
A Practical Differentially Private Random Decision
Tree Classifier

Geetha Jagannathan
Department of Computer Science

Rutgers University
New Brunswick, NJ, USA

geetha@cs.rutgers.edu

Krishnan Pillaipakkamnatt
Department of Computer Science

Hofstra University
Hempstead, NY, USA
csckzp@hofstra.edu

Rebecca N. Wright
Department of Computer Science

Rutgers University
New Brunswick, NJ, USA

Rebecca.Wright@rutgers.edu

Abstract—In this paper, we study the problem of constructing
private classifiers using decision trees, within the framework
of differential privacy. We first construct privacy-preserving
ID3 decision trees using differentially private sum queries. Our
experiments show that for many data sets a reasonable privacy
guarantee can only be obtained via this method at a steep cost
of accuracy in predictions.

We then present a differentially private decision tree ensemble
algorithm using the random decision tree approach. We demon-
strate experimentally that our approach yields good prediction
accuracy even when the size of the datasets is small. We also
present a differentially private algorithm for the situation in
which new data is periodically appended to an existing database.
Our experiments show that our differentially private random
decision tree classifier handles data updates in a way that
maintains the same level of privacy guarantee.

Index Terms—Differential Privacy; Classifiers; Ensembles

I. INTRODUCTION

The problem of securing databases from the disclosure of
confidential information either directly from the collected data
or from the knowledge mined from the collected data has been
the subject of research for a very long time [1]. Many models
such as the perturbation model [2], the k-anonymity model [3],
[4], and the secure multiparty computation [5] (SMC) model
have been proposed for data privacy. Until recently, techniques
based on perturbation or on k-anonymity and it variants lacked
formal proofs of privacy or were applicable only in limited
settings. In the SMC setting all parties receive only the final
output without any party learning any individual entry of any
of the other parties that is not revealed by the output. But
although the computation does not reveal the inputs, SMC
does not address how much the outputs might reveal about
the inputs.

Recent work in private data analysis by Dwork et al. [6] has
radically changed the research landscape by defining a model
with a strong definition of privacy that addresses how much
privacy loss an individual might incur by being in the database.
In the most common setting under this new framework of
differential privacy, the data owner makes the data available
through a statistical database on which only aggregate queries
are permitted. The goal is to answer queries while preserving
the privacy of every individual in the database, irrespective of
any auxiliary information that may be available to the database

client.
Using existing differential privacy results, it is possible to

create high-level structures such as decision trees using multi-
ple low-level differentially private queries [7], [8]. However, a
substantial practical problem arises when high-level structures
are created this way. Specifically, if an algorithm makes a large
number m of such low-level queries, the privacy guarantee for
the high-level structure is reduced by a factor of m. Because of
this, for many databases and high-level structures, acceptable
levels of privacy in the end result via these methods can only
be obtained by sacrificing utility in the high-level structure.

In this paper, we consider the problem of constructing a
differentially private decision tree classifier. We first present
experimental evidence that creating a differentially private ID3
tree using low-level differentially private sum queries does
not simultaneously provide good privacy and good accuracy.
Specifically, we present results from the application of this
algorithm to realistic data and observe that in order to obtain
a reasonable privacy guarantee, the privacy parameter for each
individual noisy sum query needs to be fairly small. Our
experiments show that such a differentially private decision
tree gives poor prediction for many databases.

Motivated by this poor performance, we instead take an
alternative approach. Our main result is an algorithm for dif-
ferentially private ensemble classifiers. Using random decision
trees [9] our algorithm produces classifiers that have good
prediction accuracy without compromising privacy, even for
small datasets. In contrast to the privacy-preserving decision
tree construction methods presented in [10], [2], these decision
trees provide provable privacy guarantees about any individ-
ual’s contribution to the final result.

We present results from the application of our differentially
private random decision tree algorithm to both synthetic and
realistic data. Our experiments demonstrate that our approach
yields good prediction accuracy even when the size of the
datasets are relatively small. We also extend our results to
the case where databases that are periodically updated by
appending new data and show experimentally that the resulting
differentially private random decision tree classifier handles
data updates in a way that has small reductions in accuracy
while preserving the privacy guarantee.

We begin in Section II by describing the differential pri-

Appears in Proceedings of the ICDM International Workshop on the Privacy Aspects of Data Mining, 2009

vacy model in more detail and summarizing relevant existing
results. In Section III, we consider the use of low-level
differentially private sum queries to create differentially private
decision trees and motivate the necessity of considering a new
approach. In Section IV, we present an overview of random
decision trees, which form the basis of our new approach.
In Section V, we show how to construct differentially private
random decision trees, our main contribution. We also present
a procedure to update private random decision trees as data
updates are made. In Section VI, we present experimental
analysis of our differentially private random decision tree
algorithms.

II. DIFFERENTIAL PRIVACY

The ε-differential privacy model introduced by Dwork et
al. [6] assures that the removal or addition of a single item in
a database does not have a substantial impact on the output
produced by a private database access mechanism.

Let D1, . . . ,Dk denote domains, each of which could be
categorical or numeric. Our database D consists of n rows,
{x1, x2, . . . , xn}, where each xi ∈ D1 × . . . × Dk. Two
databases D1 and D2 differ in at most one element if one
is a proper subset of the other and the larger database just
contains one additional row [8].

Definition 1 ([8]): A randomized mechanism M satisfies
ε-differential privacy if for all databases D1 and D2 differing
on at most one element, and all S ∈ Range(M),

Pr[M(D1) ∈ S] ≤ exp(ε) ∗ Pr[M(D2) ∈ S] (1)

The probability is taken over the coin tosses in M.
Note that smaller values of ε correspond to higher levels of

privacy. Let f be a function on databases with range R
m . A

standard technique by which a mechanismM that computes a
noisy version of f over a database D can achieve ε-differential
privacy is to add noise from a suitably chosen distribution to
the output f (D). The magnitude of the noise added to the
output depends on the sensitivity of f , defined as follows:

Definition 2 ([8]): The global sensitivity of a function f is
the smallest number S(f) such that for all D1 and D2 which
differ on at most one element,

‖ f (D1)− f (D2) ‖1≤ S(f) (2)

Let Lap(λ) denote the Laplacian distribution with mean
0 and standard deviation

√
2λ. The following theorems are

proven in [6], [11].
Theorem 1 ([6]): Let f be a function on databases with

range Rm . Then, the mechanism that outputs f (D) +
(Y1, . . . , Ym), where Yi are drawn i.i.d from Lap(S(f)/ε),
achieves ε-differential privacy.
Using this method smaller values of ε imply that more noise
is added when query results are returned.

Theorem 2 ([11]): The sequential application of mecha-
nisms Mi, each giving εi-differential privacy, gives

∑
i εi-

differential privacy.
Theorem 2 implies that differential privacy is robust under
composition, but with an additive loss of privacy for each
query made.

Data set # rows # queries Accuracy Accuracy
orig. ID3 Private

Nursery 12960 176 98.19% 18.73%
Cong. Votes 435 97 94.48% 2.53%
Mushroom 8124 267 100% 1.48%

TABLE I
IMPLEMENTING A PRIVACY-PRESERVING VERSION OF ID3 USING

LOW-LEVEL DIFFERENTIALLY PRIVATE QUERIES PRODUCES VERY POOR

ACCURACY ON MANY WIDELY USED DATA SETS.

III. ID3 TREES FOR PRIVATE SUM QUERIES

Most of the work in the differential privacy framework
addresses the problem of issuing noisy answers to low-level
queries. These low-level queries, such as count queries, can be
used in the construction of differentially private data mining
algorithms such as for decision trees [7]. However, a sub-
stantial practical problem arises when higher level structures
are created using low-level queries as described in [7]. By
Theorem 2, if an algorithm makes q such queries each with
a privacy parameter ε, the overall privacy guarantee of the
structure is ε′ = qε. In practice, for ε′ to be reasonable,
one must choose ε to be fairly small, which increases the
amount of noise added to each low-level query. This can have
a significant negative impact on the utility of the high-level
structure the user wants to compute.

In this paper, we study the resulting utility and privacy
that occurs when low-level noisy queries are used to construct
high-level structures. We first examine the construction of dif-
ferentially private ID3 decision trees using noisy sum queries
as in [7]. In order to obtain an acceptable privacy guarantee in
the final tree, the privacy parameter needs to be fairly small in
each noisy sum query used in the computation of information
gain. This requires a large amount of noise to be added to each
query result, effectively destroying the correlation between the
attributes in the database. As we observe experimentally, the
resulting tree has poor accuracy.

We implemented the private ID3 algorithm and ran our
experiments on three datasets from the UCI Machine Learning
Repository [12]—namely the Nursery dataset, the Congres-
sional Voting Records dataset and the Mushroom dataset.
Accuracy results are given in Table I, which is the percentage
of test instances that were classified correctly. (In these cases,
the vast majority of the test instances were left unclassified by
the trees created, though some instances were also misclassi-
fied.) In all of these datasets, the overall privacy parameter
of the ID3 tree is set to ε′ = 1. The privacy parameter ε for
each noisy sum query is given by ε ′/q , where q is the number
of queries made. For example, in the case of the Mushroom
dataset, the value of ε for each noisy query is approximately
0.0037. As can be seen from Table I, for all three datasets the
resulting private ID3 algorithm has poor utility.

To overcome this poor performance, we take a different
approach. We construct a differentially private ensemble clas-
sifier using the approach of random decision trees [9]. Instead
of adding noise to each of the queries made, this approach
computes the entire decision tree and adds noise at the end

2

to the leaves. We show that this gives good utility without
compromising privacy. We describe this method in detail in
Section V after first introducing random decision trees.

IV. RANDOM DECISION TREES: AN OVERVIEW

In most machine learning algorithms, the best approxima-
tion to the target function is assumed to be the “simplest”
classifier that fits the given data, since more complex models
tend to overfit the training data and generalize poorly. En-
semble methods such as Boosting and Bagging [13] combine
multiple “base” classifiers to obtain new classifiers. It has been
observed that ensemble methods can have significantly lower
generalization error than any of the base classifiers on which
they are based [13]. The base classifiers used in ensemble
methods are usually “conventional” classifiers such as decision
trees produced by C4.5, which are computationally expensive.
The final step of combining these base classifiers can also be
computationally intensive.

However, Fan et al. [9] argue that neither of these steps
(creating the classifiers and combining them) need be compu-
tationally burdensome to obtain classifiers with good perfor-
mance. They present a fast and scalable ensemble method that
performs better than the base classifiers, and frequently as well
as the well-known ensemble classifiers. Counterintuitively,
their ensemble classifier uses base classifiers that are created
from randomly chosen decision trees, in which attributes for
decision tree nodes are chosen at random instead of using
a carefully defined criterion. The structure of the decision
tree (that is, which attributes are in which internal nodes
of the decision tree) is determined even before any data is
examined. Data is then examined to modify and label the
random tree. The end result based on creating an ensemble
of random decision trees is an algorithm that scales well for
large databases.

The algorithm to build a single random decision tree is
shown in Figure 1. The algorithm as presented works only
for categorical attributes, though it can easily be extended to
continuous-valued attributes by choosing random thresholds
for the chosen attribute. The algorithm recursively creates the
structure of the tree (BuildTreeStructure), and then updates
the statistics (UpdateStatistics, AddInstance) at the leaves by
“filtering” each training instance through the tree. Each leaf
node of the tree holds T counters, α[1], . . . , α[T], where T
is the number of possible labels for training instances. After
all the examples have been incorporated into the tree, the
algorithm prunes away all internal and leaf nodes that did not
encounter any of the examples in the training set. The running
time of the algorithm is linear in the size of the database.

The random decision tree classifier is an ensemble of such
random decision trees. When a test instance needs to be
classified, the posterior probability is output as the weighted
sum of the the probability outputs from the individual trees
(see Figure 2).

There are two important parameters to be chosen when
using this ensemble method, namely (i) the height h of each
random tree, and (ii) the number N of base classifiers. Using

Algorithm Random Decision Tree (RDT)
Input: D , the training set, and

X , the set of attributes.
Output: A random decision tree R

R = BuildTreeStructure(X)
UpdateStatistics(R, D)
Prune subtrees with zero counts
return R

Subroutine BuildTreeStructure(X)

if X = Φ then
return a leaf node

else
Randomly choose an attribute F as testing attribute
Create an internal node r with F as the attribute
Assume F has m valid values
for i = 1 to m do

ci = BuildTreeStructure(X − {F})
Add ci as a child of r

end for
end if
return r

Subroutine UpdateStatistics(r, D)

for each x in D do
AddInstance(r, x)

end for

Subroutine AddInstance(r, x)

if r is not a leaf node then
Let F be the attribute in r
Let c represent the child of r that corresponds to the value
of F in x
AddInstance(c, x)

else
/* r is a leaf node */
Let t be the label of x
Let α[t] = # of t-labeled rows that reach r
α[t]← α[t] + 1

end if

Fig. 1. Random Decision Tree Algorithm

simple combinatorial reasoning, Fan et al. [9] suggest that a
good choice for the height is h = m/2, where m denotes the
number of attributes. They also find that a value for N as low
as 10 gives good results.

The advantage of creating a random tree is its training
efficiency as well as its minimal memory requirements. The
algorithm uses only one pass over the data to create a random
decision tree. In a series of papers, Fan et al. [14], [15] show
that the random decision tree algorithm is simple, efficient
and accurate. They surmise that the reason for the superiority

3

Algorithm Classify
Input: {R1, . . . ,RN}, an ensemble of RDTs, and

x, the row to be classified.
Output: Probabilities for all possible labels

For a tree Ri, let �i be the leaf node reached by x
Let αi[t] represent the count for label t in �i

P (t|x) =
N∑

i=1

αi[t]/

(∑
τ

N∑
i=1

αi[τ]

)
return probabilities for all t

Fig. 2. Computing the probability for each possible label for a test instance

of their ensemble method is that it optimally approximates
for each example its true probability of being a member of a
given class—that is, the random decision tree ensembles form
efficient implementations of Bayes Optimal Classifiers.

V. DIFFERENTIALLY PRIVATE RANDOM DECISION TREES

As was discussed in Section IV, the structure of a random
decision tree is created without examining the data. Only the
counters in the leaves of the tree depend on the input database.
This makes the random decision tree algorithm a potentially
good candidate for a differentially private mechanism. How-
ever, the given randomized decision tree algorithm does not
satisfy the requirements of differential privacy because of the
way the pruning step is carried out, as demonstrated by the
following counterexample. Consider the databases D1 and D2

(that differ in at most one element) in Figure 3, shown along
with an initially-empty randomly generated tree structure. The
trees R1 and R2 that result from the deterministic steps of
UpdateStatistics and pruning are shown in Figure 4. The
probability of the tree R1 being generated from database D2

is zero.
In this section, we present a modified form of the algorithm

which does satisfy ε-differential privacy.

A. Private Random Decision Tree Algorithm

We now present an algorithm for creating a differentially
private random decision tree. It is a modification of the original
random decision tree algorithm. We begin by eliminating the
pruning step that removes “empty” tree nodes. The algorithm
thus creates a tree in which all of the leaves are at the
same level. The leaf nodes of a random decision tree, then,
effectively form a leaf vector V of MT integers, where M
is the number of leaf nodes and T is the number of possible
labels for instances in the training data. This vector of “counts”
is updated by the UpdateStatistics function. Effectively, re-
leasing a random decision tree amounts to (i) releasing the
structure of the tree followed by (ii) this vector of counts.
Since the attributes in the tree nodes are chosen completely
at random (even before the data is examined), the structure
contains no information about the data. (This is unlike in
conventional decision trees such as ID3, where the presence
of an attribute in the root indicates its relative predictive

capability.) As we show below in Theorem 3, the leaf vector
has a global sensitivity of 1. (Recall that global sensitivity
is defined in Section II.) It follows from Theorem 1 that
adding Lap(1

ε) noise to each component of V and releasing the
resulting noisy vector satisfies ε-differential privacy. Note that
the values in the leaf vector will no longer be integer counts.
The resulting algorithm, shown in Figure 5, produces a single
differentially private random decision tree. The data owner
releases an ensemble of differentally private random decision
trees obtained by repeated application of this algorithm.

Theorem 3: The Private-RDT algorithm is ε-differentially
private.

Proof (sketch): Let A denote the Private-RDT algorithm.
For a tree R, we denote the noisy leaf vector of R by λ(R).

Consider a fixed random decision tree structure into which
no examples have yet been incorporated. Let D1 and D2 be
two databases differing in at most one element that generate
leaf vectors V1 and V2 respectively on the tree (before noise
is added). The global sensitivity for the leaf vector of that tree
is 1, because V1 and V2 must differ in exactly one component
by a value of 1.

We need to show that for any tree R the ratio P (A(D1)=R)
P (A(D2)=R) is

bounded from above by eε. Since the structure of the random
decision tree is generated even before the data is examined,
it suffices for us to show that P (λ(A(D1))=V)

P (λ(A(D2))=V) is bounded by
eε, for any leaf vector V . This immediately follows from
Theorem 1, taken with the facts that the sensitivity of the
noiseless leaf vectors is 1 and the noise added is Lap(1/ε).

B. Updating Random Decision Trees

The Private-RDT algorithm assumes that all data is avail-
able at one go. In the real world data usually arrives in batches.
We consider a situation where data is periodically appended to
an existing database. A classifier built on the combined data is
likely to be preferred to a classifier built on the new data alone.
This kind of incremental learning is frequently a challenging
problem, even when privacy is not an issue. The solution of
rebuilding a classifier from scratch can be a time consuming
proposition for large datasets.

In the context of differential privacy, a second problem
arises. In order to make use of the composition theorem, the
updated classifier must provide a lower privacy guarantee than
the initial classifier does. Subsequent updates will worsen the
privacy guarantee even further. In this section, we show how
private random decision trees can handle data updates is a way
that does not lower the privacy guarantee. The tradeoff is a
marginal reduction in prediction accuracy when compared with
building a random decision tree directly from the combined
data.

Let D1 and D2, respectively, represent the old and the new
instances of the database. Let r1 be a private random decision
tree built using D1. We present here some possible approaches
to update r1 to include D2, and associated problems:

• One possible option is to incorporate the instances of D2

into r1 and then re-release this updated r1. However, this

4

A B C D E class
1 0 1 0 0 T
0 0 1 0 0 F
1 0 0 0 0 T
0 1 0 0 1 F
1 1 1 0 0 T
1 1 1 0 1 F
1 0 1 0 1 T
0 0 1 1 0 T

A B C D E class
1 0 1 0 0 T
0 0 1 0 0 F
1 0 0 0 0 T
0 1 0 0 1 F
1 1 1 0 0 T
1 1 1 0 1 F
1 0 1 0 1 T

D

B C

E A B E

D1 D2 Tree structure

Fig. 3. RDT Algorithm is not private: Example databases that differ in at most one element and randomly generated tree structure

0 0 0

0 0

B C

E A E

D

2 1 1 0 0 1 1 1 1

0

1 1

B

E A

D

2 1 1 0 0 1

0

R1 R2

Fig. 4. RDT Algorithm is not private: Final trees for D1 and D2

can result in a breach of privacy.
• A second option is to clear out the leaf vector for r1, and

then run UpdateStatistics with D1∪D2. Then add Lap(1/ε)
noise to the leaf vector. By the composition theorem, the
resulting private random decision tree will have a privacy
guarantee of 2ε. In general, k such updates will raise the
privacy parameter to kε.
• A third option is to build a new random decision tree from

scratch using D1 ∪ D2, and then add noise to the leaf
vector. As before, the private guarantee erodes to 2ε. For
example, if the Private-RDT algorithm was run twice with
a parameter of ε = 0.5, once with the old data alone, and
once with the union of the old and new data, the final privacy
guarantee would be ε = 1.

We can avoid these privacy related issues using the following
procedure:

1) Create a clone r′1 of r1 and clear out the leaf vector.
2) Use UpdateStatistics to insert the rows of D2 into r′1.
3) Add Laplacian noise to the leaf vector of r ′

1.
4) Add the leaf vector of r ′

1 to the leaf vector of r1 and
release this updated random decision tree.

Since the leaf vector of r′1 is based on D2 alone, and not
on any instance of D1, the updated random decision tree
continues to satisfy the privacy parameter of ε. We present
experiments in Section VI to show that the accuracy of r1

is not substantially reduced after a single update. After a
few iterations, the accuracy of the the random decision tree
ensemble will be reduced. At that stage, one could build a

new ensemble from scratch and then return to more efficient
updates.

VI. EXPERIMENTS

In this section, we present our experimental results that
show that the private random decision tree algorithm achieves
good utility in terms of prediction accuracy. We ran two sets
of experiments. First, we ran experiments to measure the
accuracy of private random decision tree ensembles for various
values of the privacy parameter ε. Second, we ran experiments
to observe the change in the accuracy of random decision
tree ensembles when there are batch updates to the data. We
implemented our algorithms in Java using the Weka machine
learning framework [16].

A. Accuracy of Private Random Decision Tree Ensembles

The experiments were run on data sets available from the
UCI Machine Learning Repository [12] and from synthetic
data that we generated. We restricted ourselves to data sets
with only categorical attributes, although extending the imple-
mentation to continuous attributes should only take a small
amount of additional effort.

Experimental Setup: As noted by Dwork [8], the tech-
nique of obtaining differential privacy by adding noise propor-
tional to S(f)

ε yields accurate results only when large data sets
are used. For example, consider a histogram query, for which
S(f) = 1. If the privacy parameter ε is set to 0.01, the standard
deviation for the Laplacian noise added to each component of
the output would be approximately 141, assuming only a single

5

query is made. If q such queries are expected to be made then
to use the composition theorem to obtain the same privacy
guarantee ε the noise added to each query result should be
approximately 141q. If a data set contains only a few hundred
or a few thousand rows, this amount of noise would completely
overwhelm the underlying “signal.” Since our largest realistic
data set contains no more than 13,000 rows, and our largest
synthetic data set contains only 16,000 rows, we used larger
values of ε, namely 0.5, 0.75 and 1. As ε decreases, the amount
of noise to be added must increase, resulting in a decrease in
prediction accuracy. The particular choice of ε is specific to
the application and will be decided by the data owner based
on the utility/privacy requirements.

Another important parameter to consider is the number of
trees in the ensemble. In the non-private version of random
decision trees, increasing the number of trees in the ensemble
increases the accuracy of predictions. Our experiments indicate
that, for our data sets, using as few as five decision trees in an
ensemble produces acceptable accuracy on average, although
the variance in accuracy between runs is higher than when
using more trees. An ensemble with 10 or more trees has better
accuracy on average, with lower variance. On the other hand,
since one count query is required per random decision tree,
creating q trees implies that the per-query privacy parameter
needs to be set to ε

q . This increases the amount of noise
added per query, which negatively impacts prediction accuracy.
Again, the size of the data set matters. The Congressional
Voting Records data set has only 435 rows. Increasing the
number of trees beyond five yielded poor results. For the
other data sets, we set the number of trees to 10. Finally, our
experiments indicate that setting the height of the generated
random trees to k/2, where k is the number of attributes, is
not always optimal.

We performed our experiments on three data sets from
the UCI Machine Learning Repository, namely the Nursery,
Mushroom and Congressional Voting Records data sets
and on three synthetic data sets. Each synthetic data set was
generated from a handmade Boolean decision tree. One of
these trees is presented in Figure 12. We added noise to these
data sets by flipping each class label with a probability of 0.05
to make these synthetic data sets more realistic. (This has no
bearing on privacy.) See Table II for data characteristics.

To get a sense of the variation of the prediction accuracies,
we present in each case the average prediction accuracy and
the maximum accuracy over 10 runs of private ensembles
of 10 random decision trees (with the exception of the
Congressional Voting Records data set), for each value
of ε ∈ {0.5, 0.75, 1}. For comparison, we also show the
average prediction accuracy of a non-private implementation
of random decision trees (we set ε to ∞ and the tree is not
pruned). Prediction accuracy is based on the stratified cross-
validation technique available in Weka. We removed from the
Mushroom database the attribute that has missing entries.
In the Congressional Voting Records database, we replaced
each missing vote with the majority vote for that bill. We did
not compare our results with the standard random decision tree

Algorithm Private-RDT
Input: D , the training set, and

X , the set of attributes.
Output: A random decision tree R

R = BuildTreeStructure(X)
UpdateStatistics(R, D)
Add Lap(1

ε) to each component of the leaf vector.
return R

Fig. 5. Privacy-Preserving RDT Algorithm

Data set # attribs # rows # Class labels
Nursery 8 12960 3
Mushroom 22 8124 2
Cong. Votes 16 435 2
Set 1 10 16000 2
Set 2 6 14000 2
Set 3 7 14000 2

TABLE II
EXPERIMENTAL DATA CHARACTERISTICS

ensemble algorithm with pruning. In a non-private setting, the
data owner can release an ensemble with maximal accuracy.
But such a release would leak information. In our setting, the
data owner releases a random ensemble of random decision
trees.

Results: We present in Figures 6, 7 and 8 the results
of our experiments on the Nursery, Mushroom and Con-
gressional Voting Records data sets. Figures 9, 10 and 11
present the results of our experiments on three synthetic data
sets. In almost all experiments on the Private-RDT algorithm,
whether on realistic data from the UCI Repository or on
synthetic data, we see that lower values of ε generally result in
lowered average accuracy of predictions. This is as expected,
since the amount of noise added is inversely proportional to
ε. However, the drop in average accuracy is gradual and not
precipitous.

For the three data sets from the UCI Repository, the reduc-
tion in accuracy from ε = ∞ to ε = 1, though noticeable, is
not substantial. The Mushroom data set appears to be the least
affected by the addition of noise, while the Congressional
Voting Records data set appears to be the most sensitive. The
latter can be partly explained by the smaller size of the data
set.

For the three synthetic data sets, just as is the case of the
data sets from the UCI repository, there is a gradual reduction
in accuracy with the decrease in ε. However, in two of these
synthetic data sets, the reduction in average accuracy from the
noiseless runs (ε =∞) to the ones with noise added is a little
more steep. Also, there appears to be a larger variance in the
maximum accuracy compared to the UCI data sets.

Overall, as each of these figures show, the private random
decision tree ensemble algorithm has good accuracy, even for
relatively small data sets.

6

80

82

84

86

88

90

92

94

Infinity 1 .75 .5

Epsilon

A
cc

u
ra

cy

Average Maximum

Fig. 6. Accuracy on the Nursery data set from the UCI Repository. Displayed
are the average and maximum accuracy for ε ∈ {0.5, 0.75, 1,∞}.

80

82

84

86

88

90

92

94

96

98

100

Infinity 1 0.75 0.5

Epsilon

A
cc

u
ra

cy

Average Maximum

Fig. 7. Accuracy on the Mushroom data set from the UCI Repository.

80

82

84

86

88

90

92

94

Infinity 1 0.75 0.5

Epsilon

A
cc

u
ra

cy

Average Maximum

Fig. 8. Accuracy on the Congressional Voting Records data set from the
UCI Repository.

80

82

84

86

88

90

92

94

Infinity 1 0.75 0.5

Epsilon

A
cc

u
ra

cy

Average Maximum

Fig. 9. Accuracy on synthetic data set 1. The decision tree for this data set
(not shown) has 10 attributes.

80

82

84

86

88

90

92

94

96

98

Infinity 1 0.75 0.5

Epsilon

A
cc

u
ra

cy

Average Maximum

Fig. 10. Accuracy on synthetic data set 2. See Figure 12 for underlying
decision tree.

80

82

84

86

88

90

92

94

Infinity 1 0.75 0.5

Epsilon

A
cc

u
ra

cy

Average Maximum

Fig. 11. Accuracy on synthetic data set 3. The decision tree for this data set
(not shown) has 7 attributes.

B. Updating Random Decision Trees

We ran the algorithm presented in Section V-B on each
of the large data sets from the earlier experiments. We split
each data set into two equal halves. The first half was used
as D1 and the second as D2. We present the results obtained
on Nursery, Mushroom and on the synthetic data set 1 in
Figures 13, 14 and 15 respectively. In each case we compare
the accuracy of the ensemble produced by the update algorithm
to the ensemble produced by Private-RDT on the union of old
and new data.

Our experiments on the private random decision tree update
algorithm also show that there is a gradual reduction in
accuracy with decreasing values of ε. More importantly, the
difference in accuracy between this algorithm and the Private-
RDT algorithm run on the union of old and new data is low.

The value of ε for the Private-RDT algorithm run on the
union of old and new data would be twice the value displayed
in Figures 13–15 because of Theorem 2 (assuming that the
curator had previously released an ensemble based on the old
data alone). For example, if the Private-RDT algorithm was
run twice with ε = 0.5, once with the old data alone, and
once with the union of the old and new data, the final privacy
guarantee would be ε = 1. Therefore, to get a fair comparison,
one should compare the results for ε = 1 for the private
random decision tree update algorithm against ε = 0.5 for
the Private-RDT algorithm on the unioned data. The results
from the experiments run on the private random decision tree
updating algorithm indicate that the algorithm substantially
preserves accuracy with the released trees retaining their

7

4

F

T

T F

T

F F

2

3

5

0

1

Fig. 12. The decision tree used to generate synthetic data set 2.

78

80

82

84

86

88

90

92

Infinity 1 0.75 0.5

Epsilon

A
cc

u
ra

cy

Batch Union

Fig. 13. Performance of the update algorithm on the Nursery data set.

original (pre-update) levels of privacy.

ACKNOWLEDGMENTS

We wish to thank the anonymous referees for their valuable
comments. Geetha Jagannathan and Rebecca N. Wright were
funded by NSF grant CCR-0331584.

REFERENCES

[1] N. R. Adam and J. C. Worthmann, “Security-control methods for
statistical databases: A comparative study,” ACM Comput. Surv., vol. 21,
no. 4, pp. 515–556, 1989.

80

82

84

86

88

90

92

94

96

98

Infinity 1 0.75 0.5

Epsilon

A
cc

u
ra

cy

Batch Union

Fig. 14. Performance of the update algorithm on the Mushroom data set.

0

10

20

30

40

50

60

70

80

90

100

Infinity 1 0.75 0.5

Epsilon

A
cc

u
ra

cy

Batch Union

Fig. 15. Performance of the update algorithm on synthetic data set 1.

[2] R. Agrawal and R. Srikant, “Privacy-preserving data mining,” in ACM
SIGMOD, May 2000, pp. 439–450.

[3] P. Samarati, “Protecting respondents’ identities in microdata release,”
IEEE Trans. Knowl and Data Engng., vol. 13, pp. 1010–1027, 2001.

[4] L. Sweeney, “k-anonymity: a model for protecting privacy,” Int. J.
Uncertain. Fuzziness Knowl.-Based Syst., vol. 10, no. 5, pp. 557–570,
2002.

[5] O. Goldreich, Foundations of Cryptography: Volume 2, Basic Applica-
tions. New York, NY, USA: Cambridge University Press, 2004.

[6] C. Dwork, F. Mcsherry, K. Nissim, and A. Smith, “Calibrating noise to
sensitivity in private data analysis,” in TCC ’06, 2006, pp. 265–284.

[7] A. Blum, C. Dwork, F. McSherry, and K. Nissim, “Practical privacy:
The sulq framework,” in PODS ’05, 2005, pp. 128–138.

[8] C. Dwork, “Differential privacy: A survey of results,” in TAMC, 2008,
pp. 1–19.

[9] W. Fan, H. Wang, P. Yu, and S. Ma, “Is random model better? on its
accuracy and efficiency,” in ICDM ’03, 2003, p. 51.

[10] Y. Lindell and B. Pinkas, “Privacy preserving data mining,” J. Cryptol.,
vol. 15, no. 3, pp. 177–206, 2002.

[11] F. McSherry and K. Talwar, “Mechanism design via differential privacy,”
in FOCS ’07, 2007, pp. 94–103.

[12] A. Asuncion and D. Newman, “UCI ma-
chine learning repository,” 2007. [Online]. Available:
http://www.ics.uci.edu/∼mlearn/MLRepository.html

[13] R. E. Schapire, Y. Freund, P. Bartlett, and W. S. Lee, “Boosting the
margin: A New Explanation for the Effectiveness of Voting Methods,”
The Annals of Statistics, vol. 26, no. 5, pp. 1651–1686, 1998.

[14] W. Fan, “On the optimality of probability estimation by random decision
trees,” in AAAI, 2004, pp. 336–341.

[15] W. Fan, E. Greengrass, J. McCloskey, P. Yu, and K. Drummey, “Ef-
fective estimation of posterior probabilities: Explaining the accuracy of
randomized decision tree approaches,” pp. 154–161, 2005.

[16] I. H. Witten and E. Frank, Data Mining: Practical Machine Learning
Tools and Techniques. Morgan Kaufmann, 2005.

8

