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Abstract. Dynamics in a distributed system are self-stabilizing if they
are guaranteed to reach a stable state regardless of how the system is
initialized. Game dynamics are uncoupled if each player’s behavior is in-
dependent of the other players’ preferences. Recognizing an equilibrium
in this setting is a distributed computational task. Self-stabilizing un-
coupled dynamics, then, have both resilience to arbitrary initial states
and distribution of knowledge. We study these dynamics by analyzing
their behavior in a bounded-recall synchronous environment. We deter-
mine, for every “size” of game, the minimum number of periods of play
that stochastic (randomized) players must recall in order for uncoupled
dynamics to be self-stabilizing. We also do this for the special case when
the game is guaranteed to have unique best replies. For deterministic
players, we demonstrate two self-stabilizing uncoupled protocols. One
applies to all games and uses three steps of recall. The other uses two
steps of recall and applies to games where each player has at least four
available actions. For uncoupled deterministic players, we prove that a
single step of recall is insufficient to achieve self-stabilization, regardless
of the number of available actions.

1 Introduction

Self-stabilization is a failure-resilience property that is central to distributed
computing theory and is the subject of extensive research (see, e.g., [3] for a sur-
vey). It is characterized by the ability of a distributed system to reach a stable
state from every initial state. Dynamic interaction between strategic agents is a
central research topic in game theory (see, e.g., [4,11]). One area of interest is
uncoupled dynamics, in which each player’s strategy is independent of the other
players’ payoffs [9]. Here, we bring together these two research areas and study
of self-stabilizing uncoupled dynamics within the broader research agenda of dis-
tributed computing with adaptive heuristics [10]. The same questions we answer
here can be asked for a broad variety of dynamics and notions of convergence and
equilibria. These directions, as well as a conjecture, are discussed in Section 5.

We focus our investigation on a bounded-recall, synchronous setting. We
consider self-stabilization in a multi-agent distributed system in which, at each
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timestep, the agents act as strategic players in a game, simultaneously selecting
actions from their respective finite action sets to form an action profile. The
space of action profiles is relevant throughout this work, and we refer to its size
as the size of the game. We study the effects of bounded recall, in which the
state of this system at any time consists of the r most recent action profiles,
for some finite r. The stable states in r-recall systems necessarily have the same
action profile in r consecutive time steps. In our context, we want stable states
that are robust to players acting selfishly—i.e., those where the repeated action
profile is an equilibrium of the stage game. In this paper, we consider pure Nash
equilibria (PNE). Thus, in our setting, dynamics self-stabilize for a given game
if, from every starting state, players are guaranteed to converge to a PNE. For
games without PNE, dynamics cannot self-stabilize in this sense. Throughout
this paper, we say that particular dynamics succeed on a class of games if they
self-stabilize for games in that class whenever a PNE exists.

Traditional study of convergence to equilibria in game dynamics makes var-
ious assumptions about the “reasonableness” of players’ behavior, restricting
them to always play the game in ways that are somehow consistent with their
self-interest given their current knowledge. In contrast to these behavioral restric-
tions on the players, uncoupledness is an informational restriction, in that the
players have no knowledge of each other’s payoffs. In this situation, no individual
player can recognize a PNE, so finding an equilibrium is a truly distributed task.

If uncoupledness is the only restriction on the dynamics, then the players can
find a PNE through a straightforward exhaustive search. However, this changes
when players’ abilities to remember past actions is restricted. In a continuous-
time setting, Hart and Mas-Colell [7] showed that deterministic uncoupled dy-
namics fail to reach a stable state for some games that have PNE if the dynamics
must be historyless, i.e., if the state space of the system is identical to the action
profile space of the game. This suggests the central question that we address:

On a given class of games, how much recall do uncoupled players need
in order to self-stabilize whenever a PNE exists? That is, when are there
successful k-recall dynamics?

This question was answered in part by Hart and Mas-Colell [8], who showed
that in a discrete-time setting, even when players are allowed randomness, no his-
toryless uncoupled dynamics succeed on all two-player games where each player
has three actions. Moreover, they showed that even for generic games (where
at every action profile each player has a unique best response), no historyless
uncoupled dynamics succeed on games with three three-action players. They
also gave positive results, proving that there are historyless uncoupled dynamics
that succeed on all two-player generic games, and that if the players have 2-recall
(i.e., they are allowed to see the two most recent action profiles), then over every
action profile space there are stochastic uncoupled dynamics that succeed on all
games.

Our results. We show in Section 3 that there exist historyless uncoupled dy-
namics that succeed on all two-player games with a two-action player and on

2



all three-player generic games with a two-action player (Theorems 4 and 9). In
both cases, we prove that these results are tight, in that they do not hold for any
larger size of game (Theorems 5 and 11). Combined with the results of Hart and
Mas-Colell [8], this provides a complete characterization of the exact minimum
recall needed, for any action profile space, for uncoupled dynamics to succeed
on all games over that space and on generic games over that space. In Sec-
tion 4, turning to deterministic dynamics, we demonstrate 3-recall deterministic
uncoupled dynamics that succeed on all games (Theorem 14) and 2-recall de-
terministic uncoupled dynamics that succeed on all games in which every player
has at least four actions (Theorem 15). We also prove for every action profile
space that no historyless deterministic uncoupled dynamics succeed on all games
over that space (Theorem 16). Some proofs are omitted from the proceedings
version of this paper. A longer version with all proofs included can be found at
http://arxiv.org/abs/1403.5791.

Related work. There are rich connections between distributed computing and
game theory, some of which are surveyed by Halpern [5]. Jaggard, Schapira, and
Wright [10] investigated convergence to pure Nash equilibria by game dynamics
in asynchronous distributed systems. Most closely related to our specific setting,
Hart and Mas-Colell introduced the concept of uncoupled game dynamics [7].
In addition to the results mentioned above, they also addressed convergence to
mixed Nash equilibria by bounded-recall uncoupled dynamics [8]. Babichenko
investigated the situation when the uncoupled players are finite-state automata,
as well as completely uncoupled dynamics, in which each player can see only
the history of its own actions and payoffs [1,2]. Young [13] and Pradelski and
Young [12] gave completely uncoupled dynamics that achieve an equilibrium in
a high proportion of steps but do not necessarily converge. Hart and Mansour [6]
analyzed the time to convergence for uncoupled dynamics.

2 Preliminaries

We begin with definitions of the concepts used in the paper.

Games. Let n ∈ N and (k1, ..., kn) ∈ Nn, with n ≥ 2 and each ki ≥ 2. A game of
size (k1, ..., kn) is a pair (A,U), where A = A1× ...×An such that each |Ai| = ki,
and U = (u1, ..., un) is an n-tuple of functions ui : A → R. Ai and ui are the
action set and utility function of player i. ∆(Ai), the probability simplex over
Ai, is player i’s set of mixed actions. When n is small, we may describe a game
(A,U) as a k1-by-...-by-kn game. Elements of A are the (action) profiles of the
game, and A is called the (action) profile space. U(A) is the the class of all U
such that each ui takes Ai as input, so A× U(A) is the class of all games with
profile space A. When A is clear from context, we often identify the game with
the utility function vector U .

Let U ∈ U(A). For i ∈ {1, ..., n} and a = (a1, ..., an) ∈ A, we say that player
i is U -best-replying at a if ui(a) ≥ ui((a1, ..., a

′
i, ..., an)) for every a′i ∈ Ai. We
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define the set of U -best-replies for player i at a,

BRUi (a) = {a′i ∈ Ai : i is U -best-replying at (a1, ..., a
′
i, ..., an)}.

We omit U from this notation when the game being played is clear from context.
A profile p ∈ A is a pure Nash equilibrium, abbreviated PNE, for U if every
player i ∈ {1, ..., n} is best-replying at p. An action ai ∈ Ai is weakly dominant
for player i if ai ∈ BRi(x) for every x ∈ A; it is strictly dominant for player i if
BRi(x) = {ai} for every x ∈ A.

A game (A,U) ∈ A× U(A) is generic if every player’s best-replies are unique,
i.e., if for every a ∈ A and i ∈ {1, ..., n}, |BRUi (a)|=1. For generic games (A,U)
we may abuse notation slightly by using BRUi (a) to refer to this set’s unique
element. A× G(A) is the class of all generic games on A.

Dynamics. We now consider the repeated play of a game. Let the profile at

timestep t ∈ Z be a(t) =
(
a
(t)
1 , ..., a

(t)
n

)
∈ A. The stage game (A,U) ∈ A ×

U(A) is then played: each player i simultaneously selects a new action a
(t+1)
i by

applying an r-recall stationary strategy fUi : Ar → ∆(Ai), where r ∈ N and
Ar is the Cartesian product of A with itself r times. A deterministic r-recall
stationary strategy mapping ranges over Ai instead of ∆(Ai). The strategy fUi ,
which is stationary in the sense that it does not depend on t, will take as input
(a(t−r+1), ..., a(t)), the r most recent profiles. We call this r-tuple the state at
time t. The terms 1-recall and historyless are interchangeable. A strategy vector
is an n-tuple fU = (fU1 , ..., f

U
n ), where each fUi is a strategy for player i. F(A)

will denote the set of all strategy vectors for A.
A strategy mapping for A is a mapping f : U(A) → F(A) that assigns to

each U a strategy vector fU . A strategy mapping f is uncoupled if the strategy
it assigns each player depends only on that player’s utility function and not, e.g.,
on the other players’ payoffs. That is, there are mappings f1, ..., fn where each
fi maps utility functions on A to strategies for A, such that fi(ui) ≡ fUi for
i = 1, ..., n. If fUi is stationary, deterministic, or r-recall for i = 1, ..., n, then fU

is also. If every fU has any of those properties, then f does also.
Now let x =

(
x(1), ..., x(r)

)
∈ Ar, and let fU be an r-recall strategy vector.

For T ≥ r, a partial fU -run for T steps starting from x is a tuple of profiles(
a(1), ..., a(T+r)

)
∈ AT+r such that x = (a(1), ..., a(r)) and for every r < t ≤ T+r,

Pr
(
fU
(
a(t−r), ..., a(t−1)

)
= a(t)

)
> 0.

An fU -run is an infinite sequence of profiles a(1), a(2), ... such that every finite
prefix is a partial fU -run. We say that y ∈ Ar is fU -reachable from x ∈ Ar if there
exist a T ∈ N and a partial fU -run

(
a(1), ..., a(T+r)

)
such that x = (a(1), ..., a(r))

and y =
(
a(T ), ..., a(T+r)

)
. The state x is an fU -absorbing state if for every fU -

run a(1), a(2), ... beginning from x,
(
a(t+1), ..., a(t+r)

)
= x for every t ∈ N. Notice

that any fU -absorbing state x =
(
a(1), ..., a(r)

)
must have a(1) = ... = a(r). We

omit the strategy vector from this notation when it is clear from context. The
game dynamics of f consist of all pairs (U,R) such that R is an fU -run.
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Convergence. A sequence of profiles a(1), a(2), ... converges to a profile a if there
some T ∈ N such that a(t) = a for every t ≥ T . If from every x ∈ Ar, some
fU -absorbing PNE is fU -reachable, then f self-stabilizes on game (A,U). We
say that f succeeds on a game U if f self-stabilizes on (A,U) or if (A,U) has
no PNE. Let C(A) be a class of games on A. If f succeeds on every game
(A,U) ∈ A× C(A), then f succeeds on C(A).

Let A = A1 × ... × An and B = B1 × ... × Bn be profile spaces of the
same size, in the sense that there is some permutation π on {1, ..., n} such that
(|A1|, ..., |An|) = (|Bπ(1)|, ..., |Bπ(n)|). Then we write A ' B. If f succeeds on
C(A), then there is a strategy mapping derived from f that succeeds on C(B),
simply by rearranging the players and bijectively mapping actions in each Ai
to actions in Bπ(i). This new strategy mapping retains any properties of f that
are of interest here (uncoupledness, r-recall, stationarity, and determinism). For
this reason we define

C(|A1|, ..., |An|) =
⋃
B'A

C(B),

and we say that f succeeds on C(|A1|, ..., |An|) if f succeeds on C(B) for some
B ' A. For example, “f succeeds on G(2, 3)” means “f self-stabilizes on every
generic 2-by-3 game with a PNE (up to renaming of actions).”

3 Stochastic uncoupled dynamics

In this section, we determine, for every profile space A, the minimum r ∈ N such
that an uncoupled r-recall stationary strategy mapping exists that succeeds on
all games (A,U) ∈ A × U(A) or all generic games (A,U) ∈ A × G(A). Hart
and Mas-Colell [8] proved that 2-recall is sufficient to succeed on all games, 1-
recall is sufficient to succeed on generic two-player games, and that 1-recall is
not sufficient to succeed on all games, or even all generic games. We state these
results in the present setting.

Theorem 1 (Hart and Mas-Colell [8]). For any profile space A, there exists an
uncoupled 2-recall stationary strategy mapping that succeeds on all games (A,U).

Theorem 2 (Hart and Mas-Colell [8]). There is no uncoupled historyless sta-
tionary strategy mapping that succeeds on all 3-by-3 games, or on all 3-by-3-by-3
generic games.

Theorem 3 (Hart and Mas-Colell [8]). For any two-player profile space A,
there is an uncoupled historyless stationary strategy mapping that succeeds on
all generic games (A,U).

We now describe the strategy mapping given in the proof of Theorem 3.
Notice that for a historyless stationary strategy mapping, the state space is
exactly the profile space, so the terms state and profile are interchangeable in
this context.
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Definition For any n-player profile spaceA, the canonical historyless uncoupled
stationary strategy mapping for A is h : U(A) → F(A), defined as follows. Let
U = (u1, ..., un) ∈ U(A). Then h(U) = (hU1 , ..., h

U
n ), where for i ∈ {1, ..., n},

hUi : A→ Ai is given by

Pr
(
hU (ai) = ai | ai ∈ BRi(a)

)
= 1

Pr
(
hU (ai) = bi | ai 6∈ BRi(a)

)
= 1/ki,

for all ai, bi ∈ Ai. That is, if player i is already best replying, then it will continue
to play the same action. Otherwise, i will play an action chosen uniformly at
random from its action set.

In their proof of Theorem 2, Hart and Mas-Colell make the following obser-
vation.

Observation 1 (Hart and Mas-Colell [8]). Suppose f is an uncoupled histo-
ryless stationary strategy mapping for profile space A and f succeeds on all
generic games (A,U). Then two conditions hold for every game (A,U) and a =
(a1, ..., an) ∈ A. First, if player i is best-replying at a, then Pr(fUi (a) = ai) = 1.
Second, if player i is not best replying at a, then Pr(fUi (a) = a′i) > 0 for some
a′i ∈ Ai r {ai}.

Informally, no player can move when it is best-replying, and each player must
move w.p.p. whenever it is not best-replying. The first condition guarantees that
every PNE is an absorbing state; the second guarantees that no non-PNE is an
absorbing state. Implicit in the same proof is the fact that h is at least as
“powerful” as any other historyless uncoupled strategy mapping.

Observation 2 (Hart and Mas-Colell [8]). If any historyless uncoupled station-
ary strategy mapping succeeds on U(A) or on G(A), then h succeeds on that
class.

3.1 Stochastic dynamics for U(A)

We now describe the profile spaces in which there are uncoupled historyless
strategy mappings that succeed on every game, or equivalently (by Observation
2), the A for which h succeeds on U(A). A proof that h succeeds on 2-by-k
games proceeds by simple case checking.

Theorem 4. For every two-player profile space A in which one player has only
two actions, h succeeds on all games (A,U).

It turns out that 2-by-k profile spaces are the only ones where h succeeds on
all games.

Theorem 5. Let A be a profile space. Unless A has only two players and one of
those players has only two actions, no historyless uncoupled stationary strategy
mapping succeeds on all games (A,U).
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We give three lemmas that will be used in the proof of Theorem 5. Informally,
Lemma 6 says that additional actions do not make a profile space any “easier”
in this context; the players will need at least as much recall to succeed on all
games in the larger space. The proof relies on a type of reduction in which the
players take advantage of a strategy mapping for a larger game by “pretending”
to play the larger game. Whenever player i plays ki, all players guess randomly
whether i would have played ki or ki + 1 in the larger game.

Lemma 6. Let n ≥ 2, k1, ..., kn ≥ 2, and i ∈ {1, ..., n}. If h succeeds on
U(k1, ..., ki + 1, ..., kn), then h succeeds on U(k1, ..., ki, ..., kn).

Lemma 7 tells us that the same is true of adding players to the game. Its
proof also uses a simple reduction. The players utilize the strategy mapping for
the (n+1)-player game by behaving as if there is an additional player who never
wishes to move. This preserves genericity, so the lemma also applies to the class
of generic games.

Lemma 7. Let n ≥ 2 and k1, ..., kn, kn+1 ≥ 2. If h succeeds on U(k1, ..., kn, kn+1),
then h succeeds on U(k1, ..., ki, ..., kn). The same is true if we replace U with G.

Finally, Lemma 8 says that h does not succeed on all 2-by-2-by-2 games. An
example is given in its proof of a game with a PNE where h fails to converge.

Lemma 8. No historyless uncoupled stationary strategy mapping succeeds on
U(2, 2, 2).

Proof of Theorem 5. Let A = A1 × ... × An. By Observation 2, it suffices to
show that h does not succeed on U(|A1|, ..., |An|). Assume that h does succeed
on U(|A1|, ..., |An|). If n = 2, |A1|, |A2| > 2, and h succeeds on U(k1, k2), then by
repeatedly applying Lemma 6, h succeeds on U(3, 3). This contradicts Theorem
2. Now suppose that n ≥ 3. If h succeeds on U(|A1|, ..., |An|), then by repeatedly
applying Lemma 7, h succeeds on U(|A1|, |A2|, |A3|). So by repeatedly applying
Lemma 6, h succeeds on U(2, 2, 2). This contradicts Lemma 8.

3.2 Stochastic dynamics for G(A)

We now turn to generic games and to describing the class of profile spaces A
for which there exist historyless uncoupled strategy mappings that succeed on
G(A). Theorem 3 tells us that h succeeds on two-player generic games. In fact,
h also succeeds on three-player generic games where one player has only two
options.

Theorem 9. Let A be a three-player profile space such that one player has only
two actions. Then h succeeds on all generic games (A,U).

The proof of this theorem relies partially on an analogy between a k-by-`-by-
2 generic game and a k`-by-2 game that might not be generic. This requires the
following technical lemma showing that under h, two players in a generic game
sometimes behave similarly to a single player.
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Lemma 10. Let k, l ∈ N, and let U ∈ G(k, `) be a game in which neither player
has a strictly dominant action. For every a, b ∈ A such that a is not a PNE for
U , b is hU -reachable from a.

Proof of Theorem 9. Let A = {1, ..., k}×{1, ..., `}×{0, 1} for some `, k ∈ N. Let
U ∈ G(A) and a = (a1, a2, a3) ∈ A. All PNE are absorbing states under h, so it
will suffice to show there is some PNE that is hU -reachable from a.

Let A′ = {1, ..., k} × {1, ..., `}, and consider the games U0 = (u01, u
0
2) and

U1 = (u11, u
1
2) ∈ G(A′) defined by

u0i (x1, x2) = ui(x1, x2, 0)

u1i (x1, x2) = ui(x1, x2, 1)

for every x1 ∈ {1, ..., k}, x2 ∈ {1, ..., `}, and i ∈ {0, 1}. In this proof we will re-
peatedly use the fact that over any finite number of steps, w.p.p. player 3 doesn’t
move, so if (y1, y2) ∈ A′ is hU

0

-reachable from (x1, x2) ∈ A′, then (y1, y2, 0) ∈ A
is hU -reachable from (x1, x2, 0) ∈ A, and similarly for hU

1

.

Claim. If either player has a strictly dominant action in U0 or U1, then some
PNE is hU -reachable from a.

Thus we may assume that neither player has a strictly dominant action in
U0 or in U1. Consider a two-player game Û = (û1, û2) on Â = ({1, ..., k} ×
{1, ..., `})× {0, 1} given by

û1(x) =

{
1 if (x1, x2) is a PNE for Ux3

0 otherwise

û2(x) = u3((x1, x2, x3)),

for every x = ((x1, x2), x3) ∈ Â. Note that unlike U , this game is not necessarily

generic. By Theorem 4, some PNE p̂ = ((p1, p2), p3) for Û is hÛ -reachable from
â = ((a1, a2), a3).

Now let x̂ = ((x1, x2), x3) and ŷ = ((y1, y2), y3) ∈ Â such that w.p.p. ŷ =

hÛ (x̂). If x3 6= y3, then x3 6∈ BRÛ2 (x̂), so x3 6= BRU3 (x). Thus w.p.p. hU (x) =
(x1, x2, y3). Since BRU3 (x) 6= x3 6= y3 and |A3| = 2, we must have BRU3 (x) = y3,
so if (x1, x2) is a PNE for Uy3 , then (x1, x2, y3) is a PNE for U . Otherwise,
by Lemma 10 (y1, y2) is hU

x3
-reachable from (x1, x2), so y = (y1, y2, y3) is hU -

reachable from (x1, x2, y3) and therefore from x.

Applying this to the each step on the path by which p̂ is hÛ -reachable from
â, we see that either p = (p1, p2, p3) (which is a PNE for U) is hU -reachable from
a, or some other PNE for U is encountered in this process and thus hU -reachable
from a.

In fact, two-player and 2-by-k-by-` are the only sizes of generic games on
which h always succeeds.
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Theorem 11. Let A be a profile space. If A has more than three players, or if
every player has more than two actions, then no historyless uncoupled stationary
strategy mapping succeeds on all generic games (A,U).

Before proving this theorem, we present two lemmas. Lemma 12 says that h
does not succeed on all 2-by-2-by-k-by-` generic games. It is proved by giving
an example of such a game.

Lemma 12. For every k, ` ≥ 2, h does not succeed on G(2, 2, k, `).

Lemma 13 says that h doesn’t succeed on all three-player generic games in
which all players have at least three actions. This is demonstrated by simple
modifications of the 3-by-3-by-3 game used by Hart and Mas-Colell in their
proof of Theorem 2.

Lemma 13. For every k1, k2, k3 ≥ 3, h does not succeed on G(k1, k2, k3)

Proof of Theorem 11. By Observation 2, if suffices to show that h does not
succeed on G(|A1|, ..., |An|). Assume for contradiction that h does succeed on
G(|A1|, ..., |An|). If n = 3 and h succeeds on G(|A1|, |A2|, |A3|), then by Lemma
13 we cannot have |A1|, |A2|, |A3| > 2. If n = 4 and h succeeds on G(|A1|, ..., |A4|),
then by Lemma 12 there are distinct i, j, k ∈ {1, 2, 3, 4} such that |Ai|, |Aj |, |Ak| >
2. But by Lemma 7, h succeeds on G(|Ai|, |Aj |, |Ak|), contradicting lemma 13. If
n > 4 and h succeeds on G(|A1|, ..., |An|), then by repeatedly applying Lemma
12, h succeeds on G(|A1|, ..., |A4|), which we have already shown to be impossi-
ble.

4 Deterministic uncoupled dynamics

Both h and the strategy mapping used by Hart and Mas-Colell [8] to prove
Theorem 1 are variations on random search. For deterministic dynamics, an
exhaustive search requires more structure, and the challenge for deterministic
players in short-recall uncoupled dynamics is in keeping track of their progress
in the search.

We show that there are successful 3-recall deterministic dynamics by using
repeated profiles to coordinate.

Theorem 14. For every profile space A, there exists a deterministic uncoupled
3-recall stationary strategy mapping that succeeds on all games (A,U).

Proof. Let n ≥ 2, k1, ..., kn ≥ 2, and A = {1, ..., k1} × ...× {1, ..., kn}. It suffices
to show that such a strategy mapping exists for U(A). Let σ : A → A be a
cyclic permutation on the profiles. We write σi(a) for the action of player i in
σ(a). Let f : U(A)→ F(A) be the strategy mapping such that, for every game
U ∈ U(A), player i ∈ {1, ..., n}, and state x = (a, b, c) ∈ A3,

fUi (x) =


ci if b = c and ci ∈ BRi(c)
minBRi(c) if b = c and ci 6∈ BRi(c)
σi(a) if a = b 6= c
ci otherwise.
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Informally, the players use repetition to keep track of which profile is the current
“PNE candidate” in each step. If a profile has just been repeated, then it is the
current candidate, and each player plays a best reply to it, with a preference
against moving. If the players look back and see that some profile a was repeated
in the past but then followed by a different profile, they infer that a was rejected
as a candidate and move on by playing a’s successor, σ(a). Otherwise the players
repeat the most recent profile, establishing it as the new candidate. We call
these three types of states query, move-on, and repeat states, respectively. Here
“query” refers to asking each player for one of its best replies to b.

Let U ∈ U(A) be a game with at least one PNE. We wish to show that
fU guarantees convergence to a PNE. Let x = (a, b, c) ∈ A3, and let y be the
next state (b, c, fU (x)). If x is a repeat state, then y = (b, c, c), which is a query
state. If x is a move-on state, then b 6= c, and y = (b, c, σ(a)). If c = σ(a), then
this is a query state; otherwise, it’s a repeat state, which will be followed by the
query state (c, σ(a), σ(a)). Thus every non-query state will be followed within
two steps by a query state.

Now let x = (a, b, b) ∈ A3 be a query state, and let y and z be the next two
states. If b is a PNE, then y = (b, b, b), which is an absorbing state. Otherwise,
y = (b, b, c) for some c 6= b, so y is a move-on state, which will be followed by a
query state (b, σ(b), σ(b)) or (c, σ(b), σ(b)) within two steps. Let p be a PNE for
U . Since σ is cyclic, p = σr(b) for some r ∈ N. So (p, p, p) is reachable from x
unless σs(b) is a PNE for some s < r. It follows that fU guarantees convergence
to a PNE, so f succeeds on U(A).

Recall that Lemma 6 says that in the stochastic setting, adding actions to
a profile space A does not make success on U(A) any easier. In light of that
result, it is perhaps surprising that we can improve on the above bound when
every player has sufficiently many actions.

Theorem 15. If A is a profile space in which every player has at least four
actions, then there exists a 2-recall deterministic uncoupled stationary strategy
mapping that succeeds on all games (A,U).

Proof. Let n ≥ 2, k1, ..., kn ≥ 4, and A = {1, ..., k1} × ...× {1, ..., kn}. It suffices
to show that such a strategy mapping exists for U(A).

Define a permutation σ : A→ A such that for every a ∈ A, σ(a) is a’s lexico-
graphic successor. Formally, σ(a) = (σ1(a), ..., σn(a)) where for i = 1, ..., n− 1,

σi(a) =

{
ai + 1 mod ki if aj = kj for every j ∈ {i+ 1, ..., n}
ai otherwise,

and σn(a) = an + 1 mod kn. Observe then that σ is cyclic, and for each player i
and a ∈ A, we have

σi(a)− ai mod ki ∈ {0, 1}.
We now describe a strategy mapping f : U(A) → F(A). To each U ∈ U , f

assigns the strategy vector fU defined as follows. At state x = (a, b) ∈ A2, fU

differentiates between three types of states, each named according to the event
it prompts:
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– move-on: If a 6= b and aj − bj mod kj ∈ {0, 1} for every j ∈ {1, ..., n}, then
the players “move on” from a, in the sense that each player i plays σi(a),
giving fU (x) = σ(a).

– query : If bj − aj mod kj ∈ {0, 1, 2}, then we “query” each player’s utility
function to check whether it is U -best-replying at b. Each player i answers
by playing bi if it is best-replying and bi − 1 mod ki if it is not. So at query
states,

fUi (x) =

{
bi if bi ∈ BRi(b)
bi − 1 mod ki otherwise,

for i = 1, ..., n.
– repeat : Otherwise, each player i “repeats” by playing bi, giving fU (x) = b.

Notice that because k1, ..., kn ≥ 4, it is never the case that both aj−bj mod kj ∈
{0, 1} and bj − aj mod kj ∈ {0, 1, 2}. Thus the conditions for the move-on and
query types are mutually exclusive, and the three state types are all disjoint.

The state following x = (a, b) is y = (b, fU (x)). If x is a move-on state,
then y = (b, σ(a)). Since for every player i, ai − bi mod ki ∈ {0, 1} and σ(a)i −
ai mod ki ∈ {0, 1}, we have σi(a)− bi mod ki ∈ {0, 1, 2}, so y is a query state. If
x is instead a query state, then bi − fUi (x) mod ki ∈ {0, 1} for every player i, so
y is a move-on state unless b = fU (x), in which case y = (b, b) is a query state.
But if b = fU (x) and x was a query state, then bi ∈ BRi(b) for every player i,
i.e., b is a PNE. Finally, if x is a repeat state, then y = (b, b) is a query state.

Thus move-on states and repeat states are always followed by query states,
and ask-all states are never followed by repeat states. We conclude that with
the possible exception of the initial state, every state will be a move-on or query
state, and no two consecutive states will be move-on states. In particular, some
query state is reachable from every initial state.

For any query state x = (a, b), x will be followed by (b, b) if and only if b is
a PNE, and (b, b) is an absorbing state for every PNE b. If b is not a PNE, then
x will be followed will be a move-on state (b, c), for some c ∈ A. This will be
followed by the query state (c, σ(b)). Continuing inductively, since σ is cyclic,
unless the players converge to a PNE, they will examine every profile v ∈ A with
a query state of the form (u, v). Thus for every game U with at least one PNE,
fU guarantees convergence to a PNE, i.e., f succeeds on U(A).

While there are deterministic uncoupled 2-recall dynamics that succeed on
at least some classes that require 2-recall in the stochastic setting, historyless
dynamics of this type fail on U(A) for every profile space A.

Theorem 16. For every profile space A, no deterministic uncoupled historyless
stationary strategy mapping succeeds on all games (A,U).

5 Future Directions

It remains open to determine tight bounds on the minimum recall of successful
deterministic uncoupled dynamics for every profile space, analogous to those
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given in Section 3 for stochastic dynamics. In particular, we make the following
conjecture.

Conjecture 1. There exists a profile space A such that no deterministic uncou-
pled 2-recall strategy mapping succeeds on all games (A,U).

The same questions answered in this work may naturally be asked for other
important classes of games (e.g., symmetric games) and other equilibrium con-
cepts, especially mixed Nash equilibrium. More generally, the resources (e.g., re-
call, memory) required by uncoupled self-stabilizing dynamics in asynchronous
environments should be investigated.
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