
Efficient and Private Three-Party Publish/Subscribe

Giovanni Di Crescenzo1, Jim Burns1, Brian Coan1, John Schultz3, Jonathan Stanton3,
Simon Tsang1, and Rebecca N. Wright2

1 Applied Communication Sciences, NJ, USA
{gdicrescenzo,bcoan,stsang,jburns}@appcomsci.com

2 Rutgers University, NJ, USA
rebecca.wright@rutgers.edu

3 Spread Concepts, MD, USA
{jschultz,jonathan}@spreadconcepts.com

Abstract. We consider the problem of modeling and designing publish/subscribe
protocols that safeguard the privacy of clients’ subscriptions and of servers’ pub-
lications while guaranteeing efficient latency in challenging scenarios (i.e., real-
time publication, high data arrival rate, etc.). As general solutions from the theory
of secure function evaluation protocols would not achieve satisfactory perfor-
mance in these scenarios, we enrich the model with a third party (e.g., a cloud
server). Our main result is a three-party publish/subscribe protocol suitable for
practical applications in such scenarios because the publication phase uses only
symmetric cryptography operations (a result believed not possible without the
third party). At the cost of only a very small amount of privacy loss to the third
party, and with no privacy loss to the publishing server or the clients, our proto-
col has very small publication latency, which we measured for large parameter
ranges to be just a small constant factor worse than a publish/subscribe protocol
guaranteeing no privacy.

1 Introduction

Publish/subscribe protocols address the problem of publishing data items to interested
participants. In a simple formulation of the problem, a publish/subscribe protocol can
be considered a protocol between multiple clients, each with its own interests, and mul-
tiple servers with data items and associated topics. The servers would like to distribute
a data item to a client if there is a match between the data item’s topics and the client’s
interests. These protocols come in many different formulations and variations, as well
surveyed in [1], and find applications in a large number of areas. In many applications,
however, privacy is a sensitive issue that may deter from the implementation or use of
a publish/subscribe system. For instance, in finance, a publish/subscribe system that al-
lows clients to receive quotes from a stock market server, while revealing the clients’
interests, may not only impact clients’ privacy but also significantly alter the stock mar-
ket pricing process and overall integrity.

In this paper, we investigate the modeling and design of publish/subscribe proto-
cols with satisfactory levels of both privacy and efficiency in a challenging scenario of
high arrival-rate data and real-time publishing. First, we note that designing a private

J. Lopez, X. Huang, and R. Sandhu (Eds.): NSS 2013, LNCS 7873, pp. 278–292, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

Efficient and Private Three-Party Publish/Subscribe 279

publish/subscribe protocol in the two-party model (i.e., with no third party) using gen-
eral solutions from the area of secure function evaluation protocols (e.g., [2]) would
not meet our efficiency targets, one reason being that such protocols require public-key
cryptographic primitives [3], which are significantly more expensive than their private-
key cryptography counterparts. Departing from the two-party model and considering a
three-party model helps towards efficiency. General solutions in this three-party model
(i.e., client, server and third party), such as [4–6], would likely still be not efficient in
our scenario because of significant resource requirements (e.g., interaction and/or ran-
domness and/or cryptographic operations) for each gate and each input bit of the circuit
associated with the publish/subscribe predicate. Instead, we consider the problem of
designing efficient three-party publish/subscribe protocols, possibly at the expense of
allowing some minimal privacy leakage to the third party (but not to the server or the
clients and not about actual interests, topics or data items).

Our Contribution and Solution Sketch. Under this problem formulation, we design a
publish/subscribe protocol that satisfies a highly desirable set of requirements: publica-
tion correctness (i.e. clients obtain a data item if their subscription predicate is satisfied
by their interests and the data item’s topics), privacy against malicious adversaries (i.e.,
a malicious adversary corrupting any one of client, server or third party cannot extract
any information about interests, topics or data items) and efficiency (i.e., the publi-
cation, which is the real-time part of the protocol, only requires a small number of
private-key cryptography operations).

Our protocol is natural and simple, and uses pseudo-random functions [7] and sym-
metric encryption as cryptographic primitives (but could be implemented using only
information-theoretic tools). Our main technical contribution is that of representing
client’s interests and data item’s topics using two-layer cryptographic pseudonyms, re-
quiring only a few symmetric cryptography operations per (interest,topic) pair, and then
directly performing computation over such pseudonyms, by testing equality statements
without need for cryptographic operations. The computation of the topic pseudonyms
is performed by the server during publication (with a randomizer specific to the data
item) and the computation of the interest pseudonyms is split into two phases: the 1st
layer is computed by the client during subscription (with a client-specific randomizer)
and the 2nd layer is computed by the third party during publication (and given the ap-
propriate randomizer by the server). During publication, the third party can evaluate the
client’s subscription predicate using interest and topic pseudonyms, without any further
cryptographic operation. A high-level description can be found in Figure 1.

We prove privacy properties of our protocol using a natural adaptation of the real/ideal
security definition approach (frequently used in cryptography), and show that our pro-
tocol leaks no information to server and clients, and only minimal information to the
third party: the structure of each client’s subscription predicate (but not the client’s in-
terests) and how many (interest,topic) pairs match. We also describe measurements of
the protocol’s publication latency, which, for large and practical parameter ranges, is
only a small (≤ 6) constant slower than a publish/subscribe system with no privacy.

Related Work. Although there are a number of interesting publish/subscribe protocols
with various security or privacy properties (e.g., [8–14]), they do not our combined
functionality and privacy requirements for a mixture of reasons, including: a differ-

280 G. Di Crescenzo et al.

Server Third Party Client i

1-layer pseudonyms and predicate structure

item, topics

encryption of data item, topic pseudonyms, item-specific randomizer

key agreement

Generate 1-layer cryptographic
pseudonyms for all interests

Generate encryption of data item,
2-layer topic pseudonyms, with client-
specific and item-specific randomizers

(yes): forward
client-specific mesg

(no) check integrity tag,
decrypt to obtain data item

Init

Publish

Subscribe

client-specific randomizer

key agreement

Generate 2-layer interest pseudonyms.
Evaluate predicate structure using pseudonyms.

Fig. 1. Informal description of our publish/subscribe protocol

ent participant model (i.e., they typically consider entirely distributed models with no
servers or third parties), and a different set of capabilities and functionalities (i.e., they
typically target simple rules for content publication). Perhaps the closest solutions to
our paper are [8, 12], which use essentially the same participant model as ours. To the
best of our knowledge, no previous work presents rigorous modeling of security or pri-
vacy requirements for publish/subscribe systems or rigorous proofs that the proposed
solutions meet any such requirements.

2 Models and Definitions

In this section we detail definitions of interest during our investigation of private pub-
lish/subscribe protocols: data, participant, topology, network and protocol models and
publication correctness, privacy and efficiency requirements.

Data Model. We consider the following data objects or structures.

Data items. We represent the published data items as binary strings of length �d.

Dictionary and topics. To each data item, we associate d keyword tags, also denoted
as topics, taken from a known set, called the dictionary, assumed, for simplicity, to be
the set of all �t-bit strings. To each client, we associate c keyword tags, also denoted as
interests, taken from the dictionary.

Subscription predicate: for i = 1, . . . , n, a subscription from client Ci is formally
represented as a boolean predicate, denoted as pi, having equality statements of the type
“toph = intj” as inputs, where toph denotes the h-th topic associated with the current
data item and intj denotes the j-th interest associated with Ci, for h ∈ {1, . . . , d} and
j ∈ {1, . . . , c}. For each subscription predicate pi, we define the associated predicate

Efficient and Private Three-Party Publish/Subscribe 281

structure psi as the representation of the predicate obtained by replacing each equality
statement “toph = intj” with the pair (h, j). That is, each input to psi keeps pointers to
the same topic and the same interest as in pi, but does not explicitly contains the topic
and interest strings. (This allows parties to have some workable representation of the
predicate, without revealing the actual strings representing interests or topics).

Data items and associated topics are assumed to be streamed (at possibly large speed)
to the server. Generalizations to other data arrival scenarios are possible, but not further
discussed in this paper. We have, for simplicity, defined length and number variables
�d, �t, d, c as system parameters with value known to all parties; however, smaller values
for specific clients or data items can be accommodated by simple padding techniques.

Participant and Network Model. We consider the following types of participants,
all assumed to be efficient (i.e., running in probabilistic polynomial-time in a common
security parameter, denoted in unary as 1σ). A client is a party that submits subscription
updates based on his interests and a specific subscription predicate; we assume there are
n parties, denoted as C1, . . . , Cn; a generic client may also be denoted as C. The server
is the party, denoted as S, processing submitted data items (and associated topics) and
client interests to realize the publish/subscribe functionality. The third party, denoted
as TP , helps clients and servers to carry out their functions.

Each client is assumed to be capable of communicating with both the server and the
third party. All clients are capable to be communicating with each other, but are not
required to do so in our proposed protocol. For simplicity, we consider a confidential
and authenticated network (this assumption is without loss of generality as parties can
use a security protocol like TLS) with no packet loss. Additionally, we also restrict
to the scenario where server and third party are assumed to be always connected to
the network; clients are allowed to temporarily disconnect from the network (and thus
potentially not receive matching data items while disconnected).

Protocol Model. A publish/subscribe protocol includes the following subprotocols:

Init: S and TP may exchange messages with C1, . . . , Cn, to initialize their data struc-
tures and/or cryptographic keys. Formally, on input a security parameter 1σ, protocol
Init returns private outputs for all parties, denoted as outinS , outinTP , {outinC : ∀C}.
Subscribe: C submits his updated subscription (based on C’s set of interests and a
subscription predicate) to S (and possibly TP) who update their record of C’s sub-
scription. Formally, on input a security parameter 1σ to all parties, and a set of interests
int1, . . . , intc and a subscription predicate pi as private inputs of client Ci, for some
i ∈ {1, . . . , n} protocol Subscribe returns private outputs for all participants, denoted
as outsuS , outsuTP , {outsuC : ∀C}.
Publish: S distributes the data item to each client based on the item’s topics and the
clients’ interests and subscription predicate, possibly in collaboration with TP . In terms
of distribution strategy, this protocol follows the so-called ‘push mode’: as soon as a new
data item arrives, it is processed by S and TP and eventually sent to the appropriate
subset (or all) of the clients. Formally, on input a security parameter 1σ to all parties,
and a data item m and a set of topics top1, . . . , topd as private inputs of server S,
protocol Publish returns a (possibly empty) data item m as private output for (possibly
a subset of the) clients and additional private outputs for all participants, denoted as

282 G. Di Crescenzo et al.

outpuS , outpuTP , {outpuC : ∀C}. Generalizations to other distribution strategies, like the
so-called ‘pull mode’, are possible but not further discussed in this paper.

Requirements. Let σ be a security parameter. A function over the set of natural num-
bers is negligible if for all sufficiently large σ ∈ N , it is smaller than 1/p(σ), for
any polynomial p. Two distribution ensembles {D0

σ : σ ∈ N} and {D1
σ : σ ∈ N}

are computationally indistinguishable if for any efficient algorithm A, the quantity
|Prob[x ← D0

σ : A(x) = 1] − Prob[x ← D1
σ : A(x) = 1]| is negligible in σ (i.e.,

no efficient algorithm can distinguish if a random sample came from one distribution
or the other). A participant’s view in a protocol (or a set of protocols) is the distribution
of the sequence of messages, inputs and internal random coins seen by the participant
while running the protocol (or the set of protocols). We address publish/subscribe pro-
tocols that satisfy the following classes of requirements: correctness (i.e., correctness
of publication of data items to clients with matching predicate and interests), privacy
(i.e., privacy of data items, interests and topics against all protocol participants, and of
the subscription predicate against the third party), and efficiency (i.e., minimal time,
communication and round complexity). We will use the following requirements.

Publication Correctness: for each data item m and associated topics top1, . . . , topd,
each client Ci with subscription predicate pi and interests int1, . . . , intc, the probabil-
ity ε that, after an execution of Init on input 1σ, an execution of Subscribe on input
int1, . . . , intc, pi, and an execution of Publish on input m, top1, . . . , topd, one of the
following two events happens, is negligible in σ: (a) predicate pi is satisfied by interests
int1, . . . , intc and topics top1, . . . , topd but outpuCi

�= m; (b) predicate pi is not satisfied
by interests int1, . . . , intc and topics top1, . . . , topd but outpuCi

= m.

Privacy: We use a natural adaptation of the real/ideal and universal composability (see,
e.g., [15]) security frameworks, which are commonly used in the cryptography litera-
ture. Assume an environment E that delivers private inputs and randomness to all par-
ties, as needed in the publish/subscribe protocol lifetime. For any efficient (i.e., prob-
abilistic polynomial time) adversary Adv corrupting one of the three party types (i.e.,
client C, server S or third party TP), there exists an efficient algorithm Sim (called the
simulator), such that for any efficient environment algorithm E, Adv’s view in the “real
world” and Sim’s output in the “ideal world” are is computationally indistinguishable
to E, where these two worlds are defined as follows. In the real world, runs of the
Init, Subscribe and Publish subprotocols are executed, while Adv acts as the corrupted
party. In the ideal world, each run of the Init, Subscribe and Publish subprotocols
is replaced with an ‘ideal execution’ that is specifically designed to only reveal some
‘minimal information’, in addition to system parameters, inputs and outputs based on
the publish/subscribe funtionality and related condition (see, e.g.,[16]). Here, we choose
this minimal information to be the predicate structure psi and the evaluation results of
the ‘interest = topic’ equality statements inputs to psi for TP (and no additional in-
formation for C and S). Thus, we define these ideal executions of Init, Subscribe and
Publish as follows:
1. Ideal-Init, on input security parameter 1σ, returns all system parameters and an ok

string to all participants.
2. Ideal-Subscribe, on input a predicate p and a sequence of c interests int1, . . . , intc

from C, returns a predicate structure ps to TP and an ok string to C, S and TP .

Efficient and Private Three-Party Publish/Subscribe 283

3. Ideal-Publish, on input a data item m and a sequence of d topics top1, . . . , topd of
known length from S, returns an ok string to S and the following for each client
Ci: the data item m to Ci if predicate pi is satisfied by Ci’s interests and m’s topics
top1, . . . , topd; and the following to TP : the predicate structure psi and bits bhj
denoting which pairs (h, j) input to psi satisfy “topic(h)=interest(j)” (or not).

Efficiency: The protocol’s latency is measured as the time taken by a sequential exe-
cution of subprotocols Init,Subscribe,Publish (as a function of σ and other system
parameters). The protocol’s communication complexity (resp., round complexity) is de-
fined as the length (resp., number) of the messages, as a function of σ and other system
parameters, exchanged by C, S and TP during subprotocols Init,Subscribe,Publish.
Even if we will mainly focus our analysis on publication latency, our design targets
minimization of all the mentioned efficiency metrics.

Although we have focused our formalization on the correctness, privacy and efficiency
properties, we note that our design has targeted a number of additional security proper-
ties, which are however obtained using well-known techniques. Specifically, properties
like confidentiality of the communication between all participants, message sender au-
thentication, message receiver authentication, and communication integrity protection,
can be immediately obtained by using a security protocol like TLS. Other simple and
inexpensive steps to add security properties (i.e., to prevent TP to modify the encryp-
tion of the data item received by S before transferring it to the appropriate clients) are
directly discussed in the presentation of our protocol. In the rest of this document, we
describe our protocol, prove that it satisfies the above correctness and privacy require-
ments, and show some runtime analysis of its efficiency properties.

3 A Simple and Efficient Publish/Subscribe Protocol

In this section we describe our publish/subscribe protocol. We start with a formal state-
ment of the properties of our protocol, then discuss the known and new cryptographic
primitives used in the protocol, and give an informal description, a detailed description,
and a proof of the properties of our protocol.

Theorem 1. In the model of Section 3.1, there exists (constructively) a publish/subscribe
protocol satisfying the following properties:

1. publication correctness with error negligible in security parameter σ;
2. privacy against adversary Adv corrupting S, under no unproven assumption;
3. privacy against adversary Adv corrupting C, under no unproven assumption;
4. privacy against adversary Adv corrupting TP , assuming that F is a family of

pseudo-random functions and (KG,E,D) is a secure symmetric encryption scheme.

An important claim of our paper is that our protocol, in addition to satisfying The-
orem 1, has desirable performance on all efficiency metrics: round complexity, com-
munication complexity, subscription latency, and, especially, publication latency. Our
testing experiments and results on the latter metric can be found in Section 3.2.

284 G. Di Crescenzo et al.

3.1 Cryptographic Primitives and Properties Used

Our publish/subscribe protocols use the following cryptographic primitives or tools or
approaches: pseudo-random functions [7], symmetric encryption schemes, and 2-layer
cryptographic pseudonyms.

Pseudo-random Functions and Secure Symmetric Encryption Schemes. A pseudo-
random function F [7] maps a key k ∈ {0, 1}κ and an input x to an output y ∈ {0, 1}�,
for some values κ, � suitably related to the security parameter σ, and with the property
that to any efficient algorithm making queries to an oracle O, the case O = F (k, ·),
when k is randomly chosen, is computationally indistinguishable from the case O =
R(·), for a random function R with input and output of the same length. For our results,
F could be realized using standard cryptographic tools like block ciphers or crypto-
graphic hashing.

A symmetric encryption scheme [17] is a triple (KG,E,D), where KG, the key gen-
eration algorithm, returns a key k on input a security parameter 1κ; E, the encryption
algorithm, returns a ciphertext c on input a key k and a message m; D, the decryption
algorithm, returns a plaintext m′ on input a key k and a ciphertext c. For our results,
(KG,E,D) can be realized using textbook schemes based on block ciphers and pseudo-
random functions, which satisfy well accepted security notions such as security in the
sense of indistinguishability against chosen ciphertext attacks.

Two-Layer Cryptographic Pseudonyms. To protect the privacy of clients’ interests
and data item’s topics, we use cryptographic pseudonyms (possibly involving repeated
applications of F) so to later allow TP to perform computation directly on crypto-
graphic pseudonyms, instead of the individual interest and topic bits (as done in other
techniques like secure function evaluation). To enable equality checks between client
interests and item topics by the third party, the interests and topics’ pseudonyms will be
defined using the same pseudonym function pF , consisting of repeated application of
F , and defined as follows: on input x, function pF returns

F (ks,tp, F (ks,c(i), x|ri)|s),
where ks,c(i) is a key shared between S and Ci, ks,tp is a key shared between S and
TP , ri is a client specific randomizing nonce, and s is a data item specific randomizing
nonce. Building on [18], cryptographic pseudonyms use keys shared by different parties
and achieve the following: C can generate 1-layer interest pseudonyms, S can generate
topic pseudonyms, TP can check whether an interest pseudonym is equal to a topic
pseudonym, and leakage of both interests and topics to TP is prevented. Furthermore,
the computation of key ks,c(i) is re-randomized at each execution of the Subscribe
protocol and for each interest, using a random counter ctr and computing ks,c(i),j =
F (ks,c(i), ctr+j), for j = 1, . . . , c. We note that the function pF satisfies the following

Lemma 1. If F is a pseudo-random function the following holds: (1) if interest intj
and topic toph are equal, then so are the associated interest pseudonym pF (intj) and
topic pseudonym pF (toph); (2) if the interest intj and topic toph are distinct, then the
associated interest pseudonym pF (intj) and topic pseudonym pF (toph) are computa-
tionally indistinguishable from two random and independent strings of the same length.
(Hence, they are not different only with negligible probability).

Efficient and Private Three-Party Publish/Subscribe 285

Proof of Lemma. Part (1) of this fact follows from the fact that pF (intj) is computed
from intj in the same way as pF (toph) is computed from toph (i.e., using a triple
application of F , based on the same counter ctr, and the same randomizing nonces
ri, s, and the same keys ktp,s, ks,c(i),j). Part (2) of this fact follows by observing that
when intj �= toph, the function pF is pseudo-random (as so is F) and, when evaluated
on two distinct inputs, returns two outputs that are computationally indistinguishable
from two random strings of the same length. ��

In our publish/subscribe protocol, TP can compute 2-layer interest pseudonyms,
with help from client and server, and receive 2-layer topic pseudonyms from the server.
Later, it can then evaluate the client’s subscription predicate using interest and topic
pseudonyms as input, without further cryptographic operations. By Lemma 1, this is
equivalent, except with negligible probability, to evaluating the client’s predicate pi on
input interests and topics, but without any leakage of information about interests or
topics to any unintended parties. Depending on the result of the predicate evaluation,
TP sends or does not send an encrypted version of the data item to the client, who
decrypts it.

The privacy of interests and topics is guaranteed by the computation of cryptographic
pseudonyms via pseudo-random functions. The privacy of the data item is guaranteed
by use of encryption. We avoid TP to learn correlations among interests in the same
subscription (e.g., if the same interest is used more than once) by using an independent
key ks,c(i),j , computed using a key ks,c(i) and a random counter ctri, to compute the
pseudonym for each j = 1, . . . , c. We avoid TP to learn correlations among interests in
different subscriptions (e.g., if the same interest is used on two different subscriptions)
by randomizing the pseudonym computation with random nonce ri. We avoid TP to
learn correlations among topics in different data items (e.g., if the same topic appears
on two different data items) by randomizing the pseudonym computation with random
nonce s. We achieve high efficiency on publication latency as the Publish subprotocol
only requires highly efficient symmetric-key computations.

3.2 Detailed Description

We proceed with a formal description of our publish/subscribe protocol (see Figure 2
for a pictorial description, however omitting some steps for better clarity).

Preliminaries: This protocol assumes a point-to-point secure communication proto-
col such as TLS to be used for all exchanged communication, and suitable message
headers including protocol name, subprotocol name, and unique session, sender and
receiver ID’s. While for simplicity of presentation, we always refer to a single client C
in the description below, we note that in our multiple-client scenario, each client runs
C’s program described below (using independently chosen random strings), and the
other parties repeat their program, described below, for each of the clients (again, using
independently chosen random strings).

Init: Server S sets a key length parameter κ (e.g., κ = 128). Then S and each client
Ci, for i = 1, . . . , n, run a secure key-agreement protocol to jointly generate a ran-
dom and independent key ks,c(i) ∈ {0, 1}κ (such a protocol can be built using standard
cryptographic protocols [19] or even just requiring S to choose a key and send it to Ci).

286 G. Di Crescenzo et al.

Analogously, S and third party TP run a secure key-agreement protocol to jointly gen-
erate a random and independent key ks,tp ∈ {0, 1}κ. As a result of these subprotocols,
one symmetric key is shared by S and Ci but not by TP , and one key is shared by S and
TP but not by any of C1, . . . , Cn. Moreover, these keys will actually be used as inputs
to a pseudo-random function to generate, using standard techniques (e.g., a counter and
a block cipher like AES), an arbitrarily large number of pseudo-random keys with the
same property (i.e., being shared by only two of the parties).

Subscribe: Let C be a client with interests int1, . . . , intc, and a subscription predicate
p with predicate structure ps. In this operation, S, TP and client Ci, for some i ∈
{1, . . . , n}, run the following instructions:

1. Ci uniformly and independently chooses a random nonce ri ∈ {0, 1}� and a ran-
dom starting counter ctri ∈ {0, 1}�

2. For j = 1, . . . , c, Ci computes pseudo-random key ks,c(i),j = F (ks,c(i), ctri + j)
and 1-layer interest pseudonym ipij,1 = F (ks,c(i),j , (intj|ri))

3. Ci sends the current subscription predicate structure psi and 1-layer pseudonyms
(ipi1,1, . . . , ip

i
c,1) to TP

4. Ci sends (ri, ctri) to S
5. TP replacesCi’s 1-layer interest pseudonyms with the just received (ipi1,1, . . . , ip

i
c,1)

6. TP replaces Ci’s subscription predicate structure with the just received psi
7. S replaces Ci’s random nonce and counter with the just received (ri, ctri)

Publish: We assume that S receives a new data item m, with topics top1, . . . , topd. In
this operation, involving S, TP and clients C1, . . . , Cn, the parties run the following
instructions:

1. S uniformly and independently chooses a nonce s ∈ {0, 1}�
2. S computes data item ciphertext M = E(k,m) and Ki = E(ks,c(i), k), for i =

1, . . . , n
3. For j = 1, . . . , c and i = 1, . . . , n,

S computes ks,c(i),j = F (ks,c(i), ctri + j), using last ctri received from Ci

4. For each h = 1, . . . , d, j = 1, . . . , c and i = 1, . . . , n,
S computes 1-layer topic pseudonym tpih,j,1 as = F (ks,c(i),j , toph|ri))
S computes 2-layer topic pseudonym tpih,j,2 as = F (ks,tp, (tp

i
h,j,1|s))

5. S computes tags tagi = F (ks,c(i),M |Ki), for i = 1, . . . , n
6. S sends (M, s, {tpih,j,2 : h, j, i}, {(Ki, tagi) : i = 1, . . . , n}) to TP
7. For i = 1, . . . , n,

for j = 1, . . . , c,
TP computes 2-layer interest pseudonyms ipij,2 = F (ks,tp, (ip

i
j,1|s))

TP evaluates psi on input {tpih,j,2 : h, j, i} and {ipij,2 : j = 1, . . . , c}
if psi evaluates to 1, then TP sends (M,Ki, tagi) to Ci

if Ci receives a message (M,Ki, tagi),
if tagi �= F (ks,c(i),M |Ki) then Ci returns: “error” and halts.

else Ci computes k = D(ks,c(i),Ki), m = D(k,M) and returns: m.

In the rest of this section we discuss why our protocol satisfies publication correctness,
privacy and efficiency properties, as defined in Section 2.

Efficient and Private Three-Party Publish/Subscribe 287

Server Third Party Client i

{ipj1: j}, predicate structure psi

item, d topics

 M, s, {tphj2: h,j,i}, {Ki, tagi : i}

 does psi over
{tphj2=F(ks,tp,ipj1|s)}: h,j}
 evaluate to 1?

ksc(i)

randomly generate ri and ctri
{ipj1 = F(ks,c(i),j; interest(j)|r)): j =1,…,c}

M = E(ksc; item); tag=F(ksc;M)
randomly generate nonce s
for each h=1,…,d and j=1,…,c
 tphj2=F(ks,tp;F(ks,c,j;topic(h)|ri)|s)

(yes): M, Ki, tagi

(no)
check that tagi=F(ksc;M|Ki)
if yes, then item = D(ksc(i); M)

Init

Publish

Subscribe

ri and ctri

ks,tp

Fig. 2. Our publish/subscribe Protocol

3.3 Properties: Correctness, Privacy and Efficiency

Publication Correctness. We observe that a client Ci receives data item m from TP if
the subscription predicate structure psi returns 1 when its input equality statements are
evaluated over the interest and topic pseudonyms (rather than the interests and topics
themselves). However, we note that psi returns the same value, except with negligible
probability, regardless of whether the equality statements are evaluated over the inter-
est/topic pseudonyms or over the interests/topics. This latter claim, implying the publi-
cation correctness property, is implied by observing that there is a polynomial number
of interests and topics and by an application of Lemma 1.

Privacy. We achieve privacy against a malicious adversary Adv that corrupts any one
of the participants; i.e., either S, or TP , or a client Ci. The protocol only leaks val-
ues of global parameter (i.e., length parameters) and the intended protocol functionality
outputs (i.e., the data items to the matching clients) to clients or server. To the third
party, the protocol only leaks the following: the client’s predicate structure, but not the
interests, (here, we note that it is not unreasonable for a practical system to have the
client’s predicate structure as a known protocol parameter), and the bits bhj denoting
whether the j-th interest in a client’s subscription is equal to the h-th topic associated
with a data item (without revealing anything else about interests, topics or data items).
Actually, our proof extends to malicious adversaries that corrupts all clients or a subset
of them. We divide the formal proof into 3 cases, depending on whether Adv is corrupt-
ing S, TP , or a client Ci. In all cases, the simulation of the Init protocol directly fol-
lows from the simulation properties of the key agreement protocol used. Thus, we only

288 G. Di Crescenzo et al.

focus on the Subscribe and Publish subprotocols. Let m(S, TP) denote the message
(M, s, {tpih,j,2 : h, j, i}, {(Ki, tagi) : i = 1, . . . , n}) sent from S to TP .

Case Adv=S: Assume an adversary, denoted as Adv, corrupts S. For any such Adv, we
show a simulator Sim that produces a view for Adv in the ideal world (while posing as
S) that is computationally indistinguishable from Adv’s view in the real world (while
posing as S), during the execution of the Init, Subscribe and Publish protocols.

To simulate Adv’s view in the Subscribe subprotocol, Sim invokes the ideal Sub-
scribe functionality, which only returns an ok string to S, and then randomly chooses
a randomizing nonce ri and a random starting counter ctri for each client Ci, for
i = 1, . . . , n. Then Sim simulates the subscription message from Ci to S as (ri, ctri).

To simulate Adv’s view in the Publish subprotocol, on input the data item m and
the associated topics top1, . . . , topd, Sim invokes the ideal Publish functionality, which
only returns an ok string to S, and then runs Adv on input m, top1, . . . , topd to obtain
a message m(S, TP). If S does not return such a message, then Sim simply halts.

We note that for all three protocols, the simulation from Sim is perfect, in that the
distribution of Sim’s output (representing Adv’s view in the ideal world) and the dis-
tribution of Adv’s view in the real world are the same.

Case Adv=TP: Assume an efficient malicious adversary, denoted as Adv, corrupts TP .
For any such Adv, we show a simulator Sim that produces a view for Adv in the ideal
world (while posing as TP) that is computationally indistinguishable from Adv’s view
in the real world (while posing as TP), during the execution of the Init, Subscribe and
Publish protocols.

To simulate Adv’s view in the Subscribe subprotocol, Sim invokes the ideal Sub-
scribe functionality, which returns client Ci’s subscription predicate structure psi to
TP , and sends psi to Adv. Moreover, Sim randomly and independently chooses val-
ues ipi,·j,1 ∈ {0, 1}�, for j = 1, . . . , c, and sends them to Adv.

Finally, to simulate Adv’s view in the Publish subprotocol, Sim invokes the ideal
Publish functionality, which returns to TP bits bihj denoting whether equality “topic(h)
= interest(j)” in predicate pi is satisfied or not. Then, to simulate message m(S, TP),
Sim simulates each value in this message’s tuple either as a suitable encryption of
a random value of the appropriate length (which is known as it is a protocol param-
eter) or as the output of the appropriate length (also known as a protocol parame-
ter) of a pseudo-random evaluation, as follows. First of all, Sim randomly chooses
keys k′, s′, k′s,c(1), . . . , k

′
s,c(n), a data item m′, and hash tags tag′1, . . . , tag

′
n, and com-

putes an encryption M ′ = E(k′,m′) and encryptions K ′
i = E(k′s,c(i), k

′), for i =
1, . . . , n. Furthermore, to simulate the topic pseudonyms, Sim considers each equation
“topic(h)=interest(j)” in predicate structure psi, for each i = 1, . . . , n. If bihj = 0 (i.e.,

the equation does not hold), then Sim uniformly chooses a value tpi,·h,j,2. If bihj = 1

(i.e., the equation holds), then Sim sets value tpi,·h,j,2 = ipi,·j,2 = F (ks,tp, (ip
i,·
h,j,1|s)).

Finally, Sim can simulates m(S, TP) as (M ′, s′, {tpi,·h,j,2 : h, j, i}, {(K ′
i, tag

′
i) : i =

1, . . . , n}) and the message by TP to clients by simply running Adv’s program.
We now show that Sim’s output (i.e., Adv’s view in the ideal world) and Adv’s

view in the real world are computationally indistinguishable. With respect to the sim-
ulation of subprotocols Subscribe and Publish, we can prove that the simulation is

Efficient and Private Three-Party Publish/Subscribe 289

computationally indistinguishable from Adv’s view in the real world, as follows. First,
we observe that the only differences between the two views are the following:

1. the value M , an encryption of data item m, in Adv’s view vs. the value M ′, an
encryption of a random value of the same length, in Sim’s output: this difference
is proved to be computationally indistinguishable by using the security property of
the used symmetric encryption scheme;

2. the values tag1, . . . , tagn, where tagi is a MAC tag of (M,Ki), for i = 1, . . . , n,
in Adv’s view vs. the randomly chosen values tag′1, . . . , tag

′
n in Sim’s output: this

difference is proved to be computationally indistinguishable by using the pseudo-
randomness property of the used function F ;

3. the 1-layer interest pseudonyms ipij,1 in Adv’s view vs. the randomly chosen values

ipi,·j,1 in Sim’s output: this difference is proved to be computationally indistinguish-
able by using the pseudo-randomness property of the used function F ;

4. conditioned on the interest pseudonyms, the topic pseudonyms tpih,j,2 in Adv’s

view vs. the values tpi,·h,j,2 in Sim’s output: these values are equally distributed
when bihj = 1 (i.e., the equation holds) since they are computed in the same way in
both spaces, and are proved to be computationally indistinguishable when bihj = 1
(i.e., the equation does not hold) by using the pseudo-randomness property of F .

We then observe that by combining the above observations and a standard hybrid ar-
gument [17], we can prove that the entire Sim’s output and the entire Adv’s view in
the real world are computationally indistinguishable, assuming the pseudo-randomness
property of F and the security of the symmetric encryption scheme used.

Case Adv=C: Assume an adversary, denoted as Adv, corrupts a client Ci. For any
such Adv, we show a simulator Sim that produces a view for Adv in the ideal world
(while posing as Ci) that is computationally indistinguishable from Adv’s view in
the real world (while posing as Ci), during the execution of the Init, Subscribe and
Publish protocols. To simulate the Subscribe subprotocol, given as input interests
int1, . . . , intc and predicate pi, Sim invokes the ideal Subscribe functionality, which
only returns an ok string to Ci, and invokes C to obtain the messages for TP and
S. Finally, to simulate the Publish subprotocol, Sim invokes the ideal Publish func-
tionality, possibly obtaining (or not) data item m and topics top1, . . . , topd as output
for Ci, depending on whether the predicate pi is satisfied by topics top1, . . . , topd and
interests int1, . . . , intc or not. In the former case, Sim has to simulate the message
M,Ki, tagi from TP and can use data item m to do that perfectly, as follows. Sim
computes M ′ = E(ks,c(i),m), randomly chooses key k′ ∈ {0, 1}κ, and computes
K ′

i = E(ks,c(i), k
′) and tag′i = F (ks,c(i), (M

′|K ′
i)). By inspection, we see that the

simulation of subprotocol Init is perfect, in that the distribution of Sim’s output and the
distribution of Adv’s view in the real world are the same.

Efficiency. While it is easy to verify that our protocol is very efficient on the commu-
nication complexity, round complexity and subscription latency metrics, it is of special
interest to evaluate the publication latency metric, under varying parameter values. We
implemented both our protocol, called P1, and a publish/subscribe protocol, called P0,
that performs no additional cryptographic operation, other than using the TLS protocol

290 G. Di Crescenzo et al.

on all messages between parties. The testing was done on a collection of 6 Dell Pow-
erEdge 1950 processors and one Dell PowerEdge 2950 processor. We divided clients
in groups of size 25 each, and each group was run on each of 4 PowerEdge 1950 pro-
cessors. The server was run on a dedicated 1950 processor, the third party was run on
dedicated 1950 processor, and the testing control was run on the 2950 processor. All
initialization, subscription, and publication traffic was run over a dedicated gigabit Eth-
ernet LAN. Testing control and collection of timing measurement traffic was isolated
on a separate dedicated gigabit Ethernet LAN.

1.1183

1.2925

1.4316
1.4048

0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0.016

25 50 75 100

P0 P1

5.6 2.8 2.3
1.6

1.3

1.3

1.2
1.07

1.08
1.02

1.09
1.06

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

1 2 5 10 20 30 40 50 60 69 79 88

P0 P1

5 2

1.45

1.37

0

0.05

0.1

0.15

0.2

0.25

0.3

 1,000 10,000 100,000 1,000,000

P0 P1

Fig. 3. Publication Latency Measurements for P1 and P0

We compared P1 and P0 under varying values for one of the following parameters: the
total number of clients, the length of the data item and the number of matching clients.
The initial parameter setting was: 100 clients, 10 matching clients per publication, 10
interests, 10 topics, and 1 publication of a 10K data item per second, where the match-
ing predicate is the OR of all possible equalities between an interest and a topic. (We
restricted to this predicate as in our protocol more complex predicates require no addi-
tional cryptographic operation other than TLS processing.) Under this setting, in Fig-
ure 3, the top left chart reports the max latency vs the number of clients when the latter
varies from 25 to 100; the top right chart reports the max latency vs the size of the data
item varying from 1K to 1M; the bottom chart reports the max latency vs the number
of matching clients varying from 1 to 88. The labels on P1 columns indicate the ratio
of the P1 latency to the P0 latency. In all three cases, the P1 latency is at most a small
(1.5, 5, and 6, respectively) constant worse than the latency in P0 and scales well as the
parameter increases.

Efficient and Private Three-Party Publish/Subscribe 291

Acknowledgements. This work was supported by the Intelligence Advanced Research
Projects Activity (IARPA) via Department of Interior National Business Center
(DoI/NBC) contract number D12PC00520. The U.S. Government is authorized to re-
produce and distribute reprints for Governmental purposes notwithstanding any copy-
right annotation hereon. Disclaimer: The views and conclusions contained herein are
those of the authors and should not be interpreted as necessarily representing the offi-
cial policies or endorsements, either expressed or implied, of IARPA, DoI/NBC, or the
U.S. Government.

References

1. Eugster, P.T., Felber, P., Guerraoui, R., Kermarrec, A.M.: The many faces of pub-
lish/subscribe. ACM Comput. Surv. 35(2), 114–131 (2003)

2. Yao, A.C.C.: How to generate and exchange secrets (extended abstract). In: FOCS, pp. 162–
167 (1986)

3. Impagliazzo, R., Rudich, S.: Limits on the provable consequences of one-way permutations.
In: STOC, pp. 44–61 (1989)

4. Goldreich, O., Micali, S., Wigderson, A.: How to play any mental game or a completeness
theorem for protocols with honest majority. In: STOC, pp. 218–229 (1987)

5. Rabin, T., Ben-Or, M.: Verifiable secret sharing and multiparty protocols with honest major-
ity (extended abstract). In: STOC, pp. 73–85 (1989)

6. Feige, U., Kilian, J., Naor, M.: A minimal model for secure computation (extended abstract).
In: STOC, pp. 554–563 (1994)

7. Goldreich, O., Goldwasser, S., Micali, S.: How to construct random functions. J. ACM 33(4),
792–807 (1986)

8. Raiciu, C., Rosenblum, D.S.: Enabling confidentiality in content-based publish/subscribe
infrastructures. In: SecureComm, pp. 1–11 (2006)

9. Minami, K., Lee, A.J., Winslett, M., Borisov, N.: Secure aggregation in a publish-subscribe
system. In: WPES, pp. 95–104 (2008)

10. Shikfa, A., Önen, M., Molva, R.: Privacy-preserving content-based publish/subscribe net-
works. In: Gritzalis, D., Lopez, J. (eds.) SEC 2009. IFIP AICT, vol. 297, pp. 270–282.
Springer, Heidelberg (2009)

11. Tariq, M.A., Koldehofe, B., Altaweel, A., Rothermel, K.: Providing basic security mecha-
nisms in broker-less publish/subscribe systems. In: DEBS, pp. 38–49 (2010)

12. Choi, S., Ghinita, G., Bertino, E.: A privacy-enhancing content-based publish/subscribe sys-
tem using scalar product preserving transformations. In: Bringas, P.G., Hameurlain, A.,
Quirchmayr, G. (eds.) DEXA 2010, Part I. LNCS, vol. 6261, pp. 368–384. Springer, Hei-
delberg (2010)

13. Ion, M., Russello, G., Crispo, B.: Supporting publication and subscription confidentiality in
pub/sub networks. In: Jajodia, S., Zhou, J. (eds.) SecureComm 2010. LNICST, vol. 50, pp.
272–289. Springer, Heidelberg (2010)

14. Pal, P., Lauer, G., Khoury, J., Hoff, N., Loyall, J.: P3S: A privacy preserving publish-
subscribe middleware. In: Narasimhan, P., Triantafillou, P. (eds.) Middleware 2012. LNCS,
vol. 7662, pp. 476–495. Springer, Heidelberg (2012)

15. Canetti, R.: Universally composable security: A new paradigm for cryptographic protocols.
In: FOCS, pp. 136–145 (2001)

16. Di Crescenzo, G., Ostrovsky, R., Rajagopalan, S.: Conditional oblivious transfer and timed-
release encryption. In: Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592, pp. 74–89.
Springer, Heidelberg (1999)

292 G. Di Crescenzo et al.

17. Goldwasser, S., Micali, S.: Probabilistic encryption. J. Comput. Syst. Sci. 28(2), 270–299
(1984)

18. Brickell, E., Di Crescenzo, G., Frankel, Y.: Sharing block ciphers. In: Clark, A., Boyd,
C., Dawson, E.P. (eds.) ACISP 2000. LNCS, vol. 1841, pp. 457–470. Springer, Heidelberg
(2000)

19. Diffie, W., Hellman, M.E.: New directions in cryptography. IEEE Transactions on Informa-
tion Theory 22(6), 644–654 (1976)

	Efficient and Private Three-Party Publish/Subscribe
	1 Introduction
	2 Models and Definitions
	3 A Simple and Efficient Publish/Subscribe Protocol
	3.1 Cryptographic Primitives and Properties Used
	3.2 Detailed Description
	3.3 Properties: Correctness, Privacy and Efficiency

	References

