
Towards Privacy-Preserving Model Selection?

Zhiqiang Yang1, Sheng Zhong2, and Rebecca N. Wright3

1 Department of Computer Science, Stevens Institute of Technology, Hoboken, NJ,
07030, USA, zyang@cs.stevens.edu

2 Department of Computer Science, SUNY Buffalo, Buffalo, NY, 14260, USA,
szhong@cse.buffalo.edu

3 Department of Computer Science and DIMACS, Rutgers University, Piscataway,
NJ, 08854, USA, rebecca.wright@rutgers.edu

Abstract. Model selection is an important problem in statistics, ma-
chine learning, and data mining. In this paper, we investigate the prob-
lem of enabling multiple parties to perform model selection on their dis-
tributed data in a privacy-preserving fashion without revealing their data
to each other. We specifically study cross validation, a standard method
of model selection, in the setting in which two parties hold a vertically
partitioned database. For a specific kind of vertical partitioning, we show
how the participants can carry out privacy-preserving cross validation in
order to select among a number of candidate models without revealing
their data to each other.

1 Introduction

In today’s world, a staggering amount of data, much of it sensitive, is distributed
among a variety of data owners, collectors, and aggregators. Data mining pro-
vides the power to extract useful knowledge from this data. However, privacy
concerns may prevent different parties from sharing their data with others. A
major challenge is how to realize the utility of this distributed data while also
protecting data privacy.

Privacy-preserving data mining provides data mining algorithms in which
the goal is to compute or approximate the output of one or more particular
algorithms applied to the joint data, without revealing anything else, or at least
anything else sensitive, about the data.

To date, work on distributed privacy-preserving data mining has been pri-
marily limited to providing privacy-preserving versions of particular data mining
algorithms. However, the data miner’s task rarely starts and ends with running
a particular data mining algorithm. In particular, a data miner seeking to model
some data will often run a number of different kinds of data mining algorithms
and then perform some kind of model selection to determine which of the result-
ing models to use. If privacy-preserving methods are used for determining many
? This work was supported in part by the National Science Foundation under Grant

No. CCR-0331584 and by the Department of Homeland Security under ONR Grant
N00014-07-1-0159.

In Proceedings of the First SIGKDD International Workshop on Privacy,
Security, and Trust in KDD (PinKDD’07), LNCS 4890, Springer, 2008.



models, but then the model selection either is carried out without maintaining
privacy or cannot be carried out due to privacy constraints, then the desired
privacy and utility cannot simultaneously be achieved.

In this paper, we introduce the notion of privacy-preserving model selection.
We specifically consider cross validation, which is a popular method for model
selection. In cross validation, a number of different models are generated on a
portion of the data. It is then determined how well the resulting models perform
on the rest of the data, and the highest performing model is selected. Cross
validation can also be used to validate a single model learned from training data
on test data not used in the generation of the model, to determine whether the
model performs sufficiently well and limit the possibility of choosing a model
that overfits the data.

We provide a partial solution to privacy-preserving model selection via cross
validation. We assume a very specific kind of vertical partitioning, which has
previously been considered by Vaidya and Clifton [31], in which one party holds
all the data except the class labels, and a second party holds all the class labels.
In this setting, we show how to perform model selection using cross validation in
a privacy-preserving manner, without revealing the parties’ data to each other.

A practical example of this kind of partitioning might occur in a research
project seeking to explore the relationship between certain criminal activities
and the medical histories of people involved in these activities. A local hospital
has a database of medical histories, while the police department has the criminal
records. Both the hospital and police department would like to provide assistance
to this project, but neither of them is willing or legally able to reveal their data
to the other. It is therefore a technical challenge to find the right model over this
distributed database in a privacy-preserving manner. Specifically, we can view
the medical histories and the criminal records as two parts of a vertically parti-
tioned database. We simplify the criminal records to labels on local residents for
whether they are involved in the criminal activities. Then the question becomes
finding the right model to predict this label on an individual using his or her
medical history data. We require that the medical histories not be revealed to
the police department and that the labels not be revealed to the hospital.

Our main contribution is a privacy-preserving model selection protocol for
this setting. Specifically, there is a database vertically partitioned between two
participants. One participant has all the data except the class labels; the other
participant has all the class labels. Our privacy-preserving cross validation so-
lution enables the parties to privately determine the best among a number of
candidate models for the data, thereby extending the privacy of the data from
the initial model computation through to the model selection step.

We begin by discussing related work in Section 2. We introduce some crypto-
graphic primitives in Sections 3 and 4. Our main protocol is shown in Section 5.
In Section 6, we discuss possible extensions including generalizing our solution
to arbitrary vertically partitioned data and determining which of a number of
models is best without revealing the models that are not chosen.



2 Related Work

Existing techniques in privacy-preserving data mining can largely be categorized
into two approaches. One approach adopts cryptographic techniques to provide
secure solutions in distributed settings, as pioneered by Lindell and Pinkas [25].
Another approach randomizes the original data such that certain underlying
patterns are still kept in the randomized data, as pioneered by Agrawal and
Srikant [3]. Generally, the cryptographic approach can provide solutions with
perfect accuracy and perfect privacy. The randomization approach is much more
efficient than the cryptographic approach, but typically suffers a tradeoff between
privacy and accuracy.

In the randomization approach, original data is randomized by adding noise
so that the original data is disguised but patterns of interest persist. The ran-
domization approach enables learning data mining models from the disguised
data. Different randomization approaches have been proposed to learn different
data mining models, such as decision trees [3,8] and association rules [10,11,28].
Several privacy definitions for the randomization setting have been proposed to
achieve different levels of privacy protection [1, 3, 10], though privacy problems
with randomization approach have also been discussed [17, 23].

In the cryptographic approach, which we follow in this paper, the goal is
to enable distributed learning of data mining models across different databases
without the database owners revealing anything about their data to each other
beyond what can be inferred from the final result. In principle, general-purpose
secure multiparty computation protocols [16, 35] can provide solutions to any
distributed privacy-preserving data mining problem.

However, these general-purpose protocols are typically not efficient enough
for use in practice when the input data is very large. Therefore, more efficient
special-purpose privacy-preserving protocols have been proposed for many spe-
cial cases. These address a number of different learning problems across dis-
tributed databases, such as association rule mining [21,29], ID3 trees [25], cluster-
ing [19,30], naive Bayes classification [22,31], and Bayesian networks [27,34], as
well as a variety of privacy-preserving primitives for simple statistical computa-
tions including scalar product [4,7,13,14,29,33], finding common elements [2,13],
and computing correlation matrices [26].

In the cryptographic approach, privacy is quantified using variants of the
standard cryptographic definition for secure multiparty computation. Intuitively,
parties involved in the privacy-preserving distributed protocols should learn only
the data mining results that are their intended outputs, and nothing else.

Most privacy-preserving data mining solutions to date address typical data
mining algorithms, but do not address necessary preprocessing and postprocess-
ing steps. Recent work addresses privacy preservation during the preprocessing
step [20]. In this work, we begin the exploration of extending the preservation of
privacy to the postprocessing step, thereby maintaining privacy throughout the
data mining process.



3 Cryptographic Tools

In this section, we briefly overview cryptographic concepts and primitives that
we use.

3.1 Privacy Definition

In this paper, we define privacy using a standard definition used in secure mul-
tiparty computation [15]. In particular, we consider the privacy definition in the
model of semi-honest adversaries. A semi-honest adversary is assumed to follow
its specified instructions, but will try to gain as much information as possible
about other parties’ inputs from the messages it receives.

The proofs of privacy in this paper are carried out using the simulation
paradigm [15]. Formally, let Π be a 2-party protocol for computing a function
f : (x1, x2) → (y1, y2). The view of the ith party (i ∈ {1, 2}) during an execution
of Π , denoted by viewi(x1, x2), consists of the ith party’s input xi, all messages
received by the ith party, and all internal coin flips of the ith party. We say
that Π privately computes f against semi-honest adversaries if, for each i, there
exists a probabilistic polynomial-time algorithm Si (which is called a simulator),
such that

{Si(xi, yi)}x1,x2

c≡ {(viewi(x1, x2)}x1,x2 ,

where
c≡ denotes computational indistinguishability. (See [15] for the definition

of computational indistinguishability. Intuitively, it states that a polynomially-
bounded computation cannot distinguish between the two distributions given
samples from them.)

Intuitively, this definition states that, based on the input and output of each
participant, we should be able to “simulate” the view of that participant. There-
fore, each participant learns nothing during the computation that would not be
learned if Alice and Bob gave their data to a trusted third party who computed
the results y1 and y2 and returned them to Alice and Bob, respectively.

As a privacy definition, this definition has some advantages but it also has
some limitations. Among its advantages are that it allows provable guarantees
that nothing was leaked during the computation, and that if multiple subpro-
tocols are combined properly, their combination does not leak any information.
A notable limitation of this definition is that it does not say anything about
the privacy of the final result, leaving that determination as a separate privacy
decision.

3.2 ElGamal Cryptosystem

A public key cryptosystem consists of three algorithms: the key generation algo-
rithm, the encryption algorithm, and the decryption algorithm. We make use of
the ElGamal cryptosystem [9].



In the ElGamal cryptosystem, the key generation algorithm generates the
parameters (G, q, g, x), where G is a cyclic group of order q with generator g,
and x is randomly chosen from {0, . . . , q−1}. The public key is (h, G, q, g) where
h = gx, and the private key is x.

In order to encrypt a message m to Alice under her public key (h, G, q, g), Bob
computes (c1 = m ·hk, c2 = gk), where k is randomly chosen from {0, . . . , q−1}.
To decrypt a ciphertext (c1, c2) with the private key x, Alice computes c1(cx

2 )−1

as the plaintext message.
ElGamal encryption is semantically secure under the Decisional Diffie-Hellman

(DDH) assumption [5], which we assume throughout this paper. One group fam-
ily in which DDH is commonly assumed to be intractable is the quadratic residue
subgroup of Z

∗
p (the multiplicative group mod p) where p is a safe prime (i.e.,

a prime number of the form p = 2p′ + 1 for a prime p′). ElGamal encryption
has a useful randomization property. Specifically, given an encryption of M , it is
possible to compute a different (and random) encryption of M without knowing
the private key.

4 Privacy-Preserving Hamming Distance and Generalized
Hamming Distance

In this section, we provide new, simple, efficient, privacy-preserving protocols for
computing the Hamming distance and generalized Hamming distance between
two vectors. These will be used in our main protocol.

4.1 Privacy-Preserving Hamming Distance

In this protocol, Alice has a vector A = (a1, ..., an) and Bob has a vector B =
(b1, ..., bn), where A and B contain only binary values. In our setting, Alice is
supposed to learn the Hamming distance of their two vectors, and Alice and
Bob are supposed to learn nothing else about each other’s vectors. (In the semi-
honest setting, such a protocol can easily be transformed into a protocol where
both Alice and Bob learn the result, by having Alice tell Bob the answer.)

We note that private solutions already exist for this problem. For example, an
efficient solution is given by Jagannathan and Wright [20] based on homomorphic
encryption. Yao’s secure two-party computation could be used [35]; it computes
the result based on computation using a “garbled” circuit. Alternately, the secure
two-party computation techniques of Boneh, Goh, and Nissim [6] could be used,
in the form where the output is multiple bits; this relies on computationally
expensive bilinear pairing, as well as on a new computational assumption. We
also note that if one is willing to accept an approximation to the Hamming
distance, it is possible to achieve this with sublinear communication complexity
while meeting the privacy requirements [12, 18].

In this section, we describe a simple, efficient, alternative solution based on
the ElGamal cryptosystem. As shown in the following section, a modification of
this solution also solves the generalized Hamming distance problem.



Privacy-Preserving Hamming Distance Protocol

Input: Vectors A = (a1, . . . , an) and B = (b1, . . . , bn) held by Alice and Bob,
respectively, such that ai, bi ∈ {0, 1} for 1 ≤ i ≤ n.

Output: Alice learns the Hamming distance of A and B.

1. For 1 ≤ i ≤ n, if ai = 0, then Alice sends ei = E(g) to Bob; Otherwise, Alice
sends ei = E(g−1) to Bob. (Obviously, fresh, independent randomness is used
in generating each of these encryptions.) For each i, the resulting encryption
is a two-part ciphertext ei = (ci,1, ci,2).

2. For 1 ≤ i ≤ n, if bi = 0, then Bob rerandomizes ei to get e′i; otherwise,
Bob sets e′i to a rerandomization of e−1

i = ((ci,1)
−1, (ci,2)

−1). Bob sends a
permuted vector including all e′i to Alice.

3. Alice decrypts all received e′i and counts how many of the decryptions are
equal to g−1. This number is equal to

∑n
i=1(ai ⊕ bi) = dist(A, B).

Fig. 1. Privacy-Preserving Hamming Distance Protocol

In our protocol, we assume Alice has an ElGamal key pair (x, y) (x ∈ [0, q−1],
where q is the order of G; y ∈ G) such that y = gx ∈ G. Here, x is the private key,
which is known only to Alice, and y is the public key, which is also known to Bob.
We use E(m) to denote an encryption of m by public key y. All computations
in the protocol and throughout this paper take place in G, which is chosen
large enough to ensure that the final distance result is correct as an integer. The
output of this protocol is the Hamming distance dist(A, B) =

∑n
i=1(ai⊕bi). The

basic idea is that we use g to represent 0 and g−1 to represent 1. The protocol
is shown in Figure 1.

Theorem 1. Under the DDH assumption, the protocol in Figure 1 for binary-
valued inputs privately computes the Hamming distance in the semi-honest model.

Proof. We first show correctness—i.e., that Alice’s output is the correct Ham-
ming distance. In Step 1, for 1 ≤ i ≤ n, Alice computes

ei = (ci,1, ci,2) =
{

E(g) if ai = 0
E(g−1) if ai = 1

and sends these to Bob. In Step 2, for 1 ≤ i ≤ n, Bob produces e′i. If bi = 0,
then e′i is a rerandomization of the encryption ei. In this case, e′i encrypts the
same cleartext g or g−1 that ei does (even though Bob does not himself know this
cleartext). If, on the other hand, bi = 1, then Bob sets e′i to be a rerandomization
of (ci,1

−1, ci,2
−1). Assuming ki is the random value used in Alice’s encryption of

mi ∈ {g, g−1}, then:

(ci,1
−1, ci,2

−1) = ((mi · hki)−1, (gki)−1) = (mi
−1 · h−ki , g−ki).

Once rerandomized so as to use fresh randomization, this is a valid encryption
of mi

−1. Thus, if mi = g, then e′i is an encryption of g−1, and if mi = g−1, then



e′i is an encryption of g. It further follows that e′i is an encryption of g−1 if and
only if ai 6= bi. (If ai = bi, then e′i is an encryption of g.) Therefore, the number
of g−1 decryptions Alice obtains in Step 3 is the desired Hamming distance.

To show privacy, we need to demonstrate simulators S1 for Alice and S2 for
Bob. We construct S1 as follows. S1 simulates all internal coin flips of Alice as
described in the protocol. S1 simulates the message from Bob to Alice using a
randomly permuted vector of n ElGamal ciphertexts; among these n ciphertexts,
the number of encryptions of g−1 should be equal to the output of Alice; all the
remaining ciphertexts should be encryptions of g.

We construct S2 as follows. S2 simulates all internal coin flips of Bob as
described in the protocol. S2 simulates the message from Alice to Bob using n
random ElGamal ciphertexts. The computational indistinguishability immedi-
ately follows from the semantic security of the ElGamal cryptosystem under the
DDH assumption.

4.2 Privacy-Preserving Generalized Hamming Distance

In this protocol, we consider the case that A = (a1, . . . , an) and B = (b1, . . . , bn)
where each ai and each bi has a finite domain {1, ..., s} rather than a binary
domain. For these general discrete-valued ai and bi, we consider the Boolean
difference function:

diff(ai, bi) =
{

0 if ai = bi

1 otherwise.

We define the generalized Hamming distance as gdist(A, B) =
∑n

i=1 diff(ai, bi).
Our protocol for privately computing generalized Hamming distance, shown in
Figure 2. Like the Hamming distance protocol, the generalized Hamming dis-
tance protocol also relies on the ElGamal cryptosystem. In this case, we take
advantage of homomorphic properties obtained by encrypting in the exponent.
That is, we encrypt a message m by using gm as the cleartext in the ElGamal
system rather than using m.

Theorem 2. Under the DDH assumption, the protocol in Figure 2 for general
discrete-valued inputs privately computes the generalized Hamming distance in
the semi-honest model.

Proof. We begin by showing correctness. For 1 ≤ i ≤ n, for some random values
ki and `i, we have:

e′′i = (di,1
ri , di,2

ri)

=

(
c′i,1

ri

ci,1
ri

,
c′i,2

ri

ci,2
ri

)

=
(

gbi · hki

gai · h`i
,
gki

g`i

)
= (g(bi−ai) · h(ki−`i), g(ki−`i)).



Privacy-Preserving Generalized Hamming Distance Protocol

Input: Vectors A = (a1, . . . , an) and B = (b1, . . . , bn) held by Alice and Bob,
respectively, such that ai, bi ∈ {1, . . . , s} for 1 ≤ i ≤ n.

Output: Alice learns gdist(A, B).

1. For 1 ≤ i ≤ n, Alice sends E(gai) = (ci,1, ci,2) to Bob.
2. For 1 ≤ i ≤ n, Bob computes E(gbi) = (c′i,1, c′i,2) and defines e′i =

(c′i,1/ci,1, c
′
i,2/ci,2) = (di,1, di,2). Then Bob chooses a random ri and com-

putes e′′i = ((di,1)
ri , (di,2)

ri). Bob sends a random permutation of all the e′′i
to Alice.

3. Alice decrypts all received e′′i . Alice counts the total number of decryptions
whose values are not equal to 1. This number is equal to

∑n
i=1 diff(ai, bi) =

gdist(A, B).

Fig. 2. Privacy-Preserving Generalized Hamming Distance Protocol

Thus, e′′i decrypts to g(bi−ai), which is equal to 1 if and only if ai = bi. It follows
that the number Alice obtains in Step 3 of decryptions that are not equal to 1
is the desired distance.

To show privacy, we must show simulators S1 for Alice and S2 for Bob. S1

simulates all internal coin flips of Alice as described in the protocol. S1 simulates
the message from Bob to Alice using a randomly permuted vector of n ElGamal
ciphertexts. These n ciphertexts are chosen so that among these n ciphertexts,
the number of encryptions of 1 is equal to the output of Alice; the remaining
ciphertexts are encryptions of random cleartexts.

S2 simulates all internal coin flips of Bob as described in the protocol. S2

simulates the message from Alice to Bob using n random ElGamal ciphertexts.
The computational indistinguishability immediately follows from the seman-

tic security of the ElGamal cryptosystem under the DDH assumption.

4.3 Experimental Results

We implemented these privacy-preserving Hamming distance and generalized
Hamming distance protocols using the OpenSSL library in C. We carried out our
experiments on a NetBSD machine with 2GHz CPU and 512M memory, using
public keys of 1024 bits. The computation cost dominates the overall protocol, so
we measured only the computation time for Alice and Bob. (That is, we did not
measure the communication time.) We measured the computation cost of both
the Hamming distance protocol and the generalized Hamming distance protocol
on binary-valued vectors of varying lengths.

The results of our experiments are shown in Figure 3 for the Hamming dis-
tance protocol and Figure 4 for the generalized Hamming distance protocol. As
expected, the experiments demonstrate that the computation time of Alice and
Bob is linear in the vector size for both protocols. For the same length vectors,



0

5

10

15

20

25

1 2 3 4 5
Vector Size (Thousands) 

T
im

e 
(S

ec
s)

Alice Bob

Fig. 3. Performance of Privacy-Preserving Hamming Distance Protocol

0

5

10

15

20

25

1 2 3 4 5
Vector Size (Thousands)

T
im

e 
(M

in
s)

Alice Bob

Fig. 4. Performance of Privacy-Preserving Generalized Hamming Distance Protocol



the generalized Hamming distance protocol takes Bob about twice as long to
compute as the Hamming distance protocol.

5 Privacy-Preserving Model Selection

Many models have been proposed in the field of statistics, machine learning,
and data mining, including linear models, neural networks, classification and
regression trees, and kernel methods. One of the problems in data mining is how
to select which kind of model is best for a particular task in a particular setting.
Often, a human expert will make some initial judgment about which model or
models seem likely candidates for the task at hand. With or without expert
guidance, it is very common and useful to use measure the performance of a few
learned models on test data to see which performs the best. Model selection is
also useful for determining the parameters to use for a particular model, such as
the depth of a decision tree.

In the setting of privacy-preserving data mining, it is important that the
privacy that was maintained in learning data mining models is not lost in the
model selection process. As mentioned earlier, in this paper we provide a first
step towards a solution. We address a specific kind of vertical partitioning, in
which one party holds all the data except the class labels and a second party
holds all the class labels.

5.1 Problem Formulation

A database D is vertically partitioned between two parties, Alice and Bob. D
contains n records in total. Alice’s database DA consists of m non-class attributes
(V1, ..., Vm), where each Vi has a finite domain. Bob’s database DB includes only
the class attribute C.

The parties want to collaborate to select an appropriate classification model
to learn based on the combination of their databases—e.g., to decide whether to
learn decision trees or naive Bayes classifiers from their data. However, because
of privacy concerns, they do not wish to reveal their original data to each other.

Cross validation is a popular method for model selection. To carry out cross
validation in a privacy-preserving manner, it is necessary to prevent the parties
from learning anything they would not otherwise learn. In our setting, this means
that Bob should not learn the predicted class labels for various models applied to
Alice’s data, and Alice should not learn the class labels that Bob has. In addition,
candidate models should themselves be generated in a privacy-preserving way.

We present a privacy-preserving protocol for selecting a model on a database
vertically partitioned so that Bob holds only the class labels. Specifically, we
present a privacy-preserving protocol for selecting a model between decision
trees and naive Bayes classifiers. Our protocol easily extends to any kind of
classifier that can be learned in a privacy-preserving manner.

Privacy-preserving protocols for learning decision trees and for learning naive
Bayes classifiers, respectively, have been proposed by Vaidya and Clifton [31,32].



Here, we use these two protocols as “black boxes” to achieve privacy-preserving
model selection, using k-fold cross validation as an example. Our results extend
straightforwardly to any type of model selection in which the choice of model
depends only on the available data and the number of errors made by each
model. This includes other types of cross validation such as the holdout method
and leave-one-out cross validation.

In k-fold cross validation, both parties partition (their own parts of) the
original database D into k pieces. The first k − 1 pieces are training sets used
to learn the model and the remaining piece is the test set used to validate or
test the learned models. The parties learn both types of candidate model using
a privacy-preserving protocol on each of the training sets (resulting in k − 1
decision trees and k − 1 naive Bayes classifiers). They then use the training set
for estimating the classification error of each type of learned model. The type
of model (i.e., decision tree or naive Bayes classifier) that has the lowest mean
classification error over all k − 1 learned models is considered the best, and is
then learned (presumably again in a privacy-preserving manner) over the entire
dataset. To compute the mean classification error for each type of model, we show
how to compute the classification error for a single model in a privacy-preserving
manner.

5.2 Our Protocol

After multiple classification models are learned from the database D for each
of k − 1 training sets, both parties need to compute the classification error for
each model on the test set. Because Alice has all the non-class attributes, she
can classify each record by herself using the classification model which has been
learned. However, the classification error depends on the real class label which
is held by Bob.

For privacy reasons, Alice cannot send the classification results to Bob, and
Bob cannot send the actual class labels to Alice, as this would breach their
privacy. Similarly, Alice cannot send her data to Bob so that he can apply the
classifiers on her data and compare the results to the actual class labels. To
get around this, we instead compute the classification errors using a privacy-
preserving Hamming distance protocol (or its generalized version, if there are
more than two possible class labels) such as the one presented in Section 3.

Alice’s input to each instance of Hamming distance protocol is a vector A =
(a1, ..., an), where each ai is the class label predicted by Alice using the learned
classification model, where n is the number of records in the test set. Bob’s
input is a vector B = (b1, ..., bn), where each bi is the real class label. From the
resulting classification errors, Alice can determine the mean classification error
for each type of model. We summarize the entire protocol in Figure 5.



Privacy-Preserving k-fold Cross Validation

Input: A database D vertically partitioned between Alice and Bob. Bob holds
the class attribute and Alice holds all the other attributes.

Output: Alice and Bob learn the selected model for D.

1. Alice and Bob partition the database D into k pieces (k−1 training sets and
one test set).

2. Alice and Bob use privacy-preserving protocols on the k − 1 training sets to
learn k − 1 decision trees and k − 1 naive Bayes classifiers.

3. For 1 ≤ i ≤ k − 1, Alice and Bob carry out the following steps:

(a) Alice classifies her records in the test set using the ith learned decision
tree and naive Bayes classifier.

(b) Alice and Bob use the privacy-preserving Hamming distance protocol
(or generalized Hamming distance protocol, as appropriate) for Alice
to compute the classification error from the ith learned decision tree
and from the ith learned naive Bayes classifier on the test set. (That is,
comparing her results computed in Step 3a to Bob’s actual class values
in the test set.)

4. Combining the k − 1 results, Alice computes the mean classification error
for the decision tree and for the naive Bayes classifier, and announces these
results to Bob. Alice and Bob then select the type of model which has the
lower mean classification error.

Fig. 5. Privacy-Preserving Model Selection Protocol

As we have described it in Figure 5, the protocol leaks partial information
in step 3b—namely, the number of misclassified records for each model on the
test set. However, if desired, one could remove this leak by stopping all of the
generalized Hamming distance protocols before Bob sends the the final results
to Alice, and using a Yao secure two-party computation on Bob’s encryptions
and Alice’s decryption key for the parties to learn only the mean classification
error. However, this step would add substantial additional cost unless the total
number of records in the test set and total number of training sets are relatively
small.

6 Discussion

In this paper, we introduced privacy-preserving model selection. This is impor-
tant for “extending the boundary” of privacy-preserving protocols to include
steps beyond the computation of particular data mining models. By extend-
ing the boundary of what can be accomplished with efficient privacy-preserving
computation, we bring the adoption of privacy-preserving data mining closer to
practice.



Our privacy-preserving solution enables model selection via cross validation
on a database vertically partitioned between two parties. Our solution is based
on a privacy-preserving primitive for computing the Hamming distance or gener-
alized Hamming distance of two vectors, which may be of independent interest.

There are a number of interesting directions yet to be studied. Most impor-
tantly, our setting considers a very extreme case of partitioning. We argue this is
realistic in some cases, but clearly it is not applicable in all cases. Additionally, in
order to provide the greatest privacy protection during the model selection pro-
cess not only the raw data, but also the candidate models that are not selected
should be kept private, as revealing multiple models provides more information
about the data than revealing just the selected type of model does.

An attractive option, that could both allow more general vertical partitioning
and protect privacy further by not releasing the individual candidate models, is
to have the models themselves be computed in such a way that they are not
known to the individual parties, but can be used by them through yet another
protocol. To our knowledge, only a small number of privacy-preserving protocols
do this—namely, Vaidya and Clifton’s naive Bayes classifier protocol [31] and
Laur, Lipmaa and Mielikäinen’s support vector machines [24]. By using such
protocols and modifying our Hamming distance protocol to have Alice’s input
shared by Alice and Bob instead of known to Alice, it should be possible to
obtain a solution in which the parties perform model selection without revealing
the candidate models considered. This kind of solution would also be appealing
because it can maintain the privacy of the classifier results even in the case that
both parties know the real class labels.

Our proposed protocol defends against semi-honest adversaries. It is open to
extend them to efficient protocols that provide security against malicious adver-
saries. It might also be interesting to consider other distance metrics such as the
L1-distance that allow for finer granularity by considering some wrong answers
more acceptable than others. Finally, as the privacy definitions in secure mul-
tiparty computation are very strict, relaxed yet meaningful privacy definitions
that enable more practical protocols deserve further exploration.

Acknowledgments

We thank the attendees of the PinKDD’07 workshop for helpful and interesting
discussions.

References

1. D. Agrawal and C. Aggarwal. On the design and quantification of privacy preserv-
ing data mining algorithms. In Proc. of the 20th ACM SIGMOD-SIGACT-SIGART
Symposium on Principles of Database Systems, pages 247–255, 2001.

2. R. Agrawal, A. Evfimievski, and R. Srikant. Information sharing across private
databases. In Proc. of the 2003 ACM SIGMOD International Conference on Man-
agement of Data, pages 86–97, 2003.



3. R. Agrawal and R. Srikant. Privacy preserving data mining. In Proc. of the 2000
ACM SIGMOD International Conference on Management of Data, pages 439–450,
May 2000.

4. M. Atallah and W. Du. Secure multi-party computational geometry. In Proc.
of the Seventh International Workshop on Algorithms and Data Structures, pages
165–179. Springer-Verlag, 2001.

5. D. Boneh. The decision Diffie-Hellman problem. In ANTS-III, volume 1423 of
LNCS, pages 48–63, 1998.

6. D. Boneh, E. Goh, and K. Nissim. Evaluating 2-DNF formulas on ciphertexts.
In Prof. of the Second Theory of Cryptography Conference, volume 3378 of LNCS.
Springer-Verlag, 2005.

7. R. Canetti, Y. Ishai, R. Kumar, M. Reiter, R. Rubinfeld, and R. Wright. Selective
private function evaluation with applications to private statistics. In Proc. of the
20th Annual ACM Symposium on Principles of Distributed Computing, pages 293–
304, 2001.

8. W. Du and Z. Zhan. Using randomized response techniques for privacy-preserving
data mining. In Proc. of the Ninth ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, pages 505–510, 2003.

9. T. ElGamal. A public-key cryptosystem and a signature scheme based on discrete
logarithms. IEEE Transactions on Information Theory, IT-31(4), 1985.

10. A. Evfimievski, J. Gehrke, and R. Srikant. Limiting privacy breaches in privacy
preserving data mining. In Proc. of the 22nd ACM SIGMOD-SIGACT-SIGART
Symposium on Principles of Database Systems, pages 211–222, 2003.

11. A. Evfimievski, R. Srikant, R. Agrawal, and J. Gehrke. Privacy preserving mining
of association rules. In Proc. of the Eighth ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining, pages 217–228, 2002.

12. J. Feigenbaum, Y. Ishai, T. Malkin, K. Nissim, M. Strauss, and R. Wright. Secure
multiparty computation of approximations. ACM Transactions on Algorithms,
2(3):435–472, 2005.

13. M. Freedman, K. Nissim, and B. Pinkas. Efficient private matching and set inter-
section. In Advances in Cryptology – EUROCRYPT 2004, volume 3027 of LNCS,
pages 1–19. Springer-Verlag, 2004.

14. B. Goethals, S. Laur, H. Lipmaa, and T. Mielikäinen. On private scalar product
computation for privacy-preserving data mining. In Proc. of the Seventh Annual
International Conference in Information Security and Cryptology, volume 3506 of
LNCS. Springer-Verlag, 2004.

15. O. Goldreich. Foundations of Cryptography, Volume II: Basic Applications. Cam-
bridge University Press, 2004.

16. O. Goldreich, S. Micali, and A. Wigderson. How to play ANY mental game. In
Proc. of the 19th Annual ACM Conference on Theory of Computing, pages 218–
229, 1987.

17. Z. Huang, W. Du, and B. Chen. Deriving private information from randomized
data. In Proceedings of the ACM SIGMOD Conference, 2005.

18. P. Indyk and D. Woodruff. Polylogarithmic private approximations and effi-
cient matching. In Prof. of the Third Theory of Cryptography Conference, LNCS.
Springer-Verlag, 2006.

19. G. Jagannathan and R. N. Wright. Privacy-preserving distributed k-means clus-
tering over arbitrarily partitioned data. In Proc. of the 11th ACM SIGKDD In-
ternational Conference on Knowledge Discovery and Data Mining, pages 593–599,
2005.



20. G. Jagannathan and R. N. Wright. Privacy-preserving data imputation. In Proc.
of the ICDM Int. Workshop on Privacy Aspects of Data Mining, pages 535–540,
2006.

21. M. Kantarcioglu and C. Clifton. Privacy-preserving distributed mining of associa-
tion rules on horizontally partitioned data. In Proc. of the ACM SIGMOD Work-
shop on Research Issues on Data Mining and Knowledge Discovery (DMKD’02),
pages 24–31, June 2002.

22. M. Kantarcioglu and J. Vaidya. Privacy preserving naive Bayes classifier for hori-
zontally partitioned data. In IEEE Workshop on Privacy Preserving Data Mining,
2003.

23. H. Kargupta, S. Datta, Q. Wang, and K. Sivakumar. On the privacy preserving
properties of random data perturbation techniques. In The Third IEEE Interna-
tional Conference on Data Mining, 2003.

24. S. Laur, H. Lipmaa, and T. Mielikäinen. Cryptographically private support vector
machines. In Proceedings of the 12th ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, pages 618–624, 2006.

25. Y. Lindell and B. Pinkas. Privacy preserving data mining. J. Cryptology, 15(3):177–
206, 2002.

26. K. Liu, H. Kargupta, and J. Ryan. Multiplicative noise, random projection, and pri-
vacy preserving data mining from distributed multi-party data. Technical Report
TR-CS-03-24, Computer Science and Electrical Engineering Department, Univer-
sity of Maryland, Baltimore County, 2003.

27. D. Meng, K. Sivakumar, and H. Kargupta. Privacy-sensitive Bayesian network
parameter learning. In Proc. of the Fourth IEEE International Conference on
Data Mining, Brighton, UK, 2004.

28. S. Rizvi and J. Haritsa. Maintaining data privacy in association rule mining. In
Proc. of the 28th VLDB Conference, 2002.

29. J. Vaidya and C. Clifton. Privacy preserving association rule mining in vertically
partitioned data. In Proc. of the Eighth ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining, pages 639–644, 2002.

30. J. Vaidya and C. Clifton. Privacy-preserving k-means clustering over vertically
partitioned data. In Proc. of the Ninth ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining, pages 206–215, 2003.

31. J. Vaidya and C. Clifton. Privacy preserving naive Bayes classifier on vertically
partitioned data. In 2004 SIAM International Conference on Data Mining, 2004.

32. J. Vaidya and C. Clifton. Privacy-preserving decision trees over vertically parti-
tioned data. In The 19th Annual IFIP WG 11.3 Working Conference on Data and
Applications Security, 2005.

33. Z. Yang, H. Subramaniam, and R. N. Wright. Experimental analysis of a privacy-
preserving scalar product protocol. International Journal of Computer Systems
Science and Engineering, 21(1):47–52, 2006.

34. Z. Yang and R. Wright. Privacy-preserving computation of Bayesian networks on
vertically partitioned data. IEEE Transactions on Data Knowledge Engineering,
18(9), 2006.

35. A. Yao. How to generate and exchange secrets. In Proc. of the 27th IEEE Sympo-
sium on Foundations of Computer Science, pages 162–167, 1986.


