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Abstract. The recent investigation of privacy-preserving data mining
and other kinds of privacy-preserving distributed computation has been
motivated by the growing concern about the privacy of individuals when
their data is stored, aggregated, and mined for information. Building
on the study of selective private function evaluation and the efforts to-
wards practical algorithms for privacy-preserving data mining solutions,
we analyze and implement solutions to an important primitive, that of
computing statistics of selected data in a remote database in a privacy-
preserving manner. We examine solutions in different scenarios ranging
from a high speed communications medium, such as a LAN or high-
speed Internet connection, to a decelerated communications medium to
account for worst-case communication delays such as might be provided
in a wireless multihop setting.

Our experimental results show that in the absence of special-purpose
hardware accelerators or practical optimizations, the computational com-
plexity is the performance bottleneck of these solutions rather than the
communication complexity. We also evaluate several practical optimiza-
tions to amortize the computation time and to improve the practical
efficiency.

1 Introduction

Privacy-preserving data mining, as well as other kinds of privacy-preserving
distributed computation, is intended to address conflicting goals. On the one
hand, it is often desirable to extract information from collected data. On the
other hand, there are often legitimate concerns about the privacy of personal
data, proprietary data, and other sensitive information. Privacy-preserving data
mining, in which certain computations are allowed, while other information is
to remain protected, was first introduced in 2000 by Agrawal and Srikant [2]
and Lindell and Pinkas [13]. Since then, extensive research has been devoted to
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privacy-preserving data mining and other privacy-preserving computations effi-
cient enough to be used on extremely large data sets (e.g., [3, 9, 5, 8, 17, 12, 7, 18,
10, 1, 19]).

In general, this research has been divided into solutions that provide strong
cryptographic privacy protection, which require more computational overhead
and have so far been limited to extremely simple (but useful) functions, and
those that use perturbation, which provide weaker privacy properties, but allow
much more efficient solutions and allow computation of more sophisticated data
mining functions.

Our work provides an experimental evaluation of a cryptographic solution
presented by the second author and others [5]. They introduced selective private
function evaluation, a general methodology for efficient privacy-preserving solu-
tions of computations by a client over data in a remote database. Their general
solutions can provide efficiency improvements whenever the number of data ele-
ments involved in the computation is significantly fewer than the total number
of data elements. As a particular instance, they consider a client/server envi-
ronment in which the client and the server engage in a secure computation to
evaluate a statistical function. Their solutions provide strong privacy guarantees,
and involve encryption as a primary component.

As a specific selective private function computation, they consider private
sum computation. In this setting, a client privately performs a sum or weighted
sum of selected database elements held by the server. This is an important ex-
ample because such protocols immediately yield private solutions for computing
means, variances, and weighted averages, which can be useful on their own or
as part of a larger privacy-preserving distributed data mining protocol. In our
work, we implement a particular privacy-preserving solution to the private sum
computation [6]; this protocol is described in more detail below. This protocol,
as well as some of the others of Canetti et al. [5], can easily be extended to work
for multiple distributed databases.

Our results show that the total running time needed is quite high, but it
becomes feasible if certain straightforward optimizations are done, such as some
client precomputation before the actual computation is to be done. Unless spe-
cial hardware accelerators or practical optimizations are used, the computational
delay caused by the encryption operations is the bottleneck, while the commu-
nication delay is significantly less.

To our knowledge, our implementation is one of the first implementations
of privacy-preserving database computations. Relatedly, Malkhi et al.’s recent
implementation [14] of Yao’s general secure two-party computation solution [20]
provides the first general secure multiparty computation results, and demon-
strates that many computations on relatively small data sets can be done ex-
tremely efficiently. Indeed, secure multiparty computation and cryptographically
strong privacy-preserving database computations, largely considered only theo-
retical, seem to be on the cusp of practicality as both theoretical and techno-
logical advances have improved their performance. Therefore, this kind of initial
experimental work is an important contribution to understanding where such
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results are within the realm of practice and where further improvements are still
needed.

In Section 2, we describe the private selected sum problem and our imple-
mented solution in more detail. We present our experimental results, including
various practical optimizations that reduce the execution time, in Section 3.

2 Private Selected Sum Computation

We consider the simple problem of privately evaluating the sum of a subset of
numbers. The server holds a database of n numbers. The client is interested in
the sum of m selected numbers in the database (whose indices it is assumed to
know, e.g., from some publicly available source), but the client does not wish
to reveal its selection criteria. The database owner on the other hand wants to
reveal to the client only the sum and not the individual elements that contribute
to the sum.

A privacy-preserving client/server computation must satisfy three require-
ments [5]. Correctness states that as long as the client and server follow the
protocol then the client’s output is the correct value. Client Privacy requires
that a malicious server cannot learn anything from the interaction about which
values the client has selected to be involved in the computation. Database Pri-
vacy requires that the client learn only a predefined amount of information about
the data.

A trivial but nonprivate solution to this problem is to let the client send
the m indices in which it is interested to the database server. The server then
computes the sum of the values at the specified indices and returns the sum
to the client. While this solution preserves the privacy of the server, the server
learns the set of indices the client is interested in, thus compromising the client
privacy requirement. Conversely, another alternative would be for the server to
expose the database to the client and have the client compute the sum of the
numbers it is interested in. In this solution, the client’s privacy is preserved but
the client learns the entire contents of the server’s database, and hence the goal
of database privacy is not met.

Secure multiparty computation (SMC) is a powerful cryptographic primi-
tive in which two or more parties can jointly compute a specified function of
their input while hiding their inputs from one another. The problem of securely
evaluating the selected sum is a specific example of SMC: the client and server
wish to jointly evaluate the sum of a selected subset of numbers without the
server revealing the individual elements or the client revealing the indices of in-
terest. General SMC solutions [4, 11, 20] can provide solutions to the database
sum problem providing both client and database privacy, but these solutions
have communication overhead that is at least quadratic in the size of the data-
base, which will generally be impractical for large databases. For example, initial
results of the Fairplay system [14] suggest that straightforward implementation
of Yao’s solution would require an execution time of at least 15 minutes for a
database of only 10,000 elements [16].
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Canetti et al. [5] present cryptographic privacy-preserving solutions that in
particular focus on reducing the communication. This focus is justified because
strong privacy requires at least linear computation, as at a minimum every
data element must be accessed in order to avoid leaking any information to the
server. They present both linear-communication and sublinear-communication
solutions.

As a starting point for our investigations of the practical performance of se-
lective private function evaluation, we investigate a simple linear-communication
solution that provides database privacy and client privacy using semantically se-
cure homomorphic encryption [6]. Semantic security means that ciphertexts yield
no information about their plaintexts. (In particular, encryption is randomized,
and it is not possible to tell from two ciphertexts whether they encrypt the same
plaintext or different plaintexts.) A homomorphic encryption scheme is an en-
cryption scheme in which certain efficient computations on ciphertexts, which
can be computed without knowledge of the plaintexts or the secret key, cor-
respond to certain computations on plaintexts. For our protocol, we require a
homomorphic encryption scheme satisfying: E(a) ·E(b) = E(a + b), where · and
+ denote modular multiplication and addition, respectively. It also follows that
E(a)c = E(a · c) for c ∈ N. The Paillier cryptosystem [15] satisfies this property
and is the cryptosystem of our choice in our implementation.

In the database sum setting, the server holds a database of n numbers
x1, . . . , xn. The client holds the set of indices I1, . . . , In, which represent the
subset of numbers it is interested in. That is, Ii is 1 if xi is to be included
in the sum computation, and 0 otherwise.1 (If desired, integer weights in some
larger range could be used to produce a weighted sum, which in turn could be
used for a weighted average.) The client has a public encryption key E and the
corresponding private decryption key D of a homomorphic encryption scheme.

The private protocol, illustrated in Figure 1, executes as follows. The client
encrypts its array of indices using the homomorphic cryptosystem and sends the
encryptions E(I1), E(I2), . . . , E(In) to the server. The server then computes the
product

∏n
i=1 E(Ii)xi . That is, the server takes the ith received encrypted value

and raises it to the value of its ith data element xi. Then the server multiplies
all these values together modulo M , where M is a parameter of the encryption
scheme. Note that this operation is applied directly to the received encrypted
values, and does not require decryption nor does it yield any information about
the cleartexts to the server. By the properties of homomorphic encryption, the
resulting product is equal to the sum of numbers in the locations specified by
the client’s indices; that is,

n∏

i=1

E(Ii)xi = E

(
n∑

i=1

Iixi

)
,

as desired. The server sends the product to the client, which decrypts it using the
private key D to learn the desired sum. All operations are performed modulo M ,
1 The version of this paper published in the SDM proceedings mistakenly had this

backwards. It is corrected here.
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Fig. 1. Selected Sum Protocol

where M is a parameter of the homomorphic encryption cryptosystem used. The
client’s privacy is protected by the encryption of the indices, while the database’s
privacy is protected because the result sent back is the encryption of the desired
sum, and does not contain any information about the other database values.

3 Experimental Results

We implemented the client/server protocol shown in Figure 1 and measured the
computation and communication performance. We implemented the protocol in
Java and C++. The Java version uses the Java security package to perform cryp-
tographic operations and the C++ implementation uses the OpenSSL libraries.
Cryptographic keys are 512 bits. We experimented across various database sizes
from 10,000 numbers to 100,000 numbers, with numbers of 32 bits each. On
average, the performance results from our Java experiments were around five
times slower than those of similar C++ experiments; except in Section 3.5, we
report only the C++ numbers here.

The experimental data was measured on a High Performance Cluster at
Stevens Institute of Technology in Hoboken, NJ and on a High Performance
Cluster at Illinois Institute of Technology in Chicago, IL to measure communi-
cation complexity over short and long distances, respectively. Communication
between the client and server was enabled by a 64Gbps switch within the High
Performance Computing facility at Stevens; communication between the client
in Chicago and the server in Hoboken used a 56Kbps modem. Our results show
that despite the longer distance between the client and server and the decelerated
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communication medium, computation time still prevails over the communication
time, accounting for the bulk of the total running time.
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Fig. 2. Components of Overall Runtime without Any Optimizations over a
Short Distance

3.1 Performance Results without Any Optimizations

Figures 2 and 3 show experimental results of the direct implementation of the
solution described in Section 2, without any optimizations.

In Figure 2, both the client and the server processes ran on 2GHz Pentium-III
processors with 3GB memory, connected by a high-performance gigabit network
switch. Our results illustrate linear time performance, as expected. In this case,
the bulk of the execution time is attributable to the client computation of the n
public key encryptions of its index vector. The time for the server’s computation
is significantly less, followed by the communication time. The client’s decryption
time is constant (independent of the database size) and negligible since it is
simply the time taken to decrypt a single encryption (of the desired sum). For
a database of 100,000 elements, approximately 20 minutes is required for the
execution.

Figure 3 shows the results of the experiment carried out over a long dis-
tance. In these experiments, the client process ran on a 500 MHz UltraSparc
processor machine in Chicago, IL, and the server ran on a 1GHz Intel Pentium
processor in Hoboken, NJ. Communication between client and server was via a
56Kbps dialup connection. As before, the client’s encryption time increases lin-
early with increase in database size, as does the server’s computation time and
the communication time. As expected, the server’s communication time now be-
comes a more substantial part of the execution time. However, despite the slow
communication rate, the computation delay remains more significant than the
communication delay.
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Fig. 3. Components of Overall Runtime without Any Optimizations Mea-
sured over a Long Distance

Our results show that in the absence of any practical optimizations or spe-
cialized hardware to accelerate client encryption, computation time is the bot-
tleneck for the algorithm’s performance. In Sections 3.2–3.5, we evaluate several
straightforward practical optimizations.

3.2 Single-pass and Pipeline Parallelism
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Fig. 4. Comparison of Overall Runtimes with and without Batching of Index
Vector over a Short Distance

Noting that both the client computation and the server computation can
be done in a single pass through their inputs, we implemented “batching” of
the client processing, in which the client batches its processing of indices into
smaller sized chunks, performing and sending the encryptions of the indices in
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each chunk before proceeding to the next chunk. On receiving each chunk, the
server can continue computing the partial product.

In addition to taking advantage of pipeline parallelism, this approach also
reduces the memory requirements of both the client and server. At any point
in time, the client has to allocate memory needed to hold only one chunk of its
indices rather than the whole index vector. Similarly, the server need only hold
a single database chunk in memory at one time. The optimal chunk size will
depend on the relative communication and computation speeds, as well as the
overhead in processing messages and memory access. In order to achieve max-
imum parallelization, ideally all three activities (communication of one batch,
client processing of the next batch, and server processing of the previous batch)
will require approximately the same amount of time.

Figure 4 compares the overall runtime of the protocol with and without batch-
ing of index vector. In our experiments, we took a batch size of 100 elements,
resulting in approximately a 10% reduction in overall runtime.

3.3 Preprocessing the Index Vector

This optimization aims at reducing the computation complexity of the client by
encrypting the indices offline in advance and storing the encrypted indices. Even
if the client does not yet know which indices will be 0 and which will be 1, it
can simply encrypt a large number of 0’s and a large number of 1’s to use later.
When the client needs to send encrypted indices to the server, it can just retrieve
the appropriate encryptions. The optimization is useful for mobile devices, e.g.
PDAs, that have limited computing power but reasonable amounts of storage.

The results of this optimization are shown in Figure 5, with overall on-line
execution times reduced to about 3 1

2 minutes for a database of 100,000 elements.
The client’s processing time, now simply to read the stored encryptions and send
them to the server, is much smaller. All other components remain unchanged; the
server’s computation time becomes the dominant factor. This experiment was
conducted on the high performance cluster with a 64Gbps bandwidth switch
as the communications medium. Hence the delay in communication does not
assume significant proportions. The reduction in overall runtime is about 82%.

Figure 6 shows the results observed over a 56Kbps dialup connection with
the client at Chicago, IL and the server at Hoboken, NJ. In this case, the com-
munication delay becomes the significant factor.

3.4 Combination of Optimizations

The batching of index vector optimization reduces the server’s idle time while
preprocessing the vector of indices reduces the client’s on-line encryption time.
Combining these optimizations results in an overall on-line runtime reduction of
about 94%, as shown in Figure 7.
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Fig. 5. Components of Overall Runtime after Preprocessing the Index Vec-
tor over a Short Distance
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Fig. 6. Components of Overall Runtime after Preprocessing the Index Vec-
tor Measured over a Long Distance
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Fig. 7. Performance Gain Due to Combination of Optimizations over a Short
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3.5 Using Multiple Clients in Parallel

This alternative aims at reducing the time spent by the client in encrypting the
index vector by partitioning the task of encryption among multiple clients. The
challenge is how to protect the privacy of the server while using multiple clients.

In this setting, k clients work in cooperation. Each client is responsible for
1/kth of the database, and will interact with the server to learn a partial sum
corresponding to the chosen indices in that part of the database. However, learn-
ing these partial sums violates database privacy. Accordingly, the server uses a
randomized blinding to protect the partial sums; the blinding is removed by the
clients only after the partial sums are combined into a single sum, as shown in
Figure 8 for k = 3.

 

Client (C2) Client (C3)

P1 + R1

Encrypted Indices Encrypted Indices

P3 + R3

Client (C1)

Encrypted Indices
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(P1 + R1)

Client (C2)
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(P1 + P2 + R1 + R2)

Step 3
(P1 + P2 + P3)

Phase 1 Phase 2

Fig. 8. Multiple Clients (k = 3)

In phase one, k clients C1, C2, . . . , Ck are involved each holding an index
vector of size n/k elements. (We assume for simplicity that the database size n
is a multiple of k.) The clients independently and in parallel choose their own
encryption keys and interact with the server to learn a blinded encryption of
the appropriate partial sum. That is, the server chooses random numbers R1,
R2, .., Rk such that

∑k
i=1 Ri = 0 (mod M) (where again M is a parameter of

the encryption scheme). When computing the product to return to client Ci,
the server also computes E(Ri) and multiplies it into the product. This has the
effect of adding Ri to the partial sum Pi.

In phase two, the clients combine their partial sums and remove the blinding
factor:

1. Client C1 sends its blinded partial sum to client C2.
2. In turn, each client Ci adds the value received from client Ci−1 to its own

blinded sum and sends the result to client Ci+1.
3. Client Ck receives the blinded partial sum from client Ck−1, adds it to its

blinded partial sum to generate the total unblinded sum, and broadcasts the
result to all the other clients.
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Fig. 9. Performance Improvement Due to Secret Sharing with Three Clients
(Java implementation)

The results in Figure 9 show performance results for k = 3. The overall
execution time is reduced by a factor of approximately 2.99, which represents
a 3-fold improvement, minus a small overhead for the combining phase. Note
that we implemented multiple clients only for our Java implementation, so these
performance numbers are significantly higher than those in earlier graphs. They
are shown only to indicate the close to 3-fold improvement. The use of k clients
would result in approximately a k-fold reduction in execution time.

4 Conclusions

We have analyzed and implemented an instance of selective private function
evaluation that privately computes the sum of a subset of numbers held by a
remote database, where the selection of the subset is done by the client. The
database does not learn anything about which values the client’s computation
involves, and the client does not learn anything about the values in the database
other than what is implied by the value of the given sum.

Our experimental results show that the running time needed is quite high,
though perhaps feasible in some settings where privacy is considered sufficiently
important. In a direct implementation, overall running times are around 20
minutes for a database of 100,000 elements in a high-speed communication envi-
ronment. With straightforward optimizations, the running times are only a few
minutes, and may be within the realm of practice. Unless practical optimizations
or specialized hardware are used to accelerate encryptions, computation delay is
the major bottleneck of performance of our implementation.

It remains open to improve the execution times to scale efficiently to realistic-
ally-sized databases. As directions for future work, we plan to investigate the
use of special-purpose cryptographic hardware, as well as methods that give up
some quantifiable amount privacy in order to achieve significant performance
improvements.
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