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Abstract

The great potential of data mining in a networked

world cannot be realized without acceptable guarantees

that private information will be protected. In theory,

general cryptographic protocols for secure multiparty

computation enable data mining with privacy preser-

vation that is optimal with respect to the desired end

results. However, the performance expense of such

general protocols is prohibitive if applying the technol-

ogy naively to non-trivial databases. The gap between

theory and practice in cryptographic approaches is be-

ing narrowed, in part, by the introduction of problem-

specific secure computation protocols.

We describe our implementation of the recent Yang-

Wright secure protocol for Bayes-net discovery in ver-

tically partitioned data. Our development occasions

the proposal of a general coordination architecture for

assembly of modularly described, complex protocols

from independently implemented and tested subproto-

col building blocks, which should facilitate future simi-

lar implementation efforts.

1. Introduction

The discovery of Bayesian networks in large bodies
of personal data—medical, racial, ethnic, educational,
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financial, criminal, etc.—may be the key to scientific
progress of great immediate benefit, informing pub-
lic policy and even leading to breakthroughs in the
understanding of underlying mechanisms. As simul-
taneous access to such varied data dispersed across
separately maintained databases is becoming increas-
ingly feasible technically, privacy concerns regarding
this accessibility are forcing its curtailment in prac-
tice through ethical and legal hindrances, hence the
efforts toward privacy-preserving data mining. Among
the approaches in this area, the theory of secure mul-
tiparty computation [2] offers strong assurances of pri-
vacy preservation with no compromise of accuracy, al-
though typically at a performance penalty that can
only be mitigated through ingenuity in its application
to particular problems.

Devising a protocol to achieve some desired accu-
racy, privacy, and performance characteristics is one
step; implementing it is another. Implementation re-
veals possible theoretical gaps in the protocol design
while raising new issues of software maintainability, de-
ployability, and usability. Understandably, there is lit-
tle incentive to implement a complicated protocol that
will surely be impractical in its performance, which is
why so little of secure multiparty computation the-
ory has been implemented. However, available com-
puting resources have become more powerful, bring-
ing previously impractical protocols into new consid-
eration and occasioning the development of software
such as the Fairplay system [4], which implements the
general two-party Yao protocol ([11], discussed in sec-
tion 1.2 below). At the same time, problem-specific
secure protocols promising much better performance
than general approaches have been proposed—notably,
in the data-mining setting, the protocols of Lindell and
Pinkas [3]—further encouraging interest in the prospect
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of practical implementation.

Yang and Wright have recently presented just such
a problem-specific secure protocol [8, 9], indeed posing,
along with significant challenges, an invitation to im-
plementors. The few points at which the protocol de-
pends on general secure two-party computation involve
very confined tasks, and the Fairplay system is now
available to address these. Our implementation of this
protocol is the subject of this paper. Yang and Wright
adapt the K2 heuristic algorithm of Cooper and Her-
skovits for Bayes-net discovery [1] to the very relevant
scenario of a logical database partitioned vertically—
dividing up the (non-key) fields for the same logical
records—between two parties who must not learn each
other’s data beyond what follows from the output of
the protocol. To accomplish their adaptation, they first
transform the K2 scoring function and then invoke sev-
eral cryptographic technologies to compute and com-
pare scores securely. We sketch the original K2 al-
gorithm (§1.1) and introduce the cryptographic tech-
nologies that will be brought to bear (§1.2). We then
describe the synthesis of these elements in the design of
the Yang-Wright protocol (§2). With this background,
we turn to the issues that arise in implementing this
protocol (§3). Beyond the implementation issues relat-
ing to the specific subprotocols needed by the Yang-
Wright protocol (§3.3), our experience in this project
leads us to some broad observations and a develop-
ment approach, including a subprotocol coordination
framework (discussed in §3.1), applicable to complex
protocols in general.

1.1. The K2 algorithm

Given a database table—the rows viewed as records
representing entities, and the columns, each defin-
ing a record field, corresponding to attributes of the
entities—the statistical relationships among the at-
tribute values generalized over the entire body of data
may be partially represented by a Bayesian network.
Each node of the network represents an attribute; we
speak of nodes and attributes interchangeably. The di-
rected arcs incoming to any given node come from “par-
ent” nodes, whose values are viewed as predictive of the
values of the given node. This predictiveness is spec-
ified by a conditional probability table for the values
of the given node, keyed by the possible joint value as-
signments to its parent nodes. The Bayes-net structure
is the network without the nodes’ conditional probabil-
ity tables. Given the database and a Bayes-net struc-
ture, the conditional probability tables are determined.
However, different choices of Bayes-net structure can
produce Bayes nets, all accurate, that vary greatly in

their predictive usefulness. Clearly, conditional proba-
bility tables that are sharply modal are best; those that
mirror the unconditional attribute-value probabilities
are unenlightening. The primary challenge, then, is to
choose an optimal Bayes-net structure, i.e., an optimal
identification of parent nodes for each node.

The K2 algorithm for Bayes-net structure discovery
involves two main elements: a scoring function for can-
didate parent-node sets; and a greedy heuristic to con-
strain the combinatorics of exhaustively searching the
space of candidate parent sets for each node and scor-
ing each candidate set. The heuristic itself has two as-
pects, as we will outline presently: a fixed constraint on
the size of the increments to candidate parent sets be-
tween rounds of exploration of the candidate-parent-set
space; and a configurable constraint on the allowable
size of candidate parent sets for eligibility for consider-
ation. (A constraint on the set size does, of course, con-
strain the set-increment size. Cooper and Herskovits,
however, have a more stringent constraint on the set-
increment size in mind.) Without the heuristic, the
scoring function could be the basis of an exponential-
time algorithm to find the optimal (as must be precisely
defined) Bayes net for the data.

The scoring function always applies to a node and a
candidate set of possible Bayes-net parents. The search
for an optimally scoring parent set is conducted for
each node entirely independently. The search heuris-
tic operates as follows. We begin with a linear order-
ing of all the nodes such that all directed arcs in the
sought Bayes net will be consistent with this linear or-
der. (The availability of this linear ordering is a major
assumption.) For each node, we build its Bayes-net
parent set incrementally from the nodes that precede
it in the linear order, beginning with the empty set,
always adding from among the unused candidates a
single node (the heuristic fixed increment) that most
improves the score, and aborting the incrementing if
the parent set has grown to the stipulated maximum
size (the configurable heuristic parameter) or if no sin-
gle added node does improve the score. Note that it is
perfectly possible that two nodes added at once would
improve the score even though no single node can be
added to improve the score. The heuristic fixed incre-
ment size amounts to a gamble that this is not so in
the case at hand. This observation suggests a natural
algorithm extension that we implement, as discussed
in section 3.2.

In virtue of the fixed candidate-parent-set increment
size between rounds, the running time of the discovery
algorithm, as measured in applications of the scoring
function, goes from being exponential to polynomial in
the number of nodes. Now, what of the computation
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of the scoring function itself? The scoring function for
a node i and a candidate parent set π looks like this,

qπ
∏

j=1

(di − 1)!

(di − 1 + απj)!

di
∏

k=1

απijk !

where j indexes the qπ possible value assignments to
the nodes in π, k indexes the di possible value assign-
ments to node i itself, απj counts the records in the
database matching value assignment j to the nodes in
π, and απijk counts the records that match value as-
signment j to the nodes in π and additionally match
value assignment k to node i itself. Noting that the
outer product ranges over all value assignments to the
nodes in the candidate parent set, we see that it is
here that the K2 heuristic needs to constrain the size of
parent-set candidates to be considered, to avoid worst-
case growth of the outer iteration count that would be
exponential in the total number of nodes.

It is suggestive and economical to grasp the operand
of the outer product in the scoring function as precisely
the inverse of

(

di − 1 + απj

(di − 1), απij1, . . . , απijdi

)

where the notation
(

n

r,s,...

)

, with n = r+s+. . ., denotes
the number of combinations of n things taken exhaus-
tively in bins respectively of sizes r, s, . . .. (The usual
“choose” notation,

(

n
r

)

, coincides with
(

n
r,(n−r)

)

.) It is

easily seen that this expression is smallest, and its in-
verse biggest (but always the reciprocal of an integer!),
when the bin sizes are in a sharply modal distribution.
A sharply modal distribution in the “bin sizes”—the α-
parameters—of the outer-product operand in the K2

scoring expression, translates directly into a sharply
modal distribution in row j of the conditional proba-
bility table for node i, which is just what we would like,
as we have observed.

The α-parameters in the arguments to the factorial
function represent counts of records matching partial
field-value specifications, hence they may be as large
as the number of records in the database. This is of
little practical concern in ordinary computation. Even
for a database of 100 million records, an approach as
crude as looking up factorial values in a table would
be feasible (if not recommended). On the other hand,
in secure computation the practical options are much
more limited, and so the approach to these factorials in
the scoring function is at the heart of the Yang-Wright
proposal.

1.2. Cryptographic tools

The Yao protocol for general secure two-party com-
putation [10, 11] (see [5] for a detailed account) is the
protocol that first demonstrated that general secure
multiparty computation was possible. It requires the
function to be computed to be represented as a Boolean
circuit. A Boolean circuit is distinctive in doing the
same computational work regardless of its inputs, a
feature essential to the disguising of its inputs. This
is wasteful when the amount of computation needed
for different inputs differs significantly. Thus, the Yao
protocol is inappropriate even just for the exact com-
putation of factorials for arguments that range from
very small to very large, as in the K2 scoring function.
On the other hand, the generality of the Yao proto-
col allows it to be a fallback option when no special-
ized protocol has been devised and the task is small.
The Yang-Wright protocol resorts to episodes of the
Yao protocol in this capacity at three points. One in-
stance, within the Lindell-Pinkas lnx subprotocol, is
mentioned at the end of this section. The other two
are described in section 2. The implementation we use
is the recent Fairplay system [4], which provides two
facilities: (1) a Boolean-circuit generator that takes
a high-level algorithmic description as input; and (2),
taking a Boolean circuit as input, run-time software
for the two parties that will engage in the protocol.
The Fairplay circuit generator, currently implemented
in Java, is resource-hungry itself and, more important,
may produce circuits that could be significantly opti-
mized to the benefit of protocol performance, so it is
often best to develop a custom circuit generator and
then use Fairplay to run the protocol. Our implemen-
tation uses custom circuit generators for two of the
three Yao-protocol episodes.

The Yang-Wright protocol requires an encryption
scheme with the following additive homomorphic prop-
erty, where E encrypts, and suppressing the details of
the ring(s) in which the operations take place:

E(m1 + m2) = E(m1)E(m2)

More accurately, it being essential that different en-
cryptions of the same plaintext be possible, we need
the following property, where D decrypts, and r1, r2

are random values:

D(E(m1, r1)E(m2, r2)) = m1 + m2

The scheme used is one proposed by Paillier [6], as
implemented using OpenSSL library functions by Sub-
ramaniam, Wright and Yang [7].

The α-parameters for the scoring, as said, repre-
sent counts of records matching partial value assign-
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ments to the database fields. With the database ver-
tically partitioned as in the Yang-Wright setting, the
logical records to be matched and counted span the
local records of the parties. The fields to which val-
ues are assigned for matching are, in the general case,
partitioned between the two parties. The count of
matching records, then, is the scalar product of two
bit vectors, the “match vectors,” each marking by 1-
bits the matching local records (the local portions of
the logical-records) held by one of the parties. It is
supremely important to keep these scalar products, the
α-parameters essential to the scoring and hence to the
whole computation, secret from both parties! Reveal-
ing them can be tantamount to revealing to one party
the field values held by the other party for a partic-
ular logical record. Accordingly, a secure protocol is
needed to compute the scalar product of binary vec-
tors leaving additive shares of the result, rather than
the result itself, with the two parties for further com-
putation. Yang and Wright use a simple scheme based
on additive homomorphic encryption. Let Alice and
Bob be the two parties, where both can encrypt but
Alice alone possesses the decryption key. Alice sends
Bob a bit-wise encryption of her match vector. Bob
multiplies just those bit encryptions submitted by Al-
ice that correspond to matching local records in his
own data (or 1-bits in his match vector).1 Bob further
multiplies this product by the encryption of a random
r and returns the result to Alice. Alice decrypts it to
get her additive share of the scalar product while Bob
holds −r (in the appropriate modulus) as his share.

Oblivious polynomial evaluation is a basic crypto-
graphic protocol component we have to implement to
serve within secure multiplication and secure natural-
logarithm protocols, both of which are needed in the
Yang-Wright version of the K2 scoring. In oblivious
polynomial evaluation, one party has a secret polyno-
mial and another party has a secret argument. Neither
party may learn the other’s secret, yet the argument
holder is to learn the value of the polynomial at his ar-
gument. If the secret polynomial is

∑k

i=0 aix
i and the

secret argument is b then, given an additive homomor-
phic encryption scheme for which the argument holder
has the decryption key, the argument holder may send
the polynomial holder a vector of encryptions of powers
of his argument 〈E(bi, ri)〉ki=0; the polynomial holder
can then compute and return

k
∏

i=0

(E(bi, ri))
ai

which the argument holder can decrypt to yield the

1Bob may need to pad his response time to disguise his com-
putation time, which will be proportional to his 1-bit count.

value of the polynomial at the argument.
A secure multiplication protocol will be needed that

takes additive shares of the factors and leaves addi-
tive shares of the product to the respective parties.
This may be accomplished easily through two oblivi-
ous polynomial evaluations, as shown in [3].

The last major protocol building block we need is
a secure protocol taking additive shares of x as party
inputs and leaving the parties with additive shares of
lnx. Such a protocol is provided by Lindell and Pinkas
[3] and is our most intricate building block. It begins
with an episode of Yao-protocol computation establish-
ing the logarithm approximately, then proceeds to an
oblivious polynomial evaluation to compute some num-
ber of terms of Taylor expansion to reduce the initial er-
ror. The result emerges scaled up by a publicly known
factor to retain precision while always computing in
integers.

2. The Yang-Wright protocol

Returning to the K2 scoring function, how can a fac-
torial be computed securely from secret shares of the
argument? We have already observed that a Yao-style
computation of a Boolean circuit, whether it carries out
the multiplication or looks up the result in a large ta-
ble, would not be practical, because too large a circuit
would be required, necessarily to be traversed entirely
for every factorial invocation.

The Yang-Wright protocol addresses this problem
by replacing each factorial in the scoring function with
a Stirling approximation. For n ≥ 1,

n! ≈
√

2πn(
n

e
)n

Next, since scores are important only in their or-
dering, the natural logarithm of the entire Stirling-
approximated expression is taken as the scoring func-
tion to implement securely. The transformed function
is then amenable to secure computation from additive
shares of the α-parameters using the Lindell-Pinkas
protocols just mentioned.

The protocol has a superstructure that involves no
private information and tracks the K2 algorithm almost
precisely. The one difference is that scores cannot ap-
pear in the clear for comparison at the top level, as they
are too revealing of private data. Instead, the top level
is aware only of the chosen best score-improving incre-
ment, if there is one, to the parent set being grown.
All else that is known at the top level of the protocol is
considered safely disclosable to both parties: the par-
ent set that has already been established for a node;
which additional node is being scored; and which of
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all the additional nodes tried, if any, has been cho-
sen for inclusion in the parent set. This information is
considered disclosable on the premise that the parties
could reconstruct these stages of the progress of the
algorithm from the end result anyway.2

The parties are particularly not to know the α-
parameters that feed the scoring. This means that the
α-parameters must be computed cooperatively by the
parties so as not only to hide each other’s inputs, which
are the identities of their respective matching private
records, but also to disguise the α-parameter outcomes,
which are the counts of matching logical (cross-party)
records, as well. This is accomplished by the secure
scalar product protocol described above.

The transformation of the scoring as described—
Stirling approximation, then natural log—leaves a
specificational gap in failing to attend to the cases
where απj or απijk is 0. The Stirling approximation
formula does not apply in this case. The 0 value here
means simply that no record matches a partial field-
value configuration being considered, which is a per-
fectly normal state of affairs. Clearly, this case must
be handled differently. The challenge is that the par-
ties must not realize that different handling has been
triggered. A tip that, in some instance, the value of
απijk is 0 can be tantamount to specific information
regarding the value of a field held by the other party
for a specific record.

Two resolutions for this problem come to mind, both
involving interpolation of an additional Yao-protocol
episode and adjustments to the algebraic manipula-
tions of the transformed scoring formula. The first res-
olution invokes a Yao episode immediately after return-
ing from the scalar product computation that yields
απijk. Observing that 0! = 1!, securely check whether
the shares of the scalar product are shares of 0; if they
are, replace them with shares of 1; if not, reshare the
sum of the shares. The weakness of this resolution is
that in the common 0 case it proceeds to calculate the
Stirling approximation of 1!, which is the least accu-
rate instance of this approximation, undershooting by
8%. Whereas a value configuration not instantiated in
the candidate parent set would, in original K2 scoring,
either not be considered at all or put a 1 to no effect
in the product—which should translate to a clean 0
in the summation of the logarithms—the promotion of

2Strictly, the parties could not necessarily reconstruct in
which round of consideration each parent node was included,
so the Yang-Wright protocol, by revealing the progress of the
growth of the parent sets, even without revealing complete score-
based orderings (let alone scores themselves) within the rounds
of parent-set-increment consideration, presumably does reveal
some non-result-implied private information. This leak should
be small. Remedying it would be extremely expensive.

0 to 1 in this secure version introduces additional er-
ror. The alternative resolution is to invoke a similar
Yao episode, but to do so late, after all the protocol
for securely computing (an approximation of) the ln of
(the Stirling approximation of) απijk ! has run, possi-
bly quite inappropriately. We feed the corrective Yao
episode both the newly obtained shares of the result
and the original shares of απijk , as well as random val-
ues from the two parties. If the protocol finds that we
started with απijk shares that are shares of 0, it returns
new shares of 0; otherwise, it returns new shares of the
elaborately computed result.

A Yao protocol is again used when deciding which
candidate parent node most improves the score of the
parent-node set. The inputs are vectors of score shares
from the two parties. The output is the index of the
(first) best score.

3. Implementation

The original presentation [8] of the Yang-Wright
protocol addressed only binary data in the database
fields. We currently implement that version, although
almost no change is necessary to implement the more
recent, general version [9].

3.1. The coordination architecture

Our implementation takes the unusual course of
positing a seemingly extraneous role of coordinator

for distributed computations. When considering secu-
rity in distributed computations, we often do imagine,
at least for theoretical comparison, an added role of
“trusted party.” By definition, such an added party
can be depended upon by the principal parties to com-
pute and communicate as required, and particularly to
refrain from communicating any more than is required
(and so it can be resorted to straightforwardly for a
benchmark, “ideal” solution to any secure-multiparty-
computation problem). In contrast, the coordinator
we are envisioning is a party that, at least in this
role, assumes absolutely no responsibility toward the
principal parties whose protocol activity it coordinates,
whether in computation, communication, or discretion
with confidential information. On the contrary, the
principal parties who may have privacy concerns should
think that information that has reached the coordina-
tor has become public thereby; in a sense, the coordi-
nator may be taken to represent the public at large to
them. The advantage in having a trusted party, if one
can be found, is clear. Why would we add a party that
is not to be trusted?

5



There is a definite change in orientation here as to
who is responsible for what, and it turns on appreciat-
ing, in the first place, that as we move from theorizing
about a large, intricate protocol to implementing it,
we are moving squarely into the realm of software en-
gineering. We need modularity not only in the design
but also in the coding and testing for all the reasons
that apply in developing any software. We need the
modules to know as little as possible of the world out-
side themselves, interfacing with each other minimally.
The more outside awareness an individual code module
has, the more difficult it is to keep it up to date and
deployed to the agents running it as changes occur else-
where in the code, whether in the way of enhancements
or bug fixes.

Now, consider what it takes to run the Yang-Wright
protocol. The protocol involves several subprotocols,
each of which runs many times in the course of a sin-
gle run of the overall protocol. As it happens, this
protocol is completely synchronous. There is no inde-
terminacy in the sequence of the communication, so
two non-faulty parties cannot have doubts as to who is
waiting for whose message and where they stand in the
protocol. This means that if the database owners both
know the entire protocol, with no version discrepancies,
and if they know exactly when a run is to commence,
and if no additional messages could possibly appear on
the channel between them (for whatever reason), and
if no messages between the parties get dropped, then
they should be able to step through the whole protocol
and ultimately both output the computed Bayes-net
structure. On one hand, this is the manner of execu-
tion envisioned during the design of the protocol at the
theoretical level. On the other hand, each of the run-
time assumptions just enumerated introduces fragility
that is unacceptable in real deployed software.

Instead of requiring that the database owners them-
selves know the whole protocol, we envision them as
being willing and able to run the particular needed
subprotocols on cue as discrete services available to
certain requestors. Note that this notion of service is
more elaborate than the one referred to in common
client/server terminology. We are imagining a service
provided not by a single party but by multiple parties
who are expected, when cued, to engage each other in
some protocol in order to return the sought result, each
party, or at least some quorum, reporting back to the
“client.” This is not directly supported in our network-
ing infrastructure, and so it must be built on top of the
common client/single-server model.

Given that all the subprotocols in question are ac-
ceptable to all the principal parties with respect to
their privacy concerns, this leaves it up to any inter-

ested party authorized to request their services to in-
voke any of those subprotocols in any order to achieve
whatever larger end—or fail to achieve it. That shifts
the onus of getting the overall protocol right to some
one party, the coordinator, that is cuing the principal
parties to engage in subprotocols and is then somehow
processing the results. We can imagine that the coordi-
nator is the party that has the primary interest in the
result, or may have a secondary interest in virtue of re-
ceiving payment for provision of the result to the party
with primary interest, or may have a farther removed
interest still, of course.

If the database owners are to offer discrete lower-
level services, they should be able to do so in sup-
port of multiple concurrent runs of larger protocols.
Otherwise, a long-running higher-level protocol will ei-
ther be subject to interference by other requests to the
database owners or else, if a locking scheme is used, the
long-running protocol would monopolize services that
should really be a general resource. Interleaving multi-
ple provisions of the discrete services, possibly involv-
ing interaction with some of the same peer parties and
possibly even on behalf of the same client party, entails
keeping the messages associated with the different con-
current conversations properly sorted out. (Note that
this is not a concern over possible information leakage
across multiple concurrent conversations carried on by
the same parties, but rather the more basic require-
ment that all the communication involved, in the first
place, be attributable to the distinct conversations.)

The challenge here is entirely familiar from basic
networking, wherein order is maintained in the cloud
of message exchanges through reliance on metainforma-
tion in successive layers of message wrappers. Our co-
ordination protocol requires similar metainformation.
Parties need to know who their peers are (practically,
domain names or IP addresses and port numbers) for
each requested multiparty computation episode. Par-
ties need to know which type of computation to en-
gage in and they need the inputs to the computation.
The individual episode of the computation needs an
identifier assigned to it and passed around through-
out. The coordination protocol must accommodate er-
ror propagation or non-propagation. In the broader
realm of multiparty computation, the coordinator for
a subprotocol may need to implement timeouts for indi-
vidual parties and appropriate quorum and consistency
threshold checks for the available party responses to af-
ford promised correctness and robustness to the over-
all protocol. This suggests that, as we bring more of
distributed-computation theory into practice, enhance-
ment of a general coordination protocol will be an on-
going development project.
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The present Yang-Wright implementation relies on
a basic coordination protocol implemented in a library
of Perl functions. Thus, the highest level of our imple-
mentation is expressed in a relatively small amount of
Perl code in the coordinator. Most coordination house-
keeping is done inside the coordination-library func-
tions, allowing the code to read much like the pseudo-
code for the original K2 protocol. In fact, the coordi-
nator code can be used unchanged to run the original
K2 against a single physical database, the original K2

against a logical database vertically partitioned among
any number of parties with no privacy concern, or the
Yang-Wright privacy-preserving K2 variant. (To make
the coordinator code this general, we do need it to devi-
ate slightly from the K2 pseudo-code. We keep parent-
set scores and any intermediate values from their com-
putation down at the principal-party code level. Be-
cause in the privacy-preserving case these values must
not be public, we keep them from the coordinator in
all cases for uniformity. The parties, on cue, deter-
mine best-score parent sets between themselves, either
securely or not, and report them to the coordinator.)
The principal parties similarly run a thin layer of Perl
code which interacts with the coordinator through in-
vocation of a coordination-library function. It is at
this level that the Yang-Wright security proposals are
brought in. The parties provide the various requested
services to the coordinator by engaging in secure sub-
protocols between themselves, whereas they could sat-
isfy the coordinator equally by engaging in the simpler
insecure subprotocols. This is appropriate. We imag-
ine that the database owners are the ones that have the
interest, intrinsic or however induced, in privacy—else
privacy is pretty hopeless! The coordinator just wants
the answers.

The principal parties run their ends of each subpro-
tocol as command-line-invokable processes. (The over-
head of process invocation is not significant, especially
when running secure subprotocols, as it is completely
dominated by the computation to be done by at least
one of the parties in each subprotocol episode.) This
means that all the subprotocol code is available for di-
rect testing and use from the command line just as is
the overall protocol.

Nothing in the separation of roles in the coordina-
tion architecture precludes an agency acting both as
coordinator of a multiparty computation and as one
(or more) of the parties whose interactive episodes are
being coordinated. In the case of the Yang-Wright pro-
tocol, one of the private-data owners may also run the
coordinator process, on the same machine that runs
the party process or on another machine. We have said
that the coordinator is not to be entrusted with private

data. The data owners must in any case, wherever the
coordinator is to run, assure themselves that the code
they run as parties proper, in communicating with the
coordinator process, not pass it revealing information.
(This is in addition to having faith in the security of
the subprotocols that they run with each other without
the coordinator’s intervention.) A data owner assum-
ing the coordinator role as well must also be assured
that the coordinator code not somehow access the local
private data without mediation of the party process.
From this perspective, there is an advantage to run-
ning the coordinator process physically removed from
the data-accessing party process. On the other hand,
scrutiny of the coordinator code—which should gener-
ally, as in this case, be relatively simple—should allay
any concern over possible rogue data access.

3.2. An extension to K2

Our coordinator code, which we said is not specific
to the Yang-Wright security-oriented transformation
of K2, actually implements an extension to K2 itself,
allowing further tuning of its complexity-controlling
heuristic. The desirability of the enhancement became
evident in the course of our experimentation.

If, for example, two binary fields in the database are
in themselves uniformly randomly distributed and the
two fields are independent of each other, and if a third
field is completely determined by the first two fields,
being 1 if the first two fields match and 0 if not, then
the K2 algorithm is likely not to discover any Bayesian
structure in the three data fields. This is because the
first two fields are tried only one at a time as members
of a prospective Bayes parent set for the third field, but
neither field is kept because, in itself, it is completely
unpredictive of the value of the third field.

We add a parameter which we call “interactivity.” It
controls the maximum number of nodes to be tried to-
gether in incrementing the parent set for a node. The
idea is that it may be the interaction of several an-
tecedent nodes, rather than any one in itself, that is
predictive of the consequent node in question. The
original K2 algorithm is obtained as the special case
of interactivity-parameter 1. Raising this parameter
improves the analytical capability of the algorithm at
the expense of raising the degree of its polynomial time
complexity.

This enhancement is mentioned here as a feature of
the present implementation. It is orthogonal to the
Yang-Wright security enhancements to K2 and their
special implementation issues which are our main fo-
cus.
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3.3. Subprotocol issues

The coordination architecture addresses only the
generic needs of subprotocol marshaling. Specific diffi-
culties arise in ensuring that subprotocols nest and tile
properly with respect to their data interchange. For
instance, choices of moduli and bit lengths in different
subprotocols must match up acceptably.

Within the Lindell-Pinkas computation of shares of
lnx from shares of x, there is an oblivious polynomial
evaluation for which we use a Paillier homomorphic en-
cryption scheme. The homomorphism entails that ad-
ditions and multiplications of plaintext numbers mod-
ulo some product of primes pq are carried out, respec-
tively, as multiplications and exponentiations modulo
(pq)2 of their encryptions. For Lindell-Pinkas, however,
the polynomial is to be computed obliviously modulo
|F|, the size of F , the latter prescribed to be a field.
The requirement for a Paillier plaintext modulus and
the requirement for a Lindell-Pinkas modulus, then,
would appear to be incompatible. Fortunately, exam-
ining the Lindell-Pinkas polynomial specification, we
see that we need multiplicative inverses only of powers
of 2. These inverses would exist modulo the Paillier pq,
so we simply proceed letting the Paillier plaintext ring
serve for the Lindell-Pinkas computation, dropping the
field requirement.

The polynomial-computation space needed within
the Lindell-Pinkas natural-log protocol, hence the
Paillier pq for the homomorphic-encryption plaintext
space, must be much larger than the space of allow-
able inputs for the protocol to avoid loss of information
in the polynomial evaluation. The space of inputs, in
turn, must accommodate all α-parameters, which may
be as large as the number of records in the database.
Collecting the various requirements, then, where s is
the size in records of the database being mined, we need
an integer N , a count of Taylor terms k for Lindell-
Pinkas, and primes p, q for Paillier that will determine
also the ring (not field) F for Lindell-Pinkas, such that

s < 2N

2(N+2)k ≤ |F| = pq

We give two examples of the interplay of these con-
ditions. To accommodate databases of up to 8,000
records and go to four Taylor terms, we can use a
Lindell-Pinkas ring of size approximately 260. To ac-
commodate databases of up to 8,000,000 records and
go to five Taylor terms, we need a Lindell-Pinkas ring
of size 2125. As usual, more bits strengthen the cryp-
tography, but incur a performance penalty, particu-
larly evident in our case in the episodes of Fairplay-
implemented Yao protocol.

As mentioned, the natural logarithm delivered in
shared fashion by the Lindell-Pinkas protocol is scaled
up by a large factor in order to preserve precision in the
integer output. It is not practical to have the parties
engage in a secure protocol episode, for each logarithm
computed, to replace their shares with new shares,
scaled back down, of the correct logarithm value. The
Yang-Wright score expression involves many privately
shared terms each of which involves a Lindell-Pinkas-
computed logarithm and would thus be scaled up, and
terms that are public with no scale-up. Since scores
are important only in their comparison to other scores,
we need only multiply the public terms in each score
by the scaling factor to scale up the entire system of
scores, preserving their comparisons.

4. Some experimental results

The running time of the Yang-Wright protocol de-
pends on the number of fields in the database, the
number of records in the database, and the size of
the computational spaces chosen to accommodate the
database size, as reflected in the bit lengths of Paillier
keys and computation values and in the input-wire and
gate counts of Yao Boolean circuits.

Figures 1 and 2 show how the program modules be-
have with different key lengths and numbers of records.

Figure 1. Key length and total running time

The total running time is dominated by the Lindell-
Pinkas secure computation of lnx (Figure 3).

The secure ln x computation itself is dominated by
its initial Fairplay Yao episode, which is far more ex-
pensive than the oblivious polynomial evaluation (Fig-
ure 4). Not surprisingly then, increasing the number
of Taylor terms computed in the oblivious polynomial
evaluation has little impact on the lnx running time
(Figure 5).
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Figure 2. Database size and scalar product
time

Figure 3. Distribution of overall running time

4.1. Visualization

The implementation provides a graphical user in-
terface allowing the user to view the progress of the
algorithm. The partitioning of the nodes between the
two parties is indicated by a color code, Alice’s nodes
appearing in pink, Bob’s in blue. The nodes carry
text labels derived from a configuration table. At any
time, the node whose parent set is currently being de-
termined is highlighted. A parent-child arrow appears
in red while it is being considered; the arrow disap-
pears if the candidate parent node is rejected (in that
iteration); it turns blue and becomes permanent if the
candidate is accepted. For development purposes, pre-
sumably against test data, the user may click on a node
to display its conditional probability table—data not
properly revealed in the structure-learning-only version
of the Yang-Wright protocol implemented here.

Figure 4. Distribution of running time in se-
cure lnx computation

Figure 5. Terms and oblivious polynomial
evaluation time

5. Conclusion

This project, implementing the Yang-Wright se-
cure Bayes-net discovery protocol, attempts to ne-
gotiate a range of issues involved in turning a the-
oretical cryptographic protocol into usable privacy-
preserving data-mining software. Considerable success
has been achieved in understanding how such software
might be deployed and invoked on demand. We have
identified various specific and general pitfalls, easily
missed in early design, when assembling a complex
cryptographic protocol out of building blocks. We
come away with a methodology for building complex
protocols—particularly privacy-preserving protocols—
and software implementing a coordination framework
that will be reusable in future projects translating com-
plex theoretical protocols to practice. The coordina-
tion framework itself is an arena for further develop-
ment.

With respect to privacy-preserving discovery of
Bayes-net structure via secure multiparty computation,

9



performance remains a central concern. Our imple-
mentation currently takes over two hours to determine
the Bayes-net structure in a six-node database of 1,000
records partitioned between two parties, three nodes
each, computing with a key length of 512 bits on a
Pentium 4 processor with 1 GB of RAM. On one hand,
this seems very slow. On the other hand, the present
technology already can render research of Bayes-net
structure feasible against private data. What can be
learned thereby may well justify the computational re-
sources and the wait for the results, even at this level
of performance. This is an initial report on the imple-
mentation work. There is every reason to believe that
further work will yield optimizations at various levels
and that performance will improve.
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