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Abstract. With the rapid advance of the Internet, a large amount of
sensitive data is collected, stored, and processed by different parties. Data
mining is a powerful tool that can extract knowledge from large amounts
of data. Generally, data mining requires that data be collected into a cen-
tral site. However, privacy concerns may prevent different parties from
sharing their data with others. Cryptography provides extremely power-
ful tools which enable data sharing while protecting data privacy.
In this paper, we briefly survey four recently proposed cryptographic
techniques for protecting data privacy in distributed settings. First, we
describe a privacy-preserving technique for learning Bayesian networks
from a dataset vertically partitioned between two parties. Then, we de-
scribe three privacy-preserving data mining techniques in a fully dis-
tributed setting where each customer holds a single data record of the
database.

1 Introduction

The advances in networking, data storage, and data processing make it easy to
collect data on a large scale. Data, including sensitive data, is generally stored by
a number of entities, ranging from individuals and small businesses to national
governments. By sensitive data, we mean the data that, if used improperly, can
harm data subjects, data owners, data users, or other relevant parties. Data
mining provides the power to extract useful knowledge from large amounts of
data. However, most data mining techniques need to collect data from different
parties; in many situations, privacy concerns may prevent different parties from
sharing their data with others. An important technical challenge is how to enable
data sharing while protecting data privacy.

Data privacy is an important issue to both individuals and organizations.
Loosely speaking, data privacy means the ability to protect selected information
against selected parties. More precise definitions of data privacy have been pre-
sented in different circumstances. It is still an area of active study to determine
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the best definition of data privacy in an environment where many uses are to be
enabled (some of which are unknown at the time of initial data processing) and
many privacy requirements are to be met (again, some of which are unknown at
the time of initial data processing).

Privacy-preserving data mining provides methods that can compute or ap-
proximate the output of a data mining algorithm without revealing at least part
of the sensitive information about the data. Existing solutions can primarily be
categorized into two approaches. One approach adopts cryptographic techniques
to provide secure solutions in distributed settings (e.g., [LP02]). Another ap-
proach randomizes the original data so that certain underlying patterns, such
as the distribution of values, are retained in the randomized data (e.g., [AS00]).
Generally, the cryptographic approach can provide solutions with perfect ac-
curacy and perfect privacy. In contrast, the randomization approach is much
more efficient than the cryptographic approach, but appears to suffer a tradeoff
between privacy and accuracy.

In principle, the elegant and powerful paradigm of secure multiparty com-
putation provides general-purpose cryptographic solutions for any distributed
computation [GMW87,Yao86]. However, because the inputs of data mining al-
gorithms are huge, the overheads of the general-purpose solutions are intolerable
for most applications. Instead, research in this areas seeks more efficient solutions
for specific functions.

Privacy-preserving algorithms have been proposed for different data mining
applications, including privacy-preserving collaborative filtering [Can02], deci-
sion trees on randomized data [AS00], association rules mining on randomized
data [RH02,ESAG02], association rules mining across multiple databases [VC02,
KC02], clustering [VC03, JW05, JPW06], and naive Bayes classification [KV03,
VC04]. Additionally, several solutions have been proposed for privacy-preserving
versions of simple primitives that are very useful for designing privacy-preserving
data mining algorithms. These include finding common elements [FNP04,AES03],
computing scalar products [CIK+01,AD01,VC02,SWY04,FNP04,GLLM04], and
computing correlation matrices [LKR03].

In this paper, we survey four of our recently proposed cryptographic privacy-
preserving techniques for data mining in distributed settings [YW06,YZW05b,
ZYW05, YZW05a]. Specifically, we consider two different distributed settings.
In the first setting, data is distributed between two parties. The challenge is
to protect data privacy while enabling the cooperation among those parties.
In Section 3, we describe a privacy-preserving solution for the two parties to
compute a Bayesian network on their distributed data.

In the second setting, called the fully distributed setting, each party holds
one record of a virtual database. The fully distributed setting is particularly well
suited towards the setting of mobile ad hoc networks because each party retains
control of its own information. The parties can decide when they are and are not
willing to participate in various data mining tasks. In this setting, we consider
the scenario where a data miner wants to carry out data mining applications.
The challenge is to enable the miner to learn the results of data mining tasks



while protecting each party’s privacy. We describe privacy-preserving solution
for three tasks in the fully distributed model in Section 4.

2 Privacy Definition in Secure Multiparty Computation

In this work, we define privacy by adapting the general privacy definition in
secure multiparty computation [GMW87,Yao86,Gol04]. As usual, we make the
distinction between semi-honest and malicious adversaries in the distributed
setting. Semi-honest adversaries only gather information and do not modify the
behavior of the parties. Such adversaries often model attacks that take place
after the execution of the protocol has completed. Malicious adversaries can
cause the corrupted parties to execute some arbitrary, malicious operations.
Here, we review the formal privacy definition with respect to semi-honest adver-
saries [Gol04].

Definition 1. (privacy w.r.t semi-honest behavior) Let f : (x1, · · · , xm) →
(y1, · · · , ym) be an m-ary function and denote (x1, · · · , xm) by x. For I =
{i1, · · · , it} ⊆ [m] = {1, · · · , m}, we let fI(x) denote y = {yi1 , · · · , yit

} and
let

∏
be a m-party protocol for computing f . The view of the ith party dur-

ing an execution of
∏

is denoted by viewi(x) which includes xi, all received
messages, and all internal coin flips. For I = {i1, · · · , it}, we let viewI(x) =
(viewi1(x), · · · , viewit

(x)). We say that
∏

privately computes F against up to t
semi-honest adversaries if for all I ⊆ {1, . . . , m} (|I| = t), for all x, there exists
a probabilistic polynomial-time algorithm (a simulator), denoted S, such that

{S((xi1 , · · · , xit
), f(x))}

c

≡ {(viewI(x),OUTPUT(x), }

where OUTPUT(x) denotes the output of all parties during the execution repre-
sented in viewI(x).

This definition asserts that the view of the parties in I can be efficiently simulated
based solely on their inputs and outputs. In other words, the adversaries can-
not learn anything except their inputs and final outputs. The privacy definition
related with malicious adversaries can be found in [Gol04]. For two-party compu-
tation, privacy can be defined in a way slightly different from the above [Gol04].

3 Privacy-Preserving Distributed Data Mining

Cryptographic techniques provide the tools to protect data privacy by exactly
allowing the desired information to be shared while concealing everything else
about the data. To illustrate how to use cryptographic techniques to design
privacy-preserving solutions to enable mining across distributed parties, we de-
scribe a privacy-preserving solution for a particular data mining task: learning
Bayesian networks on a dataset divided among two parties who want to carry out
data mining algorithms on their joint data without sharing their data directly.



3.1 Bayesian networks

A Bayesian network (BN) is a graphical model that encodes probabilistic rela-
tionships among variables of interest [CH92]. This model can be used for data
analysis and is widely used in data mining applications.

Formally, a Bayesian network for a set V of m variables is a pair (Bs, Bp).
The network structure Bs = (V, E) is a directed acyclic graph whose nodes are
the set of variables. The parameters Bp describe local probability distributions
associated with each variable. There are two important issues in using Bayesian
networks: (a) Learning Bayesian networks and (b) Bayesian inferences. Learning
Bayesian networks includes learning the structure and the corresponding param-
eters. Bayesian networks can be constructed by expert knowledge, or from a set of
data, or by combining those two methods together. Here, we address the problem
of privacy-preserving learning of Bayesian networks from a database vertically
partitioned between two parties; in vertically partitioned data, one party holds
some of the variables and the other party holds the remaining variable.

3.2 The BN Learning Protocol

A value x is secret shared (or simply shared) between two parties if the parties
have values (shares) such that neither party knows (anything about) x, but given
both parties’ shares of x, it is easy to compute x. Our protocol for BN learning
uses composition of privacy-preserving subprotocols in which all intermediate
outputs from one subprotocol that are inputs to the next subprotocol are com-
puted as secret shares. In this way, it can be shown that if each subprotocol is
privacy-preserving, then the resulting composition is also privacy-preserving.

Our solution is a modified version of the well known K2 protocol of Cooper
and Herskovitz [CH92]. That protocol uses a score function to determine which
edges to add to the network. To modify the protocol to be privacy-preserving, we
seek to divide the problem into several smaller subproblems that we know how
to solve in a privacy-preserving way. Specifically, noting that only the relative
score values are important, we use a new score function g that approximates
the relative order of the original score function. This is obtained by taking the
logarithm of the original score function and dropping some lower order terms.

As a result, we are able to perform the necessary computations in a privacy-
preserving way. We make use of several cryptographic subprotocols, including
secure two-party computation (such as the solution of [Yao86], which we ap-
ply only on a small number of values, not on something the size of the original
database), a privacy-preserving scalar product share protocol (such as the solu-
tions described by [GLLM04]), and a privacy-preserving protocol for computing
x lnx (such as [LP02]). In turn, we show how to use these to compute shares of
the parameters αijk and αij that are required by the protocol.

Our overall protocol of learning BNs is described as follows. In keeping with
cryptographic tradition, we call the two parties engaged in the protocol Alice
and Bob.



Input: An ordered set of m nodes, an upper bound u on the number of parents
for a node, both known to Alice and Bob, and a database D containing n
records, vertically partitioned between Alice and Bob.

Output: Bayesian network structure Bs (whose nodes are the m input nodes,
and whose edges are as defined by the values of πi at the end of the protocol)

As the ordering of variables in V , Alice and Bob execute the following steps at
each node vi. Initially, each node has no parent. After Alice and Bob run the
following steps at each node, each node has πi as its current set of parents.

1. Alice and Bob execute privacy-preserving approximate score protocol to
compute the secret shares of g(i, πi) and g(i, πi ∪ {z}) for any possible addi-
tional parent z of vi.

2. Alice and Bob execute privacy-preserving score comparison protocol to com-
pute which of those scores in Step 1 is maximum.

3. If g(i, πi) is maximum, Alice and Bob go to the next node vi+1 to run from
Step 1 until Step 3. If one z generates the maximum score in Step 2, then z
is added as the parent of vi such that πi = πi ∪ {z} and Alice and Bob go
back to Step 1 on the same node vi.

4. Alice and Bob run a secure two-party computation to compute the desired
parameter αijk/αij .

Further details about this protocol can be found in [YW06], where we also
show how a privacy-preserving protocol to compute the parameters Bp. Experi-
mental results addressing both the efficiency and the accuracy of the structure-
learning protocol can be found in [KRWF05].

4 Privacy Protection in the Fully Distributed Setting

In this section, we consider the fully distributed setting, in which each party
holds its own data record. Together these records make a “virtual database”.
We assume there is a data miner that wants to learn some information about
this virtual database. We call each of the data-holding parties “respondents”.

First, let us consider a typical scenario of mining in the fully distributed set-
ting: the miner queries large sets of respondents, and each respondent submits
her data to the miner in response. Clearly, this can be an efficient and con-
venient procedure, assuming the respondents are willing to submit their data.
However, the respondents’ willingness to submit data is affected by their pri-
vacy concerns [Cra99]. Furthermore, once a respondent submits her data to the
miner, the privacy of her data is fully dependent on the miner. Because the miner
is interested in obtaining a good and accurate response rate, the protection of
respondents’ privacy is therefore important to both the success of data min-
ing and the respondents. By using cryptographic techniques, we describe three
techniques for different mining or data collection tasks in the fully distributed
setting.



4.1 Privacy-Preserving Learning Classification Model

In this section, we provide a privacy-preserving protocol to enable a data miner
to learn certain classification models without collecting respondents’ raw data
such as to protect respondents’ privacy in the fully distributed setting.

To solve this problem, we propose a simple efficient cryptographic approach
which provides strong privacy for each respondent and does not give up any
accuracy as the cost of privacy. The critical technique is a frequency-learning
protocol that allows a data miner to compute frequencies of values or tuples of
values in the respondents’ data without revealing the privacy-sensitive part of
the data. Unlike general-purpose cryptographic protocols, this method requires
no interaction between respondents, and each respondent only needs to send a
single flow of communication to the data miner. However, we are still able to
ensure that nothing about the sensitive data beyond the desired frequencies is
revealed to the data miner. We note that this choice of computation can itself be
considered a tradeoff between privacy and utility. On one hand, the frequencies
have reasonably high utility, as they can be used to enable a number of different
data mining computations, but they have less privacy than requiring a different
privacy-preserving computation of each kind of data mining computation the
miner might later carry out with the frequencies. On the other hand, (except
in degenerate cases), the frequencies have less utility than sending the raw data
itself, but more privacy.

The protocol design is based on the additively homomorphic property of
a variant of ElGamal encryption, which has been used in, e.g., [HS00]. The
protocol itself uses the mathematical properties of exponentiation, which allows
the miner to combine encrypted results received from the respondents into the
desired sums.

Let G be a group where |G| = q and q is a large prime, and let g be a
generator of G. All computations in this section are carried out in the group G.
We assume a prior set-up that results in each respondent Ui having two pairs of
keys: (xi, Xi = gxi), (yi, Yi = gyi). Define

X =

n∏

i=1

Xi (1)

Y =

n∏

i=1

Yi (2)

The values xi and yi are private keys (i.e., each xi and yi is known only to
respondent Ui); Xi and Yi are public keys (i.e., they can be publicly known). In
particular, the protocol requires that all respondents know the values X and Y .
In addition, each respondent knows the group G and the common generator g.

In this protocol, each respondent Ui holds a Boolean value di, and the miner’s
goal is to learn d =

∑n

i=1
di. The privacy-preserving protocol for the miner to

learn the frequency d is shown in Figure 1.
Using the frequency-learning protocol, we can design a privacy-preserving

protocol to learn naive Bayes classifiers which are enabled solely by frequency



Ui → miner : mi = gdi
· Xyi ;

hi = Y xi .

miner: r =
Qn

i=1

mi

hi

;

for d = 1 to n

if gd = r output d.

Fig. 1. Privacy-Preserving Protocol for Frequency Mining.

computation. Details about this protocol can be found in [YZW05b]. To test the
efficiency of the protocol, we implemented the Bayes classifier learning protocol
by using OpenSSL libraries, and we ran a series of experiments in the NetBSD
operating system running on an AMD Athlon 2GHz processor with 512M mem-
ory, using 512 bit cryptographic keys. Figure 2 studies how the server’s (miner’s)
learning time changes when both the respondent number and the attribute num-
ber vary. In this experiment, we fixed the domain size of each non-class attribute
to four and the domain size of the class attribute to two.
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Fig. 2. Server’s Learning Time for Naive Bayes Classifier vs. Number of respondents
and Number of Attributes

4.2 Fully Distributed k-Anonymization

The frequency-learning protocol can be used to learn only the models which are
enabled by frequency computation. However, very often a data miner wants to



collect the respondents’ data for the general purpose such that those data can
be used for learning any model. An intuitive solution is that each respondent
submits their data without any identifiers such that the miner cannot link each
respondent with their submitted data and then respondents’ privacy can be pro-
tected. However, even if the respondents’ data do not include explicit identifiable
attributes, respondents may often still be identified by using a set of attributes
that act as “quasi-identifiers,” e.g., {date of birth, zip code}. By using quasi-
identifiers, Sweeney [Swe02b] pointed out a privacy attack in which one can find
out who has what disease using a public database and voter lists.

K-anonymization was first proposed by Samarati and Sweeney [SS98] to ad-
dress the privacy problem of quasi-identifiers. The basic idea is that a data table
is k-anonymized by changing some attributes such that at least k rows have the
same quasi-identifier. The existing k-anonymization methods work in the central-
ized setting in which the data table is located in. K-anonymization techniques
include suppression and generalization methods. Suppression methods substi-
tute the values of some attributes in quasi-identifiers with * but generalization
methods substitute the values with more general ones.

K-anonymization of data can be viewed as another privacy/utility trade-
off. It publishes data that is not as useful as the original data, but that is in-
tended to be more private. However, existing k-anonymization techniques (such
as [Swe97,SS98,Sam01,Swe02b,Swe02a,MW04,BA05]) assume that the data is
first available in a central location and then modified to produce k-anonymous
data. In contrast, we add additional privacy protections to the k-anonymization
process: distributed respondents holding their own data interact with a miner so
that the miner learns a k-anonymized version of the data but no single partic-
ipant, including the miner, learns extra information that could be used to link
sensitive attributes to corresponding identifiers.

We give two different formulations of this problem:

• In the first formulation, given a table, the protocol needs to extract the
k-anonymous part (i.e., the maximum subset of rows that is already k-
anonymous) from it. The privacy requirement is that the sensitive attributes
outside the k-anonymous part should be hidden from any individual respon-
dent including the miner. This formulation is only suitable if the original
table is already close to k-anonymous, as otherwise the utility of the result
will be significantly reduced.

• In the second formulation, given a table, the protocol needs to suppress
some entries of the quasi-identifier attributes, so that the entire table is k-
anonymized. The privacy requirement is that the suppressed entries should
be hidden from any individual participant. This formulation is suitable even
if the original table is not close to k-anonymous.

In [ZYW05], we present efficient solutions to both formulations. Our solu-
tions use cryptography to obtain provable guarantees of their privacy properties,
relative to standard cryptographic assumptions. Our solution to the first prob-
lem formulation does not reveal any information about the sensitive attributes
outside the k-anonymous part. Our solution to the second problem formulation



is not fully private, in that it reveals the k-anonymous result as well as the dis-
tances between each pair of rows in the original table. We prove that it does
not reveal any additional information. Our protocols enhance the privacy of k-
anonymization by maintaining end-to-end privacy from the original data to the
final k-anonymous results.

4.3 Anonymity-Preserving Data Collection

We next consider another task in the fully distributed setting, which can again be
considered as different point on the utility/privacy tradeoff. This task is suitable
for data collection when the data is considered to provide sufficient privacy as
long as it can be collected anonymously (i.e., without the data collector learning
which data belongs to which respondent). An example of this scenario might be
if the miner is a medical researcher who studies the relationship between dining
habits and a certain disease. Because a respondent does not want to reveal what
food she eats and/or whether she has that disease, she may give false information
or decline to provide information. However, even if each respondent’s data does
not contain any identifiable attribute, the privacy of each respondent cannot
be guaranteed because the miner can link the respondent’s identity with their
submitted data through the communication channel, e.g., by IP address. One
possible solution is that the miner collects data anonymously. That is, he collects
records from the respondents containing each respondent’s dining habits and
health information related to that disease, but does not know which record came
from which respondent. In some settings, this idea that a response is “hidden”
among many peers is enough to make participants respond.

We generalize this idea to propose an approach called anonymity-preserving
data collection. Specifically, we propose that the miner should collect data in such
a way that he is unable to link any piece of data collected to the respondent who
provided that piece of data. In this way, respondents do not need to worry about
their privacy. Furthermore, the collected data is not modified in any way, and
thus the miner will have the freedom to apply any suitable mining algorithms to
the data. As discussed above, this is therefore only useful for providing privacy
if each respondent’s data does not contains identifiable attributes and if the
responses themselves do not provide too many clues to the respondent’s identity.

We summarize our protocol here. Respondents are divided into many smaller
groups of size N , in which the respondents’ data are denoted by (d1, . . . , dN ). A
larger N will provide more anonymity but less efficiency, and vice versa. Our goal
is that the miner should obtain a random permutation of the respondents’ data
(d1, . . . , dN ), without knowing which piece of data comes from which respondent.
To achieve this goal, we use ElGamal encryption together with a rerandomiza-
tion technique and a joint decryption technique. In the ElGamal encryption
scheme, one cleartext has many possible encryptions, as the random number r
can take on many different values. ElGamal supports rerandomization, which
means computing a different encryption of M from a given encryption of M . A
related operation is permutation of the order of items, which means randomly
rearranging the order of items. If we rerandomize and permute a sequence of



ciphertexts, then we get another sequence of ciphertexts with the same mul-
tiset of cleartexts but in a different order. Looking at these two sequences of
ciphertexts, the adversary cannot determine any information about which new
ciphertext corresponds to which old ciphertext.

In our solution against semi-honest players including all respondents and
the miner, t of the N respondents act as “leaders”. Leaders have the special
duty of anonymizing the data. At the beginning of the protocol, all respondents
encrypt their data using a public key which is the product of all leaders’ public
keys. Note that the private key corresponding to this public key is the sum of
all leaders’ private keys; without the help of all leaders, nobody can decrypt
any of these encryptions. The leaders then rerandomize these encryptions and
permute them. Finally, the leaders jointly help the miner to decrypt the new
encryptions, which are in an order independent of the original encryptions. By
using digital signature and non-interactive zero-knowledge proofs, we also design
the protocols against malicious miner and respondents. Further details can be
found in [YZW05a].

To measure the efficiency of our protocols in practice, we implemented them
using the OpenSSL libraries and measured the computational overhead. In our
experiments, the length of cryptographic keys is 1024 bits. The environment used
is the NetBSD operating system running on an AMD Athlon 2GHz processor
with 512M memory. In the protocol against semi-honest participants, we measure
the computation times of the three types of participants: regular (i.e., non-leader)
respondents, leaders, and the miner. A regular respondent’s computation time
is always about 15ms regardless N and t. A leader’s computation time is linear
in N and does not depend on t. For a typical scenario where N = 20, the
computation time of a leader is about 0.47 seconds. The miner’s computation
time is linear in both N and t. For a typical scenario where N = 20 and t = 3,
the computation time of the miner is about 40ms. In the protocol against the
malicious miner, the leader has a 10% increase over the corresponding overhead
of the semi-honest protocol. The increased overhead for regular participants and
the miner is negligible.

5 Discussion

We have described several privacy-preserving protocols. This remains a ripe area
for research. We briefly describe some areas worthy of further investigation.

In practice, participants in a privacy-preserving protocol might behave ma-
liciously in order to gain maximum benefits from others. Most existing work on
very efficient privacy-preserving data mining, including most of ours, only pro-
vides the protocols against semi-honest adversaries. Although in principle those
protocols can be modified using a general method to defend against malicious
behaviors, the overhead of doing so is intolerable in practice. An important area
for future research is the design of efficient mining protocols that remain secure
and private even if some of the parties involved behave maliciously.



Because it aims to guarantee strong privacy for all possibilities, the general
definition of privacy in secure multi-party computation is very strictly defined.
Cryptographic approaches can achieve perfect privacy in principle, but one typi-
cally pays a high computational price for such privacy. For specific applications,
a relaxed privacy definition might help to design efficient solutions while still be
good enough to satisfy practical privacy requirements. Computing approximate
mining results rather than the accurate ones might also help get the benefit
of efficiency. A particularly interesting question is whether one can identify the
quantitative tradeoff among efficiency, privacy, accuracy, and utility, as well as
identifying solutions that achieve “good” points in that tradeoff space.

Another interesting question is how to deploy privacy-preserving techniques
into practical applications. The techniques of privacy-preserving distributed data
mining can be used to learn models across distributed databases. Is it feasible
to define a general toolkits which are suitable for all kinds of databases with
different data types? Another question is how to implement our methods without
introducing covert channels to breach any party’s privacy.

Particularly in the fully distributed setting, a question that remains is how
to ensure either that participants provide accurate data, or that the miner can
produce results in a way that is not heavily dependent on all the data being
accurate. Although cryptographic techniques can force each participant to follow
the protocol specifications so as to protect data privacy, but they cannot prevent
participants from providing faked data to the protocols. Anonymity and privacy
remove some disincentive for participants to provide fake data, but it would also
be useful to design mechanisms that specifically incent participants to provide
their original data.
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