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ABSTRACT
In order to protect individuals’ privacy, the technique of k-
anonymization has been proposed to de-associate sensitive at-
tributes from the corresponding identifiers. In this paper, we
provide privacy-enhancing methods for creating k-anonymous
tables in a distributed scenario. Specifically, we consider a
setting in which there is a set of customers, each of whom
has a row of a table, and a miner, who wants to mine the en-
tire table. Our objective is to design protocols that allow the
miner to obtain a k-anonymous table representing the cus-
tomer data, in such a way that does not reveal any extra in-
formation that can be used to link sensitive attributes to cor-
responding identifiers, and without requiring a central author-
ity who has access to all the original data. We give two differ-
ent formulations of this problem, with provably private solu-
tions. Our solutions enhance the privacy of k-anonymization
in the distributed scenario by maintaining end-to-end privacy
from the original customer data to the final k-anonymous re-
sults.

1. INTRODUCTION
In today’s information society, given the unprecedented ease
of finding and accessing information, protection of privacy
has become a very important concern. In particular, large
databases that include sensitive information (e.g., health in-
formation) have often been available to public access, fre-
quently with identifiers stripped off in an attempt to pro-
tect privacy. However, if such information can be associ-
ated with the corresponding people’s identifiers, perhaps us-
ing other publicly available databases, then privacy can be
seriously violated. For example, Sweeney [32] pointed out
that one can find out who has what disease using a public
database and voter lists. To solve such problems, Sama-
rati and Sweeney [27] have proposed a technique called k-
anonymization. In this paper, we study how to enhance pri-
vacy in carrying out the process of k-anonymization.
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Consider a table that provides health information of patients
for medical studies, as shown in Table 1. Each row of the
table consists of a patient’s date of birth, zip code, allergy,
and history of illness. Although the identifier of each patient
does not explicitly appear in this table, a dedicated adversary
may be able to derive the identifiers of some patients using
the combinations of date of birth and zip code. For example,
he may be able to find that his roommate is the patient of
the first row, who has allergy to penicillin and a history of
pharyngitis.

Date of Zip Allergy History of
Birth Code Illness
03-24-79 07030 Penicillin Pharyngitis
08-02-57 07028 No Allergy Stroke
11-12-39 07030 No Allergy Polio
08-02-57 07029 Sulfur Diphtheria
08-01-40 07030 No Allergy Colitis

Table 1: A Table of Health Data

In this example, the set of attributes {date of birth, zip code}
is called a quasi-identifier [12, 32], because these attributes
in combination can be used to identify an individual with
a significant probability. In this paper, we say an attribute
is a quasi-identifier attribute if it is in the quasi-identifier.
The attributes like allergy and history of illness are called
sensitive attributes. (There may be other attributes in a ta-
ble besides the quasi-identifier attributes and the sensitive
attributes; we ignore them in this paper since they are not
relevant to our investigation.) The privacy threat we con-
sider here is that an adversary may be able to link the sensi-
tive attributes of some rows to the corresponding identifiers
using the information provided in the quasi-identifiers. A
proposed strategy to solve this problem is to make the table
k-anonymous [27].

Date of Zip Allergy History of
Birth Code Illness
∗ 07030 Penicillin Pharyngitis
08-02-57 0702∗ No Allergy Stroke
∗ 07030 No Allergy Polio
08-02-57 0702∗ Sulfur Diphtheria
∗ 07030 No Allergy Colitis

Table 2: 2-Anonymized Table of Health Data

In a k-anonymous table, each value of the quasi-identifier ap-
pears at least k times. Therefore, if the adversary only uses



the quasi-identifiers to link sensitive attributes to the iden-
tifiers, then each involved entity (patient in our example) is
“hidden” in at least k peers. The procedure of making a table
k-anonymous is calld k-anonymization. It can be achieved
by suppression (i.e., replacing some entries with “∗”) or gen-
eralization (e.g., replacing some or all occurrences of “07028”
and “07029” with “0702∗”). Table 2 shows the result of 2-
anonymization on Table 1.

Several algorithmic methods have been proposed describing
how a central authority can k-anonymize a table before it
is released to the public (e.g. [30, 27, 26, 32, 31, 24, 8]).
In this paper, we consider a related but different scenario:
distributed customers holding their own data interact with
a miner and use k-anonymization in this process to protect
their own privacy. For example, imagine the above men-
tioned health data are collected from customers by a medical
researcher. The customers will feel more comfortable if the
medical researcher does not need to be trusted and only sees
a k-anonymized version of their data. To achieve this, we
show methods by which k-anonymization can be jointly per-
formed by the involved parties in a private manner such that
no single participant, including the miner, learns extra in-
formation that could be used to link sensitive attributes to
corresponding identifiers.

1.1 Our Contributions
We give privacy-enhancing methods for creating k-anonymous
tables in a distributed scenario. Our methods do not require
a central authority who has access to all the original data,
nor do they require customers to share their data with each
other.

Specifically, we consider a setting in which there is a set of
customers, each of whom has a row of a table, and a miner,
who wants to mine the entire table. Our objective is to design
protocols that allow the miner to obtain a k-anonymous table
representing the customer data in such a way that does not
reveal any extra information that can be used to link sensitive
attributes to corresponding identifiers. We give two different
formulations of this problem:

• In the first formulation, given a table, the protocol needs
to extract the k-anonymous part (i.e., the maximum sub-
set of rows that is already k-anonymous) from it. The
privacy requirement is that the sensitive attributes out-
side the k-anonymous part should be hidden from any
individual participant including the miner. This formu-
lation is suitable if the original table is already close to
k-anonymous.

• In the second formulation, given a table, the protocol
needs to suppress some entries of the quasi-identifier at-
tributes, so that the entire table is k-anonymized. The
privacy requirement is that the suppressed entries should
be hidden from any individual participant. This formu-
lation is suitable even if the original table is not close to
k-anonymous.

We present efficient solutions to both problem formulations.
Our solutions use cryptography to obtain provable guaran-
tees of their privacy properties, relative to standard crypto-
graphic assumptions. Our solution to the first problem for-
mulation does not reveal any information about the sensitive
attributes outside the k-anonymous part. Our solution to

the second problem formulation is not fully private, in that
it reveals the k-anonymous result as well as the distances be-
tween each pair of rows in the original table. We prove that
it does not reveal any additional information. Our protocols
enhance the privacy of k-anonymization by maintaining end-
to-end privacy from the original customer data to the final
k-anonymous results.

We briefly overview related work in Section 2. In Section 3,
we formalize our two problem formulations. Our solutions
are presented in Sections 4 and 5, respectively. We conclude
in Section 6.

2. RELATED WORK
As a strategy to prevent identity disclosure in microdata re-
lease, k-anonymization was first proposed and analyzed by
Samarati and Sweeney [30, 27, 26, 32, 31]. Meyerson and
Williams [24] formally studied how to minimize the number
of suppressed entries in k-anonymization and showed that
it is NP-hard; they then gave approximation algorithms for
this problem. Aggarwal et al. [4] showed that the problem is
NP-hard even if the attributes are ternary-valued; they also
gave algorithms with improved approximation ratios. Ba-
yardo and Agrawal [8] studied optimal k-anonymization with
more cost metrics and proposed a practical solution.

The research area of statistical databases has studied how
to protect individual privacy while supporting information
sharing. There is a rich literature on privacy in statistical
databases; interested readers can refer to surveys [2, 29].
Proposed methods can be categorized into query restriction
(e.g., [22, 11]) and data perturbation (e.g., [25, 33, 9, 1]). In
particular, the tradeoff between privacy and utility in statis-
tical databases was investigated by Dinur and Nissim [14].

Another related area is privacy-preserving data mining, which
also considers protection of sensitive data while maintain-
ing data utility. Representative work in this area includes,
among others, [6, 5, 17, 16, 21, 23, 34, 35, 20]. In addi-
tion, Aggarwal and Yu propose an approach called conden-
sation [3] to produce publishable data that protects privacy
yet provides utility for data mining applications. Their ap-
proach condenses data in groups, where the minimum size
of a group is predetermined. The records in a group are all
randomized such that only a few statistic properties of these
records are kept.

Privacy is studied extensively in various aspects of cryptogra-
phy. General results on cryptographic protocols are summa-
rized in [19]. However, as mentioned in [19], the constructions
presented in the proofs of these results cannot be directly ap-
plied in general, particularly for large amounts of input data
(in our case, a large number of customers), because they are
prohibitively expensive.

3. PROBLEM FORMULATIONS
Consider a table with m quasi-identifier attributes, (s1, . . .,
sm), and n sensitive attributes, (a1, . . . , an). Without loss of
generality, we assume that there are no other attributes ex-
cept these m+n. Suppose that there are N +1 involved par-
ties: N customers and one miner, and that all these parties
are polynomial-time bounded. For convenience, the miner
assigns indices 1 through N to the customers; in the sequel,
by “customer i” we mean “the customer with index i”. Note
that the indices are not identifiers because they are arbitrar-



ily assigned by the miner, who does not know the identifiers
of the customers. Each customer i has a row of the table,

which is denoted by Ri = (s
(i)
1 , . . . , s

(i)
m , a

(i)
1 , . . . , a

(i)
n ).

We assume there are private unidentified channels between
each customer and the miner. That is, the channels are un-
tappable and the miner has no information about which cus-
tomer is using which channel, but each channel is used by
exactly one customer. (These properties can be provided
using standard cryptographic techniques.)

We rigorously define our privacy requirement by adapting
the standard definition of privacy [19] for cryptographic pro-
tocols in the semi-honest model to our setting. In the semi-
honest model, each party is assumed to follow the protocol
but parties may attempt to derive extra information to vio-
late privacy of other parties. This model has been extensively
studied in cryptography (cf. [19]) and widely applied to pri-
vacy problems with large-size data (e.g., [23, 20]). Although
the semi-honest model places a strong restriction on partic-
ipants’ behavior, there are at least two reasons for studying
our problem in this model. First, deviating from the pro-
tocol requires a considerable amount of effort (to hack the
computer program). In an application like collecting health
data from customers, it may be reasonable to assume that
the participants are not willing or able to invest that amount
of effort on violating others’ privacy. Second, it has been
shown that any protocol private in the semi-honest model
can be “translated” to one secure in the fully malicious model
in which parties may deviate arbitrarily from their specified
protocols [19], though at a substantial increase in the cost of
the solution. If we modify this translated protocol to improve
efficiency, we may be able to obtain a practical solution in
the malicious model as well.

In defining our privacy requirement, we assume that before
the protocol starts, there exists a global private key for a
public key cryptosystem1, which is shared among the cus-
tomers in the sense of secret sharing [28]. Each customer is
“preloaded” with up to a constant number of shares. To-
gether, the shares form the global private key: Each share
is only known to its owner; no customer knows the actual
global key. (Such a situation can be established without
a central authority by a distributed key generation protocol
such as [18].)

Our overall objective is to enable the miner to obtain a k-
anonymized table in a private manner (so that he can mine
the table). As mentioned in Section 1, this can be achieved
in two ways, described in detail in Sections 3.1 and 3.2: ei-
ther we enable the miner to extract the k-anonymous part of
the table, or we enable him to obtain a k-anonymized table
in which some entries of the quasi-identifier attributes are
suppressed.

3.1 Formulation 1: Private Extraction of k-
Anonymous Part

In the first problem formulation, the miner extracts the k-
anonymous part of the table (i.e., the maximum subset of
rows that is k-anonymous), but does not learn extra infor-
mation about the sensitive attributes of the rows outside the

1Throughout this paper, by “key” we mean a cryptographic
key. To avoid confusion, we do not use the term “key” in the
sense of a database key attribute.

k-anonymous part. Consequently, the miner cannot link the
sensitive attributes of any row to the corresponding identi-
fiers.

Intuitively, our privacy requirement states that, for each party
(miner or customer), the view of the protocol seen by that
party can be simulated by an algorithm that has no knowl-
edge of the sensitive attributes outside the k-anonymous part.
This captures the requirement that any individual party can-
not learn any extra information about these sensitive at-
tributes by virtue of engaging in the protocol.

To formalize this requirement, we must first define the view
of each party: during an execution of the protocol, a party’s
view consists of this party’s data and preloaded key shares (if
any), all the coin flips of this party, and all the messages this
party receives. We denote by viewminer(T ) (viewi(T ), resp.)
the view of the miner (customer i, resp.) during an execution
with the table

T
def
= {Ri : i ∈ [1, N ]}
= {(s(i)

1 , . . . , s(i)
m , a

(i)
1 , . . . , a(i)

n ) : i ∈ [1, N ]}.

In the sequel, we denote by K(T ) the k-anonymous part of

the table T . The notation
c≡ denotes computational indis-

tinguishability of probability ensembles. Readers can refer
to, e.g., [19], for the definitions of probability ensembles and
computational indistinguishability.

Definition 1. A protocol for extracting K(T ) is ideally
private if there exist N + 1 probabilistic polynomial-time al-
gorithms M , M1, . . . , MN such that

{M(keysminer,K(T ), {(s(i)
1 , . . . , s(i)

m ) : i ∈ [1, N ]})}T

c≡ {viewminer(T )}T ,

and that, for any i ∈ [1, N ],

{Mi(keysi, Ri,K(T ), {(s(i)
1 , . . . , s(i)

m ) : i ∈ [1, N ]})}T

c≡ {viewi(T )}T ,

where keysminer (keysi, resp.) denotes the miner’s (customer
i’s, resp.) preloaded key shares (if any). The algorithms M
and Mi for i ∈ [1, N ] are called simulators (for the miner
and customer i, respectively).

3.2 Formulation 2: k-Anonymization by Pri-
vately Suppressing Entries

One method for k-anonymizing a table is to suppress entries—
ideally suppressing as few as possible [24, 4]. Our second
problem formulation supports suppression in our distributed
setting. Let Anonymized(T ) denote the output (which is a
k-anonymized table) of a protocol that k-anonymizes the ta-
ble T by suppressing entries. We have an analogous privacy
requirement in this case as in Formulation 1, except that the
privacy is relative to Anonymized(T ) instead of K(T ) and the
quasi-identifier:

Definition 2. A protocol for k-anonymization by suppress-
ing entries is ideally private if there exist N + 1 probabilistic
polynomial-time algorithms (called simulators) M , M1, . . . , MN

such that

{M(keysminer, Anonymized(T ))}T
c≡ {viewminer(T )}T ,



and that, for any i ∈ [1, N ],

{Mi(keysi, Ri, Anonymized(T ))}T
c≡ {viewi(T )}T ,

where keysminer (keysi, resp.) denotes the miner’s (customer
i’s, resp.) preloaded key shares (if any).

In our solution for Formulation 2, we are unable to satisfy
the ideal privacy of Definition 2. (General cryptographic
solutions exist that could provide ideal privacy, but at much
greater computation and communication costs.) Instead, we
achieve a relaxed, but well-defined, notion of privacy in which
a specified (and presumably small) amount of information is
revealed. Formally:

Definition 3. Let F(T ) be a function of the table T . A
protocol for k-anonymization by suppressing entries leaks only
F(T ) if there exist probabilistic polynomial-time algorithms
(called simulators) M and M1, . . . , MN such that

{M(keysminer, Anonymized(T ),F(T ))}T
c≡ {viewminer(T )}T ,

and that, for any i ∈ [1, N ],

{Mi(keysi, Ri, Anonymized(T ),F(T ))}T
c≡ {viewi(T )}T ,

where keysminer (keysi, resp.) denotes the miner’s (customer
i’s, resp.) preloaded key shares (if any).

4. OUR SOLUTION FOR FORMULATION 1
In this section, we solve the first formulation of the problem.
That is, we design a protocol that privately extracts the k-
anonymous part of a table. The basic idea of our design is
that each customer encrypts her sensitive attributes using an
encryption key that can be derived if and only if there are
at least k rows whose quasi-identifiers are equal. Specifically,

the key to encrypt the sensitive attributes (a
(i)
1 , . . . , a

(i)
n ) is a

function of the corresponding quasi-identifier (s
(i)
1 , . . . , s

(i)
m )

and it is shared among the customers with threshold k in the
sense of secret sharing (see below for explanation of secret
sharing). Each customer submits to the miner one share of
the key(s) corresponding to her quasi-identifier. As a result,
if and only if there are at least k customers whose quasi-
identifiers are equal, the miner is able to recover the appro-
priate decryption key.

The remaining technical question is how each customer se-
lects the key. On the one hand, we do not want every cus-
tomer with the same quasi-identifier to select the same key—
in fact, we do not even want them to know each other’s keys
because then a customer would be able to decrypt the sensi-
tive attributes of some other customers, which is undesirable.
On the other hand, we must ensure that the key share pro-
vided by a customer can be used in the recovery of the key
of every customer having the same quasi-identifier.

We resolve this dilemma by assuming a (2N, k)-Shamir secret
sharing [28] of a “seed” key x, where each customer i has two
shares x2i−1 and x2i of the seed key. (Note the meaning of the
two parameters of Shamir secret sharing: 2N is the overall
number of shares and k is the threshold number of shares
needed to recover x.) Specifically, there exists a degree-(k −
1) polynomial P() such that P(0) = x. The shares owned
by customer i are x2i−1 = P(2i − 1) and x2i = P(2i). A
very useful property of Shamir secret sharing is that with k

or more shares one can easily derive all other shares using
Lagrange interpolation, while with fewer than k shares one
has no information about any other shares at all.

The key that we use to encrypt the sensitive attributes (a
(i)
1 ,

. . . , a
(i)
n ) is H(s

(i)
1 , . . . , s

(i)
m )x2i−1 , where H is a cryptographic

hash function. Clearly, this key can be derived if and only

if for k or more values of j, H(s
(i)
1 , . . . , s

(i)
m )xj is available.

The key share submitted by customer i is H(s
(i)
1 , . . . , s

(i)
m )x2i .

Consequently, this submitted key share can actually be used
in the recovery of any keys used to encrypt the sensitive at-

tributes where the quasi-identifiers are equal to (s
(i)
1 , . . . , s

(i)
m ).

These key can be recovered successfully if and only if there

are at least k customers with quasi-identifier equal to (s
(i)
1 ,

. . . , s
(i)
m ). Furthermore, even the customers having the same

quasi-identifier cannot figure out each other’s key because
they do not know other customers’ shares of the seed key.

4.1 The Protocol
Let S be a security parameter, let p, q be two S-bit primes
such that p = 2q + 1, let Gq be the quadratic residue sub-
group of Z×p (the multiplicative group mod p), and let H be
a cryptographic hash function with range Gq.

Before the protocol starts, we assume that a “seed” key x ∈
[0, q − 1] is shared among customers using (2N, k)-Shamir
secret sharing and that each customer i has two shares, x2i−1

and x2i. Specifically, there exists a degree-(k−1) polynomial
P() such that x = P(0) and ∀i ∈ [1, 2N ], xi = P(i).

Data Submission. Customer i encrypts (a
(i)
1 , . . . , a

(i)
n ) using

y2i−1 = H(s
(i)
1 , . . . , s

(i)
m )x2i−1 as a symmetric key. Then she

sends the miner the ciphertext together with (s
(i)
1 , . . . , s

(i)
m )

and y2i = H(s
(i)
1 , . . . , s

(i)
m )x2i .

Data Processing. When the miner has collected all cus-
tomers’ messages, he counts the number of rows (customers)
for each different value of (s1, . . . , sm). If for a value of
(s1, . . . , sm) there are k or more rows, then he decrypts the
sensitive attributes of these rows as follows: let I be a subset
of k such rows; the miner computes customer j’s symmetric
key using

y2j−1 =
∏
i∈I

y
∏
6̀=i,`∈I (2j−1−2`)/(2i−2`)

2i .

Then the miner decrypts the sensitive attributes of these rows
using the computed keys.

4.2 Privacy Analysis
We show our privacy guarantee under a standard crypto-
graphic assumption, the Decisional Diffie-Hellman (DDH)
assumption. (See [10] for a survey of DDH.)

Theorem 4. Under the DDH assumption and in the ran-
dom oracle model2, the protocol for extracting K(T ) is ideally
private.

2The random oracle model is a methodology frequently used
in proofs of security for systems using hash functions. Ef-
fectively it makes the assumption that the use of the hash
function does not introduce any insecurity.



Proof. We only need to construct a simulator M for the
miner, because the customers do not receive any messages
from the miner (and therefore the simulator that simply out-
puts the party’s data, preloaded key shares if any, and coin
flips (and no messages) is a valid simulator).

M picks x′ ∈ [0, q − 1] uniformly at random and computes
2N Shamir shares of x′: x′1, . . . , x

′
2N .

If customer i’s row is in K(T ), then M computes y′2i−1 =

H(s
(i)
1 , . . . , s

(i)
m )x′2i−1 , y′2i = H(s

(i)
1 , . . . , s

(i)
m )x′2i , and encrypts

(a
(i)
1 , . . . , a

(i)
n ) using symmetric key y2i−1. M simulates cus-

tomer i’s message with the above symmetric encryptions,

(s
(i)
1 , . . . , s

(i)
m ), and y′2i.

If customer i’s row is not in K(T ), then M still computes

y′2i = H(s
(i)
1 , . . . , s

(i)
m )x′2i . M simulates customer i’s mes-

sage with a random ciphertext in the symmetric encryption

scheme, (s
(i)
1 , . . . , s

(i)
m ), and y′2i.

The proof of computational indistinguishability is notation-
ally too complicated to be included in this paper. However,
we prove a simplified version of the indistinguishability result
as Lemma 5. It is conceptually trivial (though notationally
challenging) to extend Lemma 5 to the indistinguishability
needed here.

Below is a simplified version of the indistinguishability result
needed in the proof of Theorem 4.

Lemma 5. Under the DDH assumption,

{g1, g2, g3, g
e1
1 , ge2

2 , gαe1+βe2
3 }q

c≡
{g1, g2, g3, g

e1
1 , ge2

2 , ge3
3 }q,

where g1, g2, g3 are picked uniformly and independently from
Gq, and e1, e2, e3 are picked uniformly and independently
from [0, q − 1].

Proof. Suppose by way of contradiction that the above
indistinguishability result does not hold. Then there exist a
probabilistic polynomial-time algorithm D and a polynomial
f() such that, for infinitely many q,

|Pr[D(g1, g2, g3, g
e1
1 , ge2

2 , gαe1+βe2
3 , q) = 1]

−Pr[D(g1, g2, g3, g
e1
1 , ge2

2 , ge3
3 , q) = 1]| ≥ 1/f(S).

Thus we construct another polynomial-time algorithm D′()
such that

D′(E1, E2, E3, q, g)
def
= D(g, Ee′

2 , ge′′ , E
1/α
1 , E

−e′/β
3 , 1, q),

where e′, e′′ are picked uniformly and independently from
[0, q−1]. Then clearly, for ê1, ê2 uniformly and independently
picked from [0, q − 1], we have

D′(gê1
1 , gê2

1 , gê1ê2
1 , q, g1)

= D(g1, g
ê2e′
1 , ge′′

1 , g
ê1/α
1 , g

−ê1ê2e′/β
1 , 1, q),

= D(g1, g
ê2e′
1 , ge′′

1 , g
ê1/α
1 , (gê2e′

1 )−ê1/β , (ge′′
1 )0, q)

= D(g1, g2, g3, g
ê1/α
1 , g

−ê1/β
2 , g0

3 , q).

The last identity holds because ge2e′
1 and ge′′

1 are independent
and uniform and we can rename them as g2 and g3. We then

further rename ê1/α and −ê1/β as e1 and e2 and get

D′(gê1
1 , gê2

1 , gê1ê2
1 , q, g1) = D(g1, g2, g3, g

e1
1 , ge2

2 , gαe1+βe2
3 , q).

Similarly, we can get, for ê1, ê2, ê3 uniformly and indepen-
dently picked from [0, q − 1],

D′(gê1
1 , gê2

1 , gê3
1 , q, g1) = D(g1, g2, g3, g

e1
1 , ge2

2 , ge3
3 , q).

Therefore,

|Pr[D′(gê1
1 , gê2

1 , gê1ê2
1 , q, g1) = 1]

−Pr[D′(gê1
1 , gê2

1 , gê3
1 , q, g1) = 1]| ≥ 1/f(S),

an obvious contradiction to DDH.

5. OUR SOLUTION FOR FORMULATION 2
In this section, we solve the second formulation of the prob-
lem. Specifically, we provide a protocol that privately k-
anonymizes a table by suppressing entries. Our protocol is
based on Meyerson and Williams’s algorithm (which we refer
to as MW) for k-anonymizing a database [24]. Our solution
can be viewed as a distributed, privacy-preserving, version of
their algorithm. Our protocol provides quantifiable, though
not ideal, privacy. Namely, it keeps all information about the
suppressed entries private from each individual party, except
revealing the distance between each pair of rows.

Our protocol consists of three phases. In the first phase, the
protocol allows the miner to compute the distance between
each pair of rows. In the second phase, the miner uses the
MW algorithm to compute a k-partition of the table. (A k-
partition is a collection of disjoint subsets of rows in which
each subset contains at least k rows and the union of these
subsets is the entire table.) In the third phase, the protocol
allows the miner to compute the k-anonymized table. The
second phase is a direct computation of part of MW (which
relies only on the inter-row distances already known to the
miner).

We now overview the more complex first and third phases;
we describe all three phases in complete detail in Section 5.1.

Design of Phase 1
Recall that the distance between two rows is the number of
quasi-identifier attributes in which the rows have different
values [24]. If we define

σ
(i,i′)
j =

{
1 if s

(i)
j = s

(i′)
j

r if s
(i)
j 6= s

(i′)
j

(where r is a random element uniformly picked from an ex-
ponentially large prime-order cyclic group), then with all but
negligible probability the distance between the ith and i′th
rows equals |{j : σ

(i,i′)
j 6= 1, j ∈ [1, m]}| (because the the

probability of r = 1 is negligible). To compute this num-

ber, the miner first computes encryptions of σ
(i,i′)
j s from

encryptions of quasi-identifier attributes; then, a customer
rerandomizes and repermutes these encryptions (so that the

miner does not learn the value of any specific σ
(i,i′)
j when

they are decrypted); finally, the customers jointly help the

miner to decrypt the σ
(i,i′)
j s.

To allow the miner to compute encryptions of σ
(i,i′)
j s, we use

the fact that, since the cyclic group mentioned above is of a



prime order,

σ
(i,i′)
j = (s

(i)
j /s

(i′)
j )ei,i′,j , (1)

where ei,i′,j is a uniformly random exponent. This tech-
nique was first used in [7]. (Equation (1) holds because, if

s
(i)
j 6= s

(i′)
j , then s

(i)
j /s

(i′)
j 6= 1. Any element of a prime-

order cyclic group not equal to 1 is a generator; and a gen-
erator raised to a uniformly random exponent must be a
uniformly random element of the cyclic group.) When all
quasi-identifier attributes are encrypted using a multiplica-
tively homomorphic encryption scheme (where an encryption
of the product of multiple elements can be computed from
the encryptions of these elements), it is easy for the miner

to compute the encryption of σ
(i,i′)
j s using the encryptions of

the quasi-identifier attributes. Specifically, in our protocol,
we use the ElGamal encryption scheme [15]: an encryption
of plaintext M ∈ Gq is C = (Myr, gr), where g is a gener-
ator of Gq, y = gx is the public key (and x is the private
key), and r is picked uniformly at random from [0, q− 1]. To
decrypt an ElGamal ciphertext, one simply divides its first
component by its second component raised to the secret key.

The remaining question is how the customers jointly help

the miner to decrypt ciphertexts of σ
(i,i′)
j s. We use a thresh-

old cryptography technique similar to that of Desmedt and
Frankel [13]. Assume that the private key is shared among
the customers using a (N, t)-Shamir secret sharing [28], where
t is an arbitrary threshold. (We discuss how to choose t in
Section 6.) Then a customer can compute a “partial de-
cryption” by raising the second component of an ElGamal
ciphertext to her share of the private key. To compute the
plaintext, the miner only needs to take t partial decryptions
and interpolate them.

Design of Phase 3
Let P be the k-partition computed in the second phase. Let
P` ∈ P. Suppose that ith row is in P`. According to MW,

customer i should replace s
(i)
j with ∗ if and only if

∃i′ ∈ P`, s
(i)
j 6= s

(i′)
j .

With high probability, this is equivalent to
∏

i′∈P`,i′ 6=i

σ
(i,i′)
j 6= 1.

Because ElGamal is multiplicatively homomorphic, it is easy

to compute an encryption of
∏

i′∈P`,i′ 6=i σ
(i,i′)
j . Hence the

remaining technical question is how other customers jointly
help customer i to decrypt it. To achieve this goal, we again
use the technique of partial decryptions in the first phase;
the main difference is that customer i only needs the help of
t−1 other customers, because customer i herself already has
a share of the private key.

5.1 The Protocol
We now give a detailed description of the entire protocol.
Suppose that S is a security parameter, that p, q are S-bit
primes such that p = 2q + 1, and that Gq is the quadratic
residue subgroup of Z×p . Let t ∈ [2, N − 1] be a threshold.
In this section, we assume that N customers share a private
key x ∈ [0, q − 1] using (N, t)-Shamir secret sharing, where
customer i’s share is denoted by xi. Specifically, there exists
a degree-(t− 1) polynomial P() such that x = P(0) and ∀i ∈

[1, N ], xi = P(i). We also assume that the corresponding
public key y = gx (where g is a generator of Gq) is known to
all involved parties (customers and the miner).

5.1.1 Phase 1
In this phase, the miner computes the distance between every
pair of rows, following the method overviewed above.

Submission of Encrypted Quasi-identifier Attributes.
Each customer i encrypts each of her quasi-identifier at-
tributes using ElGamal with public key y (for j = 1 to m):

s
(i)
j = (s

(i)
j yrij , grij ),

where rij is picked uniformly at random from [0, q−1]. Then
the customers send all these encryptions to the miner. The

ciphertext s
(i)
j above has two components; we denote the first

and the second components by s
(i)
j 〈1〉 and s

(i)
j 〈2〉 respectively.

Computing Encryptions of σ
(i,i′)
j . For each pair (i, i′),

the miner computes the quotients of their corresponding quasi-
identifier attributes: (for j = 1 to m)

q
(i,i′)
j = (s

(i)
j 〈1〉/s

(i′)
j 〈1〉, s(i)

j 〈2〉/s
(i′)
j 〈2〉).

Then the miner raises the quotients to random powers: (for
j = 1 to m)

p
(i,i′)
j = ((q

(i,i′)
j 〈1〉)ei,i′,j , (q

(i,i′)
j 〈2〉)ei,i′,j ),

where ei,i′,j is picked uniformly at random from [0, q − 1].

Rerandomization and Repermutation. The miner sends
{p(i,i′)

j : i, i′ ∈ [1, N ], i 6= i′, j ∈ [1, m]} to an arbitrary cus-

tomer i0. Customer i0 rerandomizes each p
(i,i′)
j and reper-

mutes (p
(i,i′)
1 , . . . , p

(i,i′)
m ) for each pair (i, i′). Denote the re-

sult of the above rerandomization and repermutation oper-

ations by {u(i,i′)
j : i, i′ ∈ [1, N ], i 6= i′, j ∈ [1, m]}. Then

customer i0 sends {u(i,i′)
j : i, i′ ∈ [1, N ], i 6= i′, j ∈ [1, m]}

back to the miner.

Decrypting σ
(i,i′)
j . Consider a set I of t customers, where

i0 6∈ I. To each of these t customers, the miner sends

{u(i,i′)
j 〈2〉 : i, i′ ∈ [1, N ], i 6= i′, j ∈ [1, m]}. Each of the

picked customer i′′ ∈ I raises all elements she receives to the
xi′′th power: (for each (i, i′, j) such that i, i′ ∈ [1, N ], i 6=
i′, j ∈ [1, m])

v
(i,i′)
j,i′′ = (u

(i,i′)
j 〈2〉)xi′′ .

Then she sends {v(i,i′)
j,i′′ : i, i′ ∈ [1, N ], i 6= i′, j ∈ [1, m]} back

to the miner.

Finally, the miner computes

σ̂
(i,i′)
j = u

(i,i′)
j 〈1〉/

∏

i′′∈I

(v
(i,i′)
j,i′′ )

∏
` 6=i′′,`∈I `/(`−i′′).

Note that σ̂
(i,i′)
1 , . . . , σ̂

(i,i′)
m are nothing but a permutation

of σ
(i,i′)
1 , . . . , σ

(i,i′)
m ; thus |{j : σ

(i,i′)
j 6= 1, j ∈ [1, m]}| = |{j :



σ̂
(i,i′)
j 6= 1, j ∈ [1, m]}|. For each pair (i, i′), the miner counts

|{j : σ̂
(i,i′)
j 6= 1, j ∈ [1, m]}|. The distance between the ith

and i′th rows is equal to this number.

5.1.2 Phase 2
In this phase, knowing the pairwise distances of the rows, the
miner follows the first part of the MW algorithm to compute
a k-partition P = {P1, . . . , PL}.

5.1.3 Phase 3
In this phase, the miner computes the k-anonymized table
with the help of the customers, as overviewed above.

Computing Encryptions of
∏

i′∈Pl,i
′ 6=i σ

(i,i′)
j . For each

P` ∈ P, each i ∈ P`, each j ∈ [1, m], the miner computes

p
(i)
j = (

∏

i′∈P`,i′ 6=i

p
(i,i′)
j 〈1〉,

∏

i′∈P`,i′ 6=i

p
(i,i′)
j 〈2〉).

Decrypting
∏

i′∈P`,i′ 6=i σ
(i,i′)
j . Then, for each P`, let I` be

a set of t−1 customers such that i0 6∈ I` and I`∩P` = ∅. The

miner sends {p(i)
j 〈2〉 : i ∈ P`, j ∈ [1, m]} to every customer

in I`. Each customer i′ ∈ I` computes (for each i ∈ P` and
each j ∈ [1, m])

w
(i,i′)
j = (p

(i)
j 〈2〉)xi′ ,

and sends {w(i,i′)
j : i ∈ P`, j ∈ [1, m]} back to the miner.

The miner computes (for each P`, each i ∈ P` and each
j ∈ [1, m])

z
(i)
j = p

(i)
j 〈1〉/

∏

i′∈I`

(w
(i,i′)
j )

∏
i′′∈I`,i′′ 6=i′ i′′/(i′′−i′)

.

He sends {z(i)
j : j ∈ [1, m]}, {p(i)

j 〈2〉 : j ∈ [1, m]}, and P` to
each customer i.

For each j ∈ [1, m], each customer i(∈ P`) computes

ẑ
(i)
j = p

(i)
j 〈2〉xi

∏
i′′∈I`,i′′ 6=i i′′/(i′′−i)

,

and compares ẑ
(i)
j with z

(i)
j . If they are equal, then customer

i sets ŝ
(i)
j = s

(i)
j ; otherwise, customer i sets ŝ

(i)
j = ∗. Finally,

customer i sends the miner (ŝ
(i)
1 , . . . , ŝ

(i)
m , a

(i)
1 , . . . , a

(i)
n ).

5.2 Privacy Analysis
Our protocol leaks only the distance between each pair of
rows. Let Distance(T, i, i′) denote the distance between the
ith and i′th rows of table T .

Theorem 6. The protocol of k-anonymization by suppress-
ing entries leaks only {Distance(T , i, i′) : i, i′ ∈ [1, N ], i 6= i′},
under the DDH assumption.

Proof. We first construct a simulator M for the miner.
For the phase of computing pairwise distances, M simulates
the first-round messages the miner receives using mN ran-
dom ElGamal ciphertexts. For the second-round messages

the miner receives (which are from i0), M simulates each

u
(i,i′)
j using a random ElGamal ciphertext u′(i,i

′)
j . Then, M

picks i′′0 ∈ I; for each i′′ 6= i′′0 , i′′ ∈ I , M simulates the third

round message v
(i,i′)
j,i′′ using a random element v′(i,i

′)
j,i′′ of Gq.

To simulates v
(i,i′)
j,i′′0

, M first sets the values of σ′(i,i
′)

j : for each

pair (i, i′), the m variables {σ′(i,i′)j : j ∈ [1, m]} have exactly

m − Distance(T, i, i′) 1’s; M randomly picks this number of
variables and sets them to 1 and then sets all the remaining

variables randomly. After that, M simulates v
(i,i′)
j,i′′0

using

v′
(i,i′)
j,i′′0

=
u′(i,i

′)
j 〈1〉

σ′(i,i
′)

j

∏
i′′∈I,i′′ 6=i′′0

(v′(i,i
′)

j,i′′ )
∏
6̀=i′′,`∈I

`
`−i′′

.

For the phase of computing anonymized data, M simulates
the first-round messages the miner receives using Nm(t− 1)
independent random elements of Gq. M simulates the last-
round messages using the rows in Anonymized(T ).

The computational indistinguishability follows from the se-
mantic security of ElGamal encryption, which is well known
to hold under DDH [10].

Now we construct a simulator Mi for customer i. If i = i0,
then Mi simulates the messages received by i0 using N(N −
1)m random ElGamal ciphertexts. If i ∈ I, then Mi simu-
lates the messages received by i in the phase of computing
pairwise distances using N(N −1)m independent random el-
ements of Gq. If i ∈ I`, then Mi simulates the first-round
messages received by i in the phase of computing anonymized
data using independent random elements of Gq. For any cus-
tomer i, for the last-round messages customer i receives, Mi

simulates each p
(i)
j 〈2〉 using an independent random element

p′(i)j of Gq; if the (i, j)-entry of the anonymized sensitive at-

tributes is ∗, then Mi simulates z
(i)
j using an independent

random element of Gq as well; otherwise, Mi simulates z
(i)
j

using

z′
(i)
j = (p′

(i)
j )

xi
∏

i′′∈I`,i′′ 6=i i′′/(i′′−i)
.

The computational indistinguishability follows immediately
from the semantic security of ElGamal encryption.

6. DISCUSSION
In this paper, we studied methods for creating k-anonymous
tables in a distributed scenario without the need for a cen-
tral authority and while maintaining customer privacy. We
formulate the problem in two ways.

For the first problem formulation, a protocol must extract
the k-anonymous part of a table. The major advantage of
our protocol is that it is non-interactive—each customer only
sends a single flow of communication to the miner. Therefore,
customers can “submit data and go”. Another advantage is
that the solution is very efficient. The dominating computa-
tional overhead of each customer is two modular exponenti-
ations; the dominating computational overhead of the miner
is kNk modular exponentiations, where Nk is the number of
rows in the k-anonymous part of the table. The limitation
of this problem formulation is that it is suitable only if the
original table is already close to k-anonymous, as otherwise



the subset of the table learned by the miner may not be of
sufficient utility.

For the second problem formulation, a protocol k-anonymizes
a table by suppressing entries. The advantage of this ap-
proach is that it can produce useful results even when the
original table is not close to k-anonymous. Our solution to
this problem formulation leaks a small amount of informa-
tion beyond the k-anonymous result—namely, the distance
between each pair of rows. Consequently, this approach is a
good choice for the applications in which revealing the dis-
tances between rows can be tolerated.

We have shown that our solutions protect privacy against
any individual party involved. The solutions can also be
extended to provide privacy even if some parties collude and
pool their information: up to k − 1 (for the first protocol)
or t − 1 (for the second protocol). In the second protocol,
this requires a slight change so that the task of customer i0
is distributed among t customers. The choice of threshold
t is subject to a trade-off: the greater the value of t, the
more colluding parties the protocol can work against, but the
more expensive the protocol is. In a practical application,
an appropriate value of t must be chosen according to the
application’s requirements of privacy and efficiency.
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