1 < k. Using permute_share they obtain
random shares of Bob’s k-cluster centers.

c. Alice has (cf',wi),...,(co, ws,) and Bob has
(2, wP),..., (5, wE). Bob chooses a random permu-
tation ¢3 and random values «s,3;,1 < ¢ < 2k. Us-
ing permute_share they obtain random shares of Alice’s
k-cluster centers.

d. Bob adds the shares just obtained to his data. Alice
chooses a random permutation ¢4 and random values
¥i, 05,1 < i < 2k. Using permute_share they obtain
random shares of Bob’s k-cluster centers. Alice adds the
shares just obtained to her data.

3. Alice and Bob repeat the protocol to securely merge
clusters k times to merge 2k clusters into k clusters.

Figure 4: Privacy-preserving k-clustering protocol

A (A Ay B _
cluster centers, where ¢! = (af,...,a}), ¢ =

(aB,...,ak) for 1 <i <k and ¢ denotes the number of
attributes.

Alice and Bob jointly compute the merge error for
all pairs of clusters. For two clusters C; and Cj, for
1 <i < j <k, the merge error is given by error(C; U C;)

B

= (w?*wf-&-w?*wj —|—(wf3*wf—kw?*wf))—k(dist(Ci,C’j))2

where (dist(C;, C;))?

£ £

L
=Y (@ —afi)?+ D (afi—afi)*+2 3 (ahk —af) (ahi—af)
k=1

k=1 k=1

The first term of the distance function is computed
by Alice and the second term by Bob. Alice and Bob
use a secure scalar product protocol to compute the
random shares of the third term, and the random shares
of (wP *wf—l—w;-“*wf). We have error(C;UC;) = e;‘}—l-ef;,
where ef}- and eﬁ are the random shares of the error
known to Alice and Bob, respectively.

Alice has a O(m?)-length vector (eiA}) and Bob has
(65) where 1 < i < 5 < k. They securely compute



Protocol permute_share

Input: Alice has a vector of cluster centers C

of the form ((c1,w1),..., (ck, wk)),

Bob has a random permutation ¢ and

a random vector R = ((r1,s1),..., (rk, S&)).
Output: Alice obtains ¢(C + R) as output.

1. Alice chooses a key pair (pk, sk) and sends the public
key pk to Bob.

2. Alice computes the encryption of the vector C as
((B(c1), E(w1)),...,(E(ck), E(wy))) and sends to Bob.
3. Bob uses the property of the homomorphic encryption
scheme to compute ¢((E(c1+71), E(wi+51)),..., (E(ck+
ri), E(wr + sx))) and sends to Alice.

4. Alice decrypts to obtain her share ¢((c1 +
ri, w1 + $1),...,(ck + Thy,wr + sk)) and Bob’s share

is ¢((—=r1,—81)s. .., (—Tk, —SK)).

Figure 5: Secure protocol to permute shares

the indices ¢ and j such that (efj) + (ef}) is minimum
using Yao’s circuit evaluation [14]. Both Alice and Bob
learns the indices ¢ and j. This is efficient provided
k? is not too large. Alice and Bob compute the merge
cluster centers as random shares using a secure scalar

protocol [3] and a weighted-mean protocol [7].

5.3 Efficiency and Privacy. The overall compu-
tational complexity of the privacy-preserving version
of the Recluster protocol is O(k®f) encryptions, and
O(nk3¢) multiplications for Alice and O(k3/) exponen-
tiations, O(k?) encryptions and O(nk?¢) multiplications
for Bob, where k denotes the number of clusters, n de-
notes the size of the database and ¢ denotes the number
of attributes in the database, and ¢ denotes the maxi-
mum number of bits for an encryption. The communica-
tion complexity is O(k®cf) bits, which does not depend
on n. Although the computational complexity is cubic
in k, for large data sets and small k, our protocol is
not significantly slower than the k-means protocol for
horizontally partitioned data.

Both parties compute k clusters independently from
the data objects they own. They communicate with
each other when they merge 2k clusters into £ clusters.
The merge_clusters protocol does the merging using se-
cure permute_share protocol, the scalar product proto-
col, and the Yao’s protocol. These protocols are secure.
They do not leak any information. The cluster centers
at the end of the merge_clusters protocol is obtained
as a random shares between the two parties. When
the parties like to compute the cluster centers they ex-
change their shares to each other. All the intermediate
results are also available as random shares between the

two parties. Both parties cannot learn any information
from the encrypted messages that are communicated
since the encryption scheme chosen is semantically se-
cure. Hence the privacy-preserving Recluster protocol is
secure and does not leak any information. The proto-
col achieves the same privacy as when a trusted third
party is used. Earlier protocols for privacy-preserving
Ek-clustering [12, 7, 5] are all based on the k-means al-
gorithm. The k-means algorithm computes candidate
cluster centers in an iterative fashion. All three of these
protocols reveal the candidate cluster to which each ob-
ject has been assigned. Our protocol does not leak any
intermediate information, and is hence more private.
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