
Private Inference Control For Aggregate Database Queries∗

Geetha Jagannathan
Rutgers University

Piscataway, NJ, 08854, USA
geetha@eden.rutgers.edu

Rebecca N. Wright
Rutgers University

Piscataway, NJ, 08854, USA
Rebecca.Wright@rutgers.edu

Abstract

We study private inference control for aggregate queries,
such as those provided by statistical databases or modern
database languages, to a database in a way that satisfies
privacy requirements and inference control requirements.
For each query, the client learns the value of the function
for that query if and only if the query passes a specified in-
ference control rule. The server learns nothing about the
queries, and the client learns nothing other than the query
output for passing queries. We present general protocols for
aggregate queries with private inference control.

1 Introduction

The problem of inference control has been widely stud-
ied in regular databases and in statistical databases [6, 4].
Statistical databases are particularly vulnerable to these
kinds of attacks. Inference control techniques in statisti-
cal databases include mechanisms such as controlling query
overlap, restricting the query size, and data perturbation [1].
Our work uses inference control rules based on controlling
query overlap.

Until the recent work of Woodruff and Staddon [11],
previous work on inference control assumed the database
server knew what queries were being made and retained
this information to use in deciding whether to allow future
queries. Our work generalizes Woodruff and Staddon’s no-
tion of private inference control from applying to queries
of individual elements to applying to aggregate queries. To
distinguish our work from theirs, we refer to our solutions
as aggregate private inference control protocols (APIC).

The notion ofpriced oblivious transferintroduced by
Aiello et al. [2] addresses certain kinds of inference con-
trol, but not in a general context as in [11]. Kenthapadi et
al. [8] define the notion ofsimulatable auditing, in which

∗This work was supported by the National Science Foundation under
Grant No. CCR-0331584.

query denials provably do not leak information. However,
in this work the queries are seen by the server and hence the
client’s privacy is not met. The inference control rules used
in our paper depend only on the query pattern, not on the
query results, and therefore meet the requirements of being
simulatable and leak-free.

In this paper, we introduce private inference control to
statistical databases, which applies inference control poli-
cies to aggregate queries in a privacy-preserving manner. In
our work, a client wants to interact with a database server to
compute an aggregate query represented by a functionf ap-
plied to some of the items in the database. These queries are
subject to an inference control rule that determines whether
a given query is allowed. The client performs a sequence of
such queries. For each query, the client learns the value of
the function for that query if and only if the query passes the
inference control rule. The server learns nothing about the
queries, and the client learns nothing other than the value of
the function.

1.1 Our Contributions

In this paper, we present private inference control tech-
niques for database queries over multiple elements. Our
contributions can be summarized as follows:

• We present a private inference control protocol for aggre-
gate queries. The server holds a databasex = x1, . . . , xn

and the client queries the database to compute the func-
tion f(xi1 , . . . , xik

). At the end of the protocol, the
client receivesf(xi1 , . . . , xik

) if the query(i1, . . . , ik)
passes the inference control rule. Otherwise, the client
receives an arbitrary value. In any case, the server learns
nothing about the queries themselves, including whether
the query was allowed or disallowed. (Section 3.1).

• We present an alternate protocol that is more efficient for
the case that the queries involve more indices, but there
are fewer queries. (Section 3.2).

• We also present an APIC protocol that is efficient when
there are more queries (Section 3.3).

In Proceedings of the Seventh IEEE International Conference on Data Mining – Workshops (International Workshop on
Privacy Aspects of Data Mining), 2007.

2 Preliminaries

2.1 Our Model

In our setting, a server holds the databasex =
x1, . . . , xn and the client queries the database. Each query
is specified by a set of indicesI = (i1, . . . , ik); the client
wishes to compute the functionf(xi1 , . . . , xik

), which we
also denote byf(xI). We assume every query hask in-
dices; our solutions can be modified to work with different
numbers of indices for different queries. We assume both
parties know the functionf ; it is possible to avoid the server
knowingf by using a universal circuit. We also assumek
is known to both parties. The server should not learn any-
thing about the client’s queries. The client should learn no
more than the output of the function evaluated at the in-
dices chosen by it, and it should only learn this output if its
queries pass the inference control rule. The server should
not learn whether a client’s query has passed the inference
control rule. These requirements take the form of semantic
security, so no partial information beyond the specified out-
puts should be revealed. Specifically, our private inference
control protocol should satisfy the following requirements,
defined relative to a specifiedinference control rule.

Correctness When the client and the server follow the
protocol, the client obtainsf(xI) if I satisfies the inference
control rule.

Client Privacy The server should not learn anything
about the client’s queries, including whether or not each
passes the inference control rule. Formally, there exists a
simulator that produces an output distribution which is com-
putationally indistinguishable from the server’s view.

Server Privacy The server’s privacy includes:

• Database Privacy: For each queryI that passes the
inference control rule, the client learns onlyf(xI) and
nothing else.

• Private Inference Control: For each queryI that does
not pass the inference control rule, the client receives an
arbitrary value1.

We note that these requirement imply that the server
must apply the inference control rule on the queries without
actually knowing the client’s queries or learning whether
each query passes.

Inference Control Rule The inference control rule we
consider (in Section 3) requires that when the client makes
multiple queries, the set of input indices in the current query

1We note that if the inference control rule is public and dependent only
on the indices of all the queries, then the client knows which queries are al-
lowed and disallowed, and therefore can avoid ever confusing an arbitrary
value with a real response.

should not intersect with any of the input indices of previous
queries. Because this rule is overly restrictive, we also con-
sider a relaxed version of this inference control rule which
requires that the cardinality of the intersection of the queries
be less than some threshold valuet. Due to lack of space we
leave this generalization to the full version of the paper.

2.2 Cryptographic Primitives

Symmetric private information retrieval (SPIR) [7, 9] is a
primitive that allows a user to retrieve a bitxi from a server
which holds an arrayx1, . . . , xn of n bits, without revealing
anything abouti to the server and the client does not learn
anything beyond the query result. In our paper, we use a
generalized version of SPIR in whichk items are retrieved
from a database ofn items where each item is of length`
bits.

We also make use of Secure multiparty computation
(SMC) [12, 3] in which n playersP1, P2, . . . , Pn who
hold secretsx1, . . . , xn, respectively, wish to evaluate a
functionf(x1, . . . , xn) without divulging any information
about their inputs to any other party. At the end of the pro-
tocol, they each learn nothing other than what could have
been learned had been a trusted third party used. In most
solutions, the communication complexity is at least linear in
size of the circuit, which is usually high for most practical
functions. In our paper, we use SMC protocol for inputs of
smaller size. We also use semantically secure additively ho-
momorphic encryption, (e.g., [10]), and non-malleable en-
cryption schemes [5] that are semantically secure encryp-
tion schemes with the additional property that given a ci-
phertext it is impossible to create another ciphertext dif-
ferent from the given one such that the two corresponding
plaintexts are related.

3 Private Inference Control for Aggregate
Queries

In this section, we present protocols that enforce infer-
ence control while processing queries for statistical infor-
mation in databases. We assume that each query involvesk
indices, all of which are distinct. (This could be enforced
rather than assumed, at an additional cost of efficiency.)
The protocols in this section enforce the following infer-
ence control rule on each of the client’s queries: the set of
indices in the current query should not intersect with any of
the sets of indices used in previous queries. We denote byf
a function (such as the sum or average) that the client wants
to evaluate in his query. We make use of general secure
multiparty computation as part of our solution. The APIC
protocols presented in this section have four phases:

2

1. Query generation phase:In this phase, the client sends
his query to the server. Since he does not want the server to
know the indices in the query, they are sent in a “masked”
form.

2. Inference control phase: In this phase, the server
chooses a secret valueV and masks it in such a way that
the client can retrieveV if and only if the query satisfies
the inference control rule.

3. Query processing phase:This has two sub-phases:

•Input selection phase:The client and the server ob-
tain a simple secret-sharing ofxI .

•Secure multiparty computation phase: The client
and the server use their shares of the input computed
in the input selection phase along with the secret
valueV chosen by the server to compute the func-
tion g(xI , V) = f(xI) + V . This is done using the
secure multiparty protocol given in [3]. The client
receives the value of the functiong(xI , V) and the
server receives no output.

This phase is similar to the SPFE solution presented in [3],
with the added feature of private inference control.

4. Answer construction phase:The client computesV ,
and hencef(xI). The client can compute the secret value
V if and only if the query passes the inference control rule.
The server does not learn whether the client’s query has
passed or failed the inference control rule.

The structure of the protocol is to first determine whether
the client’s query passes the inference control rule, and then
to process the query. Given that the server does not know
the client’s queries, a naive way of doing this would allow
a cheating client to use one query to pass the inference con-
trol rule but a different (and possibly disallowed) query to
retrieve values from the database. To avoid this, our proto-
col ensures that in such a situation, at the end of the input
selection phase, the shares obtained by the client and the
server do not add up toxI , but instead to an arbitrary vector
that is independent of the contents of database and unknown
to the client. Hence, in this case, the output of the client in
the second phase isf(rI) for some arbitraryrI . We present
three different APIC protocols in Sections 3.1, 3.2 and 3.3.
We present a comparison between the costs of the three pro-
tocols in Section 3.4.

The protocols in this section can be extended to more
relaxed inference control rules in which the cardinality of
the intersection of the queries may be non-zero (as long as
it does not exceed some threshold value). Also, it is possi-
ble to write specialized protocols for the SUM and COUNT
functions without the use of the general circuit evaluation
step. These results have been omitted from this paper due
to insufficient space.

3.1 The First Protocol

In our solution (Figure 1), the client and the server agree
on a homomorphic encryption scheme. At the beginning of
the protocol, the client chooses a public/secret key pair for
the chosen encryption scheme and sends the public key to
the server. In the query generation phase the client sends the
encryption of the indices of each of his queries along with
a zero-knowledge proof of knowledge that the ciphertexts
are well formed. In the inference control phase, the client
uses the information obtained during the query generation
phase along with the homomorphic property of the encryp-
tion scheme to encrypt a secret valueV such that the client
can compute the secret valueV if and only if the query
passes the inference control rule. In the query processing
phase, our solution makes use of homomorphic encryption
to perform oblivious polynomial evaluation (similar tech-
niques were used in [3]). This allows the client and server
to evaluate certain polynomials in a shared way while keep-
ing certain information private.

Theorem 1 The protocol in Figure 1 is a private inference
control protocol for aggregate queries.

Communication and Computational Complexity We
discuss in this section the cost of thejth queryQj . Let
w denote the maximum number of bits needed to represent
an encryption. The total communication cost of one query
is O(wjk2) + kw · polylog(n) + cost of SMC. This pro-
tocol requires 1.5 rounds + round complexity of SMC. (1.5
rounds = message sent by client + one round of the SPIR
protocol. The message sent by the server can go in parallel
with SPIR.) The server performsO(nk) encryptions while
masking the database andO(jk2) encryptions for the infer-
ence control rule. The client performsO(k2) encryptions
andO(jk2) decryptions. The encryptions of the polyno-
mial evaluations in query processing stage involveO(k) ex-
ponentiations when done naively, but this overhead can be
reduced using Horner’s method. The polynomial evaluation
happens only once and hence the total number of exponen-
tiations required isO(nk + jk2).

3.2 The Second Protocol

The protocol presented in Section 3.1 is efficient for
moderate sized databases and when the lengthk of each
query is small. For largek and largen, however, the proto-
col is inefficient because it requires encrypting the database
k times for each query. In this section, we present a modi-
fied solution which avoids encrypting the databasek times.

In this solution, the client and the server agree on a ho-
momorphic encryption schemeE. At the beginning of the
protocol, the client chooses a public/secret key pair for the

3

ServerS ’s Input : DatabaseD = (x1, . . . , xn)
Client C’s Input : QueriesQj = (ij1, . . . , ijk), for j = 1, 2,
Client C’s Output : For each queryQj , the client obtains the value off(xI) wherexI = (xij1 , . . . , xijk) iff

I passes the inference control rule.
Inference control rule: If Qt is the current query andQ1, . . . , Qt−1 are the previous queries, thenQt is

allowed ifQt ∩ Q1, . . . , Qt ∩ Qt−1 are empty.

• ForQ1, C chooses a key pair(pk, sk), and sendspk to the server.
• For j ≥ 1,

1. Query generation:

(a) For queryQj = (ij1, . . . , ijk), C sends the following encrypted values toS .




E(ij1) . . . E(ik−1
j1)

...
E(ijk) . . . E(ik−1

jk)




(b) C gives a zero-knowledge proof that the ciphertexts in Step 2a is well formed.

2. Inference control:

(a)S chooses secret valuesV1, . . . , Vj−1. (ForQ1, S sets the secret values as zeros and skips the rest of the inference control steps) For
each1 ≤ ` ≤ j, S generatesk2 random shares{y(`)

m1, . . . , y
(`)
mk}, 1 ≤ m ≤ k that add up toV`.

(b) ForC to learnV`, for 1 ≤ ` ≤ j − 1 if and only if the query passes the inference control rule,S sends the following(j − 1)k2 values
to C:




E((ij1 − i`1)y
(`)
11) . . . E((ij1 − i`k)y

(`)
1k)

...
E((ijk − i`1)y

(`)
k1) . . . E((ijk − i`k)y

(`)
kk)




(c) C decrypts all the(j − 1)k2 y’s to obtain the secretV1, . . . , V(j−1). (C obtains the correctV ’s if and only if the inference control rule
is satisfied and the client followed the protocol; otherwise the values do not sum toV`.)

3. Query processing:

(a) Input selection:

1.S chooses a random polynomialP (u) = s0 + s1u + . . . + sk−1u
k−1. For 1 ≤ m ≤ k, S constructs a masked database

E(xp + P (p) + rmp(p − ijm)) for 1 ≤ p ≤ n, where thermp ’s are random.
2.For each1 ≤ m ≤ k, C andS engage in SPIR and client retrievesE(xijm + P (ijm)).
3.C decrypts and obtainszijm = xijm + P (ijm), for 1 ≤ m ≤ k.
4.C andS engage in a secure computation to compute shares ofxijm , for 1 ≤ m ≤ k, as follows:

•S picks upk random elementsq1, . . . , qk and computesE(P (ij1) − q1), . . . , E(P (ijk) − qk) and sends them toC.
•C decrypts and obtains(P (ij1) − q1), . . . , (P (ijk) − qk)
•C’s shares areaij1 = zij1 − (P (ij1) − q1), . . . , aijk = zijk − (P (ijk) − qk)
•S ’s shares arebij1 = −q1, . . . , bijk = −qk. C andS ’s shares add up toxijm , for 1 ≤ m ≤ k.

(b) Secure multiparty computation: C andS use secure multiparty computation in order forC to learn the output of the function
g(xI , V1, . . . , V(j−1)) = f(xI) + V1 + . . . + V(j−1). The server receives no output.

4. Answer construction: The client can recoverf(xI) if and only if he can compute all the secret values.

Figure 1. Private Inference Control Protocol for Aggregate Queries

4

chosen encryption scheme and sends the public key to the
server. The server chooses a seeds to a pseudo-random
functionh. This functionh is used to mask the database.

The query generation phase uses secure circuit evalu-
ation [12]. It evaluates a circuit which receives as in-
put from the client the indicesi1, . . . , ik of the current
query. The server’s input to the circuit is the seeds and
the public keypk. The circuit computes random shares
of {h(s, i1), . . . , h(s, ik)}. It outputs the client’s share,
{hC(s, i1), . . . , hC(s, ik)}, to the client, and the server’s
share,{hS(s, i1), . . . , hS(s, ik)}, to the server. The cir-
cuit also computes and sends to the server the values
{E(i1), . . . , E(ik)}.

In the query processing phase the server constructs a
masked databaseD′ by setting theith entry to bexi ⊕
h(s, i). The client and the server engage in SPIR onD′

to obtain xi`
⊕ h(s, i`), for 1 ≤ ` ≤ k. The client

and the server engage in SMC with the client’s input as
xi`

⊕h(s, i`)⊕hC(s, i`) and the server’s input ashS(s, i`),
for 1 ≤ ` ≤ k and a vector of secret values. The infer-
ence control phase and the answer construction phase are
the same as in Section 3.1.

Theorem 2 The protocol described above is a private in-
ference control protocol for aggregate queries.

Communication and Computational Complexity The
total communication cost of one query isO(wjk2) +
cost of SPIR+ cost of SMC. Here the SPIR protocol takes
place on a set ofn records each of lengthw to retrievek
items and its communication complexity iskw ·polylog(n).
The server performsO(jk2) encryptions for the inference
control rule. The server’s work is linear in the size of
the database. The client performsO(k2) encryptions and
O(jk2) decryptions.

3.3 The Third Protocol

The communication complexity of the APIC protocols
presented in Sections 3.1 and 3.2 depend on the number of
past queries made by the client. In this section, we present
an APIC protocol that keeps the communication cost of the
inference control phase low even as the number of queries
increases. This solution is an extension to the protocol pre-
sented in Section 7 of [11]. For consistency we use the same
notation as in [11].

In this protocol, the query generation and inference con-
trol phases are combined into one phase. The phase uses
a secure circuit evaluation protocol [12] to evaluate a cir-
cuit which we will now describe. We use a balanced bi-
nary tree that hasn leaves associated with the elements
{x1, . . . , xn} of the database. We denote the leaves byi
wherei ∈ {1, 2, . . . , n}. Let α denotes the root of the bi-
nary tree. Each node of the tree is associated with a key

K(w, z) whose computation we will describe shortly. Here
w represents the node, andz an integer value. For a leaf
node,z takes the value 0 if the corresponding value has
never been accessed in any query, and 1 otherwise. In the
case of an internal node,z denotes the number of times the
leaves in the subtree rooted atw have been accessed in past
queries.

Let E denote a non-malleable symmetric-key encryption
scheme [5]. Letsk denote the secret key chosen and known
only to the server. We computeK(w, z) as the encryption
Esk(w, z). For any internal nodew along with its children,
we say the keysK(w, z) and{K(v, mv)|v ∈ children(w)}
aresum-consistentif z =

∑
v∈children(w) mv. When the

client issues a query{i1, . . . , ik}, he inputs the set of keys

π = ∪k
`=1{K(w, mw)|w ∈ sibanc(i`)}

to the circuit where

sibanc(w) = anc(w) ∪ {u|∃v ∈ anc(w) andu = sib(v)},

sib(v) denotes the siblings ofv and anc(v) denotes the an-
cestors ofv.

A malicious user may try to useK(w, z) instead of
K(w, mw) for some integerz 6= mw. We maintain the
invariant that when a malicious client replacesK(w, z) for
K(w, mw) thenz < mw. (For further discussion, see [11].)
The server inputs a seeds to a pseudo-random functionh
and a keysk to the encryption schemeE. The circuit checks
whetherπ satisfies the following properties

• For each internal nodew ∈ anc(i`), K(w, mw) and
{K(v, mv)|v ∈ children(w)} are sum-consistent, for
1 ≤ ` ≤ k.

• mα = jk

• K(i`, 0) ∈ π, for 1 ≤ ` ≤ k. (Inference control rule)

If π satisfies these properties, then the circuit computes ran-
dom shares of{h(s, i1), . . . , h(s, ik)} and outputs to the
client and the server. If not, the circuit sends random val-
ues to the client and the server. The client also receives the
updated keys{K(w, mw + 1)|K(w, mw) ∈ π}. The query
processing and answer construction phase are the same as
in Section 3.2.

Suppose a malicious client wants to query
{xi1, . . . , xik} for which somexi` was a part of one
of the previous queries thus violating the inference control
rule. This requires changing some of the keysK(w, mw)
in π to K(w, z) for mw 6= z. By the invariance,z < mw

and hence the first two properties mentioned above cannot
hold simultaneously.

In [11], for reject queries the client sends an integerP to
the circuit. When the client is honest,P will be of the form
Esk(reject, z). Whenπ does not satisfy the inference con-
trol rule the circuit outputsEsk(reject, z + 1) to the client.

5

The server gets no output maintaining user privacy. In our
case, the circuit outputs both to the client and the server.
When the client’s query does not pass the inference con-
trol test the circuit outputs random values to both the client
and the server so that the server does not know whether the
client’s query has passed or failed. The client and the server
may involve in the query processing phase but at the end of
the protocol the client receives only an arbitrary value. The
proofs of correctness and privacy are similar to the ones in
Section 7 of [11].

Communication and Computational Complexity The
communication complexity of the secure circuit evalu-
ation protocol that tests the inference control rule is
poly(k log(n)). The overall communication complexity
is poly(k log(n)) + cost of SPIR+ cost of SMC. Here the
SPIR protocol takes place on a set ofn records each of
lengthw to retrievek elements and it communication com-
plexity is kw · polylog(n). The computational complexity
is O(n). Both the circuit evaluation and the SPIR takes one
round and they can run in parallel. This protocol requires
one round more than the round complexity of SMC.

3.4 A Comparison

The second and the third APIC protocols presented in
Sections 3.2 and 3.3 use a secure circuit-evaluation proto-
col for query generation. The first protocol given in Sec-
tion 3.1 avoids the expensive circuit evaluation for the query
generation and inference control phases. However, this in-
volves encrypting the databasek times in the query process-
ing phase which may be expensive for large databases and
for large values ofk. (Recallk is the query size.) This pro-
tocol works well for moderate sized databases and when the
query size is reasonably small.

On the other hand, the second and the third protocols
avoid public key encryptions of the database and hence
work well for large databases. But the price they pay is
the use of a circuit for the query generation and inference
control phases. The query processing phase is the same
for both of these protocols. The circuit size for both pro-
tocols are the same in terms of theO notation given by
(poly(k log n)). But the input size for the first protocol is
given byO(k log n) bits whereas the input size for the third
protocol isO(wk log n), w ≥ log(nq) whereq denotes the
number of queries made. Since the number ofOT2

1’s de-
pend on the input size, the computational overhead (num-
ber of exponentiations) of the third protocol is higher than
the second protocol. In the second protocol the number of
bits transmitted by the server in the inference control phase
increases linearly in terms of the number of queries made.
So when a client makes fewer queries the second protocol
is efficient. On the other hand, when a client makes a large
number of queries, the third protocol is efficient in terms of
communication complexity.

4 Conclusions

In this paper, we introduced private inference control for
aggregate queries. It remains open to further extend private
inference control to additional inference control policies,
such as inference control policies that also depend on the
return values themselves. In this case it would also be nec-
essary to incorporate notions of simulatable auditing [8]. It
would be extremely desirable to have private inference con-
trol for general keyword-based queries such as SQL pro-
vides. We are pursuing this as future research.

References

[1] N. R. Adam and J. C. Worthmann. Security-control
methods for statistical databases: A comparative
study.ACM Comput. Surv., 21(4):515–556, 1989.

[2] W. Aiello, Y. Ishai, and O. Reingold. Priced oblivi-
ous transfer: How to sell digital goods. InProc. of
EUROCRYPT ’01, pages 119–135, 2001.

[3] R. Canetti, Y. Ishai, R. Kumar, M. K. Reiter, R. Ru-
binfeld, and R. N. Wright. Selective private function
evaluation with applications to private statistics. In
Proc. of PODC ’01, pages 293–304, 2001.

[4] F. Chin. Security problems on inference control for
SUM, MAX, and MIN queries.J. ACM, 33(3):451–
464, 1986.

[5] D. Dolev, C. Dwork, and M. Naor. Non-malleable
cryptography. InProc. of STOC ’91, pages 542–552,
1991.

[6] C. Farkas and S. Jajodia. The inference problem: A
survey.SIGKDD Explor. Newsl., 4(2):6–11, 2002.

[7] Y. Gertner, Y. Ishai, E. Kushilevitz, and T. Malkin.
Protecting data privacy in private information retrieval
schemes. InProc. of STOC ’98, pages 151–160, 1998.

[8] K. Kenthapadi, N. Mishra, and K. Nissim. Simulatable
auditing. InProc. of PODS ’05, pages 118–127, 2005.

[9] M. Naor and B. Pinkas. Oblivious transfer and polyno-
mial evaluation. InProc. of STOC ’99, pages 245–254,
1999.

[10] P. Paillier. Public-key cryptosystems based on com-
posite degree residuosity classes. InProc. of EURO-
CRYPT ’99, pages 223–238, 1999.

[11] D. Woodruff and J. Staddon. Private inference control.
In Proc. of CCS ’04, pages 188–197, 2004.

[12] A. C.-C. Yao. How to generate and exchange secrets.
In Proc. of FOCS ’86, pages 162–167, 1986.

6

