
Privacy-Preserving Data Imputation∗

Geetha Jagannathan
Stevens Institute of Technology

Hoboken, NJ, 07030, USA
gjaganna@cs.stevens.edu

Rebecca N. Wright
Stevens Institute of Technology

Hoboken, NJ, 07030, USA
rwright@cs.stevens.edu

Abstract

In this paper, we investigate privacy-preserving data im-
putation on distributed databases. We present a privacy-
preserving protocol for filling in missing values using a lazy
decision tree imputation algorithm for data that is horizon-
tally partitioned between two parties. The participants of
the protocol learn only the imputed values; the computed
decision tree is not learned by either party.

1. Introduction

Real-world databases are frequently “dirty”—the data is
noisy, inconsistent, and has missing values. If this unpro-
cessed raw data is used as input for data mining processes,
the extracted knowledge is likely to be of poor quality as
well. Data cleaning is a preprocessing step in data mining
that smooths noise in the data, identifies and eliminates in-
consistencies, and replaces missing values (also called “data
imputation”). While much of data mining, including data
cleaning, occurs on data within an organization, it is quite
common to use data from multiple sources in order to yield
more precise or useful knowledge. However, privacy con-
cerns and privacy regulations often prevent the sharing of
data between multiple parties. Since Yao’s general pur-
pose secure circuit-evaluation protocol [16] is impractical
for large datasets, secure special-purpose protocols have
been developed for specific data mining problems, initiated
by [1, 10].

Data imputation is the process of replacing missing val-
ues with estimated values. Imputation techniques range
from simple ideas such as using the mean or mode of
the attribute for a missing value [8] to more sophisticated
ones [2, 3, 9]. Using the mean or mode is generally consid-
ered a poor choice [11], as it distorts other statistical prop-
erties of the data and does not take dependencies between
attributes into account. Hot-deck imputation [5] fills in a

∗This work was supported by the National Science Foundation under
Grant No. CCR-0331584.

missing value using values from other rows of the database
that are similar to the row with the missing value.

Classification is generally considered the best method for
imputing missing data [4]. The most commonly used meth-
ods are regression-based imputation [2] and decision-tree-
based imputation [9, 4]. Regression assumes a specific re-
lationship between attributes that may not hold for all data
sets. Decision-tree imputation uses a decision-tree based
learning algorithm such as ID3 [15] to build a decision-tree
classifier using the rows with no missing values, with the at-
tribute that has the missing value as the class attribute. The
tree is evaluated on the row with the missing value to pre-
dict the missing value. For efficiency purposes, the decision
tree construction can be lazy [6], in that only the needed
path of the tree is constructed. Lindell and Pinkas [10] pro-
vide a privacy-preserving algorithm for computing the ID3
tree for horizontally partitioned databases. Our privacy-
preserving data imputation solution also uses ID3 trees, but
it differs from their algorithm in that we only construct the
path needed and we are able to use the path for classification
without either party learning the constructed path.

In this paper, we provide a privacy-preserving solution
to the data imputation problem. To our knowledge, this
is the first paper addressing privacy-preserving methods of
preprocessing data. We present a privacy-preserving data
imputation protocol for databases that are horizontally par-
titioned between two parties. Our protocol uses a lazy deci-
sion tree algorithm based on ID3 trees. It allows either party
to compute missing values without requiring the parties to
share any information about their data and without revealing
the decision tree or the traversed path to either party. Our
protocol reveals the number of nodes traversed by the pro-
tocol in the undisclosed decision tree used for imputation.
With some increased computation and communication cost,
this protocol can be modified so that it does not leak any
information beyond the computed imputed value. (Due to
space limitations, we do not provide this extension here.)

In Proceedings of the ICDM International Workshop on Privacy Aspects of Data Mining, December 18, 2006.



Algorithm Lazy Decision Tree

Input: A database D of labeled instances (with attributes
R = {A1, . . . , Ak}) and an unlabeled instance I to be classified.

Output: A label for instance I .

1. If R is empty, return the majority label of transactions in D.
2. If D is pure, return the label c.
3. Otherwise,

(a) for i = 1 to k
Entropy(Ai) = Calc Split Entropy(D, Ai)

(b) Amin = Attribute with least entropy.
(c) D ← {X ∈ D | X[Amin] = I[Amin]}
(d) R← R− {Amin}

4. Go to Step 2

Subroutine Calc Split Entropy

Input: A database D of labeled instances and an attribute A

Output: Entropy after splitting D on attribute A.

1. Let A take values a1, . . . , am.
2. Entropy(D, A) =

−
Pm

j=1

|D(aj)|
|D|

“
pj0

|D(aj)| log
pj0

|D(aj)| +
pj1

|D(aj)| log
pj1

|D(aj)|

”
where
D(aj) = instances of D in which A has value aj ,
pjc = # instances of D(aj) in which class label is c ∈ {0, 1}.

3. return Entropy(D, A)

Figure 1. The Lazy Decision Tree Algorithm

2. Preliminaries

LAZY DECISION TREE ALGORITHM. Our lazy decision
tree algorithm is a simplification of ID3 that lends itself to
an efficient privacy-preserving distributed solution. Our al-
gorithm (Figure 1) fits the definition of Friedman et al. [6]
for a generic lazy decision tree algorithm, though it differs
significantly from the specific LazyDT algorithm presented
in that paper. LazyDT is more complex, slower, and not
easily amenable for conversion to a privacy-preserving pro-
tocol. The experiments in [6] indicate that LazyDT, on
average, has slightly better accuracy than ID3 (84% for
LazyDT vs. 80% for ID3). As in any lazy learning algo-
rithm, our algorithm does not create an explicit model from
the training data. Instead, the test instance to be classified is
used to directly trace the path that would have been taken if
an ID3 tree had been built from the training data. A database
D is said to be pure if all the transactions in D have the
same class label. In what follows, we assume that the class
attribute is binary, though our solution can be modified to

handle any finite class attribute.

OUR MODEL. In our setting, two parties, Alice and
Bob, own databases DA = (d1, . . . , d`) and DB =
(d`+1, . . . , dn), respectively, defined over a common set of
attributes {A1, . . . , Ak} ∪ M . We use the notation α ∈
Alice to indicate that Alice holds the value α and we use
a similar notation for Bob. Suppose I ∈ Bob (not in-
cluded in {d1, . . . , dn}) has a missing value for the attribute
M . Bob wishes to compute the missing value I(M) using
D = DA∪DB via a data imputation algorithm agreed to by
both Alice and Bob. No other information is to be revealed
to either party. In this paper, we assume that attribute M
takes the values 0 and 1; it is easy to extend the protocol to
the case where M takes more than two values.

Privacy definitions are given in relation to an ideal
model, in which there is a trusted third party to whom Alice
and Bob send their data. The third party uses the imputation
algorithm chosen by Alice and Bob to compute a missing
value and sends the computed value to Bob. In a private pro-
tocol, Alice and Bob compute the missing value by solely
communicating with each other instead of using the trusted
third party; in doing so, they should not learn anything that
they would not learn in the ideal model. In this paper, we
assume that both Alice and Bob are semi-honest. That is,
both parties faithfully follow their specified protocols, but
we assume they record intermediate messages in an attempt
to infer information about the other party’s data.

In the discussions of our protocols and their analysis, n
denotes the size of the database, k denotes the number of
attributes, m denotes the maximum number of values any
attribute can take, and c denotes the maximum number of
bits required to represent any encryption.

CRYPTOGRAPHIC PRIMITIVES.
We say that Alice and Bob have random shares of a value

x drawn from a field F of size N to mean that the value x is
divided into two pieces a, b ∈ F such that Alice knows a,
Bob knows b, and x can be recovered from a and b. We use
additive sharings and XOR sharings. We choose N to be
a large prime and the field F = ZN . In additive sharing, a
value x is shared as (a+b) mod N ≡ x for random a and b.
In XOR sharing, a bit x is shared as x = a⊕ b for random a
and b. Except where otherwise specified, all computations
throughout the paper take place in F .

We also make use of the private indirect index proto-
col [12]. In this protocol, Bob has a vector of values
X = (x1, . . . , xn). Alice and Bob wish to compute ran-
dom shares of xi, where input i is available as a random
XOR sharing between Alice and Bob (that is, i = i1 ⊕ i2,
where i1 ∈ Alice and i2 ∈ Bob). Although the protocol
in [12] outputs an XOR-sharing of xi, it can be easily mod-
ified to provide an additive sharing of the output. This pro-

2



tocol makes use of one invocation of 1-out-of-n oblivious
transfer (OTn

1 ) [13]. OTn
1 is a two party protocol where

the sender has n inputs {x1, . . . , xn} and the receiver has
an input j ∈ {1, . . . , n}. At the end of the protocol, the re-
ceiver learns xj and no other information; the sender learns
nothing. We also use semantically secure additively homo-
morphic encryption, (e.g., [14]), private scalar product com-
putation [7], and Yao’s two-party secure circuit-evaluation
protocol [16] (used only on small circuits).

3. Privacy-Preserving Imputation Based on
Lazy Decision Trees

Our privacy-preserving data imputation protocol is based
on the lazy decision tree algorithm described in Section 2.
As described, our protocol reveals the number of nodes tra-
versed by the protocol in the undisclosed decision tree used
for imputation. This leak can be removed at a slightly in-
creased cost of communication and computation.

3.1. Our Basic Protocol

We rephrase the basic steps of the lazy decision tree al-
gorithm from Section 2 so that it functions more clearly as
a data imputation algorithm. The lazy decision tree algo-
rithm first computes as the root of the tree the attribute with
the highest information gain. This is followed by the re-
peated execution of the following steps until the remaining
instances are pure or all attributes have been exhausted:

1. Extract the subset of the instances that match I on the
chosen attribute.

2. Choose an attribute of high information gain for the next
iteration.

The algorithm outputs as the missing value the majority la-
bel on the remaining instances.

Our privacy-preserving protocol follows these same
steps. However, the privacy requirements prohibit the proto-
col from revealing any information including the attributes
that have been chosen along the way and the subset of the
instances that match I on the chosen attributes. The pro-
tocol handles the first condition by storing the index s of
the chosen attribute As in any iteration as a random sharing
between the two parties. That is, Alice learns sA and Bob
learns sB such that sA ⊕ sB = s. To satisfy the second
condition, the protocol uses a randomly shared bit-vector
representation of any D′ ⊆ D. That is, Alice and Bob have,
respectively, bit-vectors (p1, . . . , pn) and (q1, . . . , qn) such
that for any di ∈ D:

pi ⊕ qi =
{

1 if di ∈ D′

0 otherwise

The entropy computed for each attribute in each iteration is
also held as random shares between the two parties.

We now describe in more detail the protocol in Figure 2.
At the beginning of the protocol, Alice and Bob jointly
check if the database D is pure. If D is pure, Bob out-
puts the majority label. This is done without revealing ei-
ther their data or one-sided information about purity to each
other using Step 2 of Protocol 1 in [10].

To compute the root, Alice and Bob compute random
shares of the entropy for each attribute Ai. Using the proto-
col that computes a random sharing of x log x [10] given a
sharing of x, Alice and Bob jointly compute a random shar-
ing of Entropy(D,Ai) as (EntAi ) and (EntBi ) respectively
such that EntAi +EntBi ≡ Entropy(D,Ai) mod N . The in-
dex of the attributes that yields the least entropy is computed
as random shares (minA ∈Alice and minB ∈ Bob such that
min = minA⊕minB) between Alice and Bob using Yao’s
protocol. Note that either EntAi + EntBi = Entropy(D,Ai)
or EntAi + EntBi = Entropy(D,Ai) + N . The circuit first
computes EntAi + EntBi ; if the result is greater than N − 1,
the circuit subtracts N . It selects the attribute with the low-
est entropy.

We write Dj to denote the subset of D that has “filtered”
through to level j of the lazy decision tree. To compute the
attribute at level j, Alice and Bob should split the database
Dj−1 on the attribute As chosen at level j−1. This involves
finding I[As]. Here the instance I is known to Bob, but s
is randomly shared between Alice and Bob. Alice and Bob
compute a random sharing of I[As] using the private indi-
rect indexing protocol [12]. Since Dj should be unknown
to either party, we store the set in the form of two bits pi ∈
Alice and qi ∈ Bob per record (1 ≤ i ≤ n) such that

pi ⊕ qi =
{

1 if di[As] = I[As] and di ∈ Dj−1

0 otherwise

(See Section 3.3.) Note that the information about the in-
clusion of di in Dj−1 is also shared between Alice and Bob.
For the root level (which contains all of D), we set pi = 1
and qi = 0 for all i.

If Dj is pure, then Bob outputs this majority value. It is
important to observe that since neither party knows which
instances are in Dj , we cannot use the purity check in Step 2
of Protocol 1 in [10]. We provide an alternate purity check-
ing protocol in Section 3.5. If Dj is not pure, both par-
ties securely compute the random shares of the index of
the attribute with least entropy. To simplify the protocol,
the entropy is evaluated for all attributes at all levels of the
decision tree. This does not impact the correctness of the
protocol, as the information gain would be zero for an at-
tribute that has already been chosen at a previous level. We
present the privacy-preserving lazy decision tree imputation
protocol in Figure 2.

3



Protocol Private Lazy Decision Tree Data Imputation

Input: A database D = DA ∪ DB of labeled instances (with attributes {A1, . . . , Ak} ∪M ), where Alice owns DA = (d1, . . . , d`) and
Bob owns DB = (d`+1, . . . , dn) and an instance I with a missing value I(M).

Output: Bob outputs I(M).

1. If D is pure, Bob outputs the majority label and exits.
2. Alice and Bob communicate with each other to compute the root attribute using the following steps:

(a) for i = 1 to k, Alice and Bob compute random shares of Entropy(D, Ai) as EntA
i + EntB

i ≡ Entropy(D, Ai) mod N .
(b) Using Yao’s protocol, Alice and Bob compute minA and minB such that minA⊕minB = min
where EntA

min + EntB
min ≡ minimum{EntA

i + EntB
i }, 1 ≤ i ≤ k.

3. for j = 1 to k − 1

(a) Alice and Bob jointly compute the set Dj = {d ∈ Dj−1 | d[Amin] = I[Amin]} (represented by bit-vectors P and Q) as follows:

• Alice and Bob compute random shares of I[Amin] as α ∈ Alice and β ∈ Bob using the private indirect indexing protocol [12] with inputs
minA ∈ Alice and I , minB ∈ Bob.

• Alice and Bob run the secure split computation protocol (see Section 3.3) on each of their records and α, β to obtain two bit vectors
P = (p1, . . . , pn) ∈ Alice and Q = (q1, . . . , qn) ∈ Bob such that pi ⊕ qi = 1 if di[Amin] = I[Amin], and 0 otherwise.

(b) If Dj is pure, Bob outputs the majority label and exits (see Section 3.5). Otherwise:

• for i = 1 to k, Enti
A + Enti

B = Secure Ent Comp(Dj , P, Q, Ai)
• Using Yao’s protocol, Alice and Bob compute minA and minB such that minA⊕minB = min

where EntA
min + EntB

min ≡ minimum{EntA
i + EntB

i }, 1 ≤ i ≤ k.

4. Bob outputs the majority label as the missing value using the secure majority computation protocol (see Section 3.6).

Figure 2. Private Lazy Decision Tree Imputation Protocol

Protocol Secure Ent Comp

Input: A database D of labeled instances where Alice owns DA = (d1, . . . , d`) and Bob owns DB = (d`+1, . . . , dn), an attribute A
known to both Alice and Bob, and D′ ⊆ D represented by bit vectors P = (p1, . . . , pn) and Q = (q1, . . . , qn) belonging to Alice and Bob,
respectively, such that for 1 ≤ i ≤ n, pi ⊕ qi = 1 if di ∈ D′ and 0 otherwise.

Output: Random shares of entropy after splitting D′ on attribute A.

1. Let A take values a1, . . . , am.

2. for j = 1 to m

(a) Compute D(aj) ⊆ D′ in which A has value aj . D(aj) is represented as two bit vectors R ∈ Alice and S ∈ Bob such that, for
1 ≤ i ≤ n,

Ri ⊕ Si =


1 if pi ⊕ qi = 1 and di[A] = aj

0 otherwise

To compute R and S, for each i, Alice and Bob use Yao’s protocol where Alice inputs pi and Bob inputs qi. If di ∈ Alice, then
she inputs di[A]; otherwise, Bob inputs di[A]. Alice and Bob output Ri and Si, respectively.

(b) Alice and Bob engage in the secure Total Record Split protocol and compute the random shares of |D(aj)|.
(c) Let pj0 = # instances of D(aj) in which label is 0. Alice and Bob engage in the protocol described in Section 3.4.2 and output

random shares of pj0.

(d) Let pj1 = # instances of D(aj) in which label is 1. Alice and Bob engage in the protocol described in Section 3.4.2 and output
random shares of pj1.

(e) They use the secure x log x protocol [10] to compute random shares of |D(aj)| log |D(aj)|, pjk log pjk for k = 0, 1.

(f) They compute random shares of sumj = |D(aj)| log |D(aj)| −
P1

k=0(pjk log pjk).

3. Alice and Bob compute random shares of entropy for the attribute A by adding the shares obtained in Step 2f.

Figure 3. Secure Split Entropy

4



3.2. Secure Protocol to Compute Split En-
tropy

This protocol takes a subset D′ of the database D, hori-
zontally partitioned between Alice and Bob, and an attribute
A known to both Alice and Bob. D′ is represented by two
bit vectors P and Q known to Alice and Bob, respectively,
such that for 1 ≤ i ≤ n,

pi ⊕ qi =
{

1 if di ∈ D′

0 otherwise

The protocol outputs random shares of the entropy after
splitting D′ on the attribute A. We present this protocol in
Figure 3.

3.3. Secure Split Protocol

The secure split protocol is used to find whether a given
record is in a subset D′ ⊆ D and attribute Ai takes the value
α in that record. The result of this test (0 or 1) is randomly
shared between Alice and Bob. Here, inputs α and i are
shared between Alice and Bob as α ≡ a + b mod N and
i = i1 ⊕ i2, where a, i1 ∈ Alice and b, i2 ∈ Bob. The
inclusion of the given record in D′ is represented by two
bits p and q, known to Alice and Bob respectively, such that
p⊕ q = 1 if the record is in D′ and 0 otherwise.

Assuming that the record belongs to Alice, Alice’s in-
puts to the protocol are the record (v1, . . . , vk), a, i1, and
p. Bob’s inputs are b, i2 and q. (The case where Bob owns
the record is similar.) At the end of this protocol, Alice and
Bob receive bits b1 and b2, respectively, such that

b1 ⊕ b2 =
{

1 if vi = α and p⊕ q = 1
0 otherwise

This protocol has two stages. In the first stage, Alice
and Bob use the private indirect indexing protocol [12] and
output v and w, respectively, where v + w ≡ vi mod N . In
the second stage, Alice has inputs v, a and p, and Bob has
inputs w, b and q. They use Yao’s protocol and output two
bits b1 ∈ Alice and b2 ∈ Bob such that

b1 ⊕ b2 =
{

1 if v + w ≡ a + b mod Nand p⊕ q = 1
0 otherwise

3.4. Secure Information Gain Protocol

In this subsection, we present protocols that are used in
computing the information gain for each attribute.

3.4.1 Secure computation of the total number of
records in the split

This protocol takes as input a subset D′ ⊆ D and com-
putes shares of |D′|. D′ is represented by bit vectors

Protocol Total Record Split

Input: Alice has a bit vector X = (x1, . . . , xn), Bob has a bit
vector Y = (y1, . . . , yn),

Output: Alice and Bob output α and β, respectively, such that
α + β ≡ |D′| mod N , where |D′| is the total number of records
for which xi ⊕ yi = 1.

1. Alice computes
Pn

i=1 xi = γ.
2. Bob computes

Pn
i=1 yi = δ.

3. Alice and Bob securely compute the shares of the scalar prod-
uct of the vectors X and Y as µ ∈ Alice and λ ∈ Bob.
4. Alice outputs α = γ − 2µ, Bob outputs β = δ − 2λ.

Figure 4. Secure Computation of |D′|

X = (x1, . . . , xn) and Y = (y1, . . . , yn) known to Alice
and Bob, respectively, where

xi ⊕ yi =
{

1 if instance di ∈ D′

0 otherwise

At the end of the protocol, Alice and Bob output random
shares of |D′|. We present this protocol in Figure 4.

3.4.2 Secure computation of the total number of
records in the split with a given class value

This protocol takes as input a subset D′ ⊆ D and computes
shares of the total number of records in the set D′

c. Here,
D′

c denotes the set of records in D′ in which the attribute
M takes the value c (c ∈ {0, 1}). D′ is represented by the
bit vectors X = (x1, . . . , xn) and Y = (y1, . . . , yn) known
to Alice and Bob, respectively, where

xi ⊕ yi =
{

1 if instance di ∈ D′

0 otherwise

Alice computes a vector W = (w1, . . . , w`), such that, for
1 ≤ i ≤ `,

wi =
{

1 if di[M ] = c
0 otherwise.

Define |D′
Ac| as the total number of records owned by Al-

ice in which xi ⊕ yi = 1 (the record is in D′) and wi = 1
(attribute M takes the given value). That is, |D′

Ac| is the
number of records in which (xiwi)yi∨(xiwi)yi = 1. Alice
and Bob run the scalar product protocol [7] once with inputs
(x1w1, . . . , x`w`) and (y1, . . . , y`), respectively, to obtain
shares α1 and β1, respectively. They run the scalar prod-
uct protocol a second time with inputs (x1w1, . . . , x`w`)
and (y1, . . . , y`), respectively, to obtain shares α2 and β2

respectively. Alice’s share of |D′
Ac| is α1 + α2 and Bob’s

share is β1+β2. Similarly, Alice and Bob compute shares of
|D′

Bc|. Alice and Bob add their respective shares to obtain
shares of |D′

c|.

5



3.5. Secure Protocol to Check If D is Pure

This protocol takes as input a subset D′ of a database
D and outputs c if all the transactions in D′ have the same
label c or ⊥ otherwise. D′ is represented by two bit vectors
P = (p1, . . . , pn) ∈ Alice and Q = (q1, . . . , qn) ∈ Bob
such that

pi ⊕ qi =
{

1 if di ∈ D′

0 otherwise

Alice and Bob compute random shares of |D′
c|, for c = 0, 1

using the protocol described in Section 3.4.2. Let αAc

and αBc denote Alice’s and Bob’s shares for c = 0, 1,
respectively. Alice and Bob use Yao’s protocol to check
if αA0 + αB0 ≡ 0 mod N . If so, Bob outputs 1. If
αA1 + αB1 ≡ 0 mod N , then Bob outputs 0. Otherwise,
he outputs ⊥.

3.6. Secure Protocol for Majority Compu-
tation

This protocol is similar to the protocol that checks if D
is pure (Section 3.5). In the first stage, Alice and Bob com-
pute random shares of |D0| = αA0 + αB0 mod N and
|D1| = αA1 + αB1 mod N , where αA0, αA1 ∈ Alice
and αB0, αB1 ∈ Bob, using the protocol described in Sec-
tion 3.4.2. In the second stage, Alice and Bob invoke the
secure circuit evaluation of Yao’s protocol with Alice’s in-
put as αA0, αA1 and Bob’s input as αB0, αB1. Bob outputs
the majority label as 1 if |D0| < |D1| or 0 otherwise.

3.7. Performance Analysis

The communication complexity is dominated by
O(cnk2m) + O(mk2S log n), where S is the length of the
key of the pseudorandom function used in the x log x pro-
tocol [10]. The total computation complexity at the end of
the protocol is given by O(k2m log n) OT 2

1 + O(k) OT k
1 +

O(k2m) executions of the scalar product protocol (which
involves O(k2nm) encryptions and O(k2m) decryptions
for Alice and O(k2nm) exponentiations and O(k2m) en-
cryptions for Bob).

In our privacy-preserving imputation protocol, the at-
tribute and the split of the database at each level of the path
in the decision tree are available only as random shares to
Alice and Bob. In addition, all the intermediate outputs of
the subprotocols are held only as random shares by Alice
and Bob. Composing the subprotocols into the entire pro-
tocol, Bob learns the desired missing value. However, in
addition, both Alice and Bob learn the number of attributes
(though not which attributes, nor the values they take) in
the path in the decision tree, which would not be learned if

a trusted third party were used in the computation. Our pro-
tocol can be easily modified to prevent Alice and Bob from
learning the number of attributes in the path.

References

[1] R. Agrawal and R. Srikant. Privacy-preserving data mining.
In ACM SIGMOD, pages 439–450, May 2000.

[2] J. Beaumont. On regression imputation in the presence of
nonignorable nonresponse. In The Survey Research Methods
Section, pages 580–585. ASA, 2000.

[3] L. Coppola, M. D. Zio, O. Luzi, A. Ponti, and M. Scanu.
Bayesian networks for imputation in official statistics: A
case study. In DataClean Conference, pages 30–31, 2000.

[4] A. Farhangfar, L. Kurgan, and W. Pedrycz. Experimen-
tal analysis of methods for handling missing values in
databases. In Intelligent Computing: Th. and Appl. II, 2004.

[5] B. L. Ford. Incomplete data in sample surveys, chapter An
overview of hot-deck procedures. Academic Press, 1983.

[6] J. H. Friedman, R. Kohavi, and Y. Yun. Lazy decision trees.
In 13th Art. Intell. and the 8th Innovative Applications of
Art. Intell., pages 717–724, 1996.

[7] B. Goethals, S. Laur, H. Lipmaa, and T. Mielikainen. On se-
cure scalar product computation for privacy-preserving data
mining. In 7th ICISC, 2004.

[8] M. Hu, S. Salvucci, and M. Cohen. Evaluation of some pop-
ular imputation algorithms. In The Survey Research Methods
Section of the ASA, pages 308–313, 1998.

[9] K. Lakshminarayan, S. A. Harp, and T. Samad. Imputation
of missing data in industrial databases. Applied Intelligence,
11(3):259–275, 1999.

[10] Y. Lindell and B. Pinkas. Privacy preserving data mining. J.
Cryptol., 15(3):177–206, 2002.

[11] R. J. A. Little and D. B. Rubin. Statistical analysis with
missing data. John Wiley & Sons, Inc., USA, 1986.

[12] M. Naor and K. Nissim. Communication preserving proto-
cols for secure function evaluation. In STOC, pages 590–
599, 2001.

[13] M. Naor and B. Pinkas. Oblivious transfer and polynomial
evaluation. In 31st STOC, pages 245–254, 1999.

[14] P. Paillier. Public-key cryptosystems based on composite
degree residue classes. In EUROCRYPT 99, volume 1592 of
LNCS, pages 223–238. Springer-Verlag, 1999.

[15] J. R. Quinlan. Readings in knowledge acquisition and learn-
ing: automating the construction and improvement of expert
systems, chapter Induction of decision trees, pages 349–361.
Morgan Kaufmann Publishers Inc., USA, 1993.

[16] A. C. Yao. How to generate and exchange secrets. In 27th
FOCS, pages 162–167, 1986.

6


