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Abstract. We consider privacy-preserving learning in the context of online learning. In
settings where data instances arrive sequentially in streaming fashion, incremental training
algorithms such as stochastic gradient descent (SGD) can be used to learn and update
prediction models. When labels are costly to acquire, active learning methods can be
used to select samples to be labeled from a stream of unlabeled data. These labeled data
samples are then used to update the machine learning models. Privacy-preserving online
learning can be used to update predictors on data streams containing sensitive information.
The differential privacy framework quantifies the privacy risk in such settings. This work
proposes a differentially private online active learning algorithm using stochastic gradient
descent (SGD) to retrain the classifiers. We propose two methods for selecting informative
samples. We incorporated this into a general-purpose web application that allows a non-
expert user to evaluate the privacy-aware classifier and visualize key privacy-utility tradeoffs.
Our application supports linear support vector machines and logistic regression and enables
an analyst to configure and visualize the effect of using differentially private online active
learning versus a non-private counterpart. The application is useful for comparing the
privacy/utility tradeoff of different algorithms, which can be useful to decision makers in
choosing which algorithms and parameters to use. Additionally, we use the application to
evaluate our SGD-based solution and to show that it generates predictions with a superior
privacy-utility tradeoff than earlier methods.
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1. Introduction

The literature on differentially private data classification has grown rapidly to cover a variety
of applications, algorithms and perturbation mechanisms [1, 19, 30, 43]. In this work, we are
interested in a comparatively less investigated area: the incorporation of differential privacy
into online learning schemes that frequently update the classifier models. In particular, we
are interested in private online active learning wherein online classifier adaptation is achieved
by diverting a fraction of the streamed samples to a human expert for labeling, and the
classifier is updated using the human-labeled samples in a privacy-preserving manner.

Online learning differs from traditional machine learning in that data becomes available
for training in a sequential manner rather than having initial access to the entire dataset.
One rationale for using these online schemes is that a classifier that is dynamically updated
to reflect the recent statistics of the streaming data can make more accurate predictions. An
example of such a scenario is automatic screening of baggage at airports where the contents
of passengers’ baggage can vary due to weather conditions. A classifier that is updated
according to newly streamed data is likely to be more accurate than a static classifier.

An important application area for the online learning setting is anomaly detection
where data-driven machine learning approaches can yield effective anomaly detectors in a
wide range of applications [10, 13, 29, 38, 56]. Classical hypothesis testing approaches for
detecting anomalous data samples often rely on known or partially known statistical models
of anomalous vs. non-anomalous instances. However, in many real-world applications, these
models may not be known and so must be learned from data before deployment or may be
refined in an online manner after deployment. For example, spam filters for email may be
trained on an existing corpus and then tuned based on user feedback [39].

However, when these data streams in online applications contain personally identifiable
information (PII) or sensitive personal information (SPI), privacy can be a significant concern.
For example, auditing of financial transactions, fraud investigation in medical billing, and
various national security applications entail sifting through sensitive information about
individuals in order to find anomalous behaviors or entities. Therefore, it is imperative
that the predictions or model parameters of the machine learning algorithm do not reveal
information about the stream dataset used for learning the model. This problem is especially
acute in the online setting where each update to the classification rule can potentially expose
information about the data points that are used to perform the update. Differential privacy
has been proposed by Dwork et al. [16] to address the fundamental question of the privacy
risk incurred by publishing functions of private data. Since its introduction, differentially
private algorithms have been proposed for a wide range of applications by several different
research communities in the machine learning domain [1, 7, 11, 20, 28, 32, 41, 47, 49, 57]

In this work, we explore differentially private online active learning for scenarios where
a “human in the loop” must do the labeling of selected samples. Active learning algorithms
choose a subset of the data points using some selection criteria and only those data points
are used to update the classifier. In anomaly detection problems, for example, where
anomalies are relatively rare and the labeling of anomalies requires the human expert,
the cost of acquiring a large labeled training set may be high. Thus, reducing the total
number of labeled points needed can be particularly useful when the labeling costs may
be prohibitively expensive. Additionally, by using only more informative points according
to some informativeness metric, classifiers can potentially achieve improved accuracy. We
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apply standard differential privacy techniques to control the privacy risk incurred by each of
these steps at the cost of some loss in accuracy, or utility.

Many machine learning practitioners may lack a sense for the tradeoffs between privacy
and accuracy entailed by the use of privacy preserving algorithms. It is challenging to
understand how theoretical guarantees translate into practical application on different
datasets, especially with a wide scope of parameter and model configurations. This lack of
familiarity can make practitioners hesitant to adopt differentially private methods. One of
the motivations of this work is to enable a human expert to understand how the different
configurations of differentially private active learning algorithms can affect performance.

The contributions of this work are twofold:

• We propose an algorithm to perform a differentially private classification in the active
learning setting.
• We provide an implementation and evaluation of a software system that can create, update,

and release differentially private machine learning models using an online active learning
modality

Our first contribution is a differentially private active learning algorithm. Information
about the training stream is revealed when updating the classifier, selecting the points to be
labeled, and choosing the timing of the updates. In other words, when using active learning
in the online setting, both the selection rule and the update rule may reveal information
about the training data. To privately update the classifier, we use the popular private
stochastic gradient framework (SGD) [7, 14, 20, 49, 50] to perform stream-based online
learning. For private selection under active learning, we modify a selection rule based on
informative sample selection proposed by Tong and Koller [52]. Although privacy was not a
consideration in the Tong-Koller paper, our modification enables us to leverage data point
informativeness along with randomization to meet differential privacy guarantees.

Our second contribution is a software tool that enables exploratory analysis of our online
learning system. Our tool allows analysts to develop their intuition about the tradeoffs
between privacy, model adaptation and classification performance, and allow users to choose
values for various parameters. Given the active learning component, it is necessary to enable
the user to visualize the change in the classifier’s performance as new data streams in, and
to relate the classifier’s behavior to the privacy parameters. In this work, we describe key
aspects of the software architecture and the tool that we implemented to test and evaluate
differentially private active learning schemes.

Selector Collector
wTbatch
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Figure 1. Block diagram of stream-based active screening and private
updates. The dashed line indicates what is published by the algorithm.

1.1. Algorithmic approach. The general strategy of our algorithm is shown in Figure 1.
We do not assume the samples are adaptive or can depend on the current value of the
classifier. The goal is to learn a classifier which minimizes the expected risk over an (unknown)



4 BITTNER, BRITO, GHASSEMI, RANE, SARWATE, AND WRIGHT

distribution from which the data is drawn. The input data consists of a stream of unlabeled
feature vectors whose labels (anomalous or non-anomalous) are known to an oracle (an
expert who can label the points). At each time, the algorithm chooses whether to request
a label from the oracle. Labeled points are collected over time and processed in batches,
possibly at a slower rate. When a batch of labeled points is processed, the classification rule
is updated and the time and the current classification rules are published. To select points for
screening, the algorithm can use randomized response [54] or the exponential mechanism [37]
to decide whether to select a given training sample. We instead use a modified version of
the active learning heuristic of Tong and Koller [52] within the exponential mechanism [37]
to improve the usefulness of the selected points for the learning task.

With randomized selection, the classifier update step could immediately use differentially
private stochastic gradient descent (SGD) [7, 14, 49, 50]. However, due to the noise needed for
differential privacy, the algorithm might potentially converge much more slowly in spite of the
improved point selection process. Instead, to obtain better performance while still achieving
privacy, we propose two mini-batching strategies, which we call fixed-length selection windows
(FLSW) and fixed-length mini-batch (FLMB). The FLSW strategy computes model updates
after fixed time intervals using a variable-sized mini-batch of points selected within the
previous window. The FLMB strategy computes model updates after a pre-specified number
of points has been selected. While FLSW uses variable memory and batch size, FLMB uses
fixed memory and batch size. We evaluate both strategies and implement the one resulting
in better predictor performance. The algorithm publishes updates to its detection rule as
well as the time of the updates.

In Section 3 we provide a privacy analysis of our proposed algorithm. The privacy proofs
follow from the properties of the basic differentially private mechanisms that we employ in
our selection and update procedures. A utility analysis is more challenging in this setting:
there is no analysis of the Tong-Koller method [52] even for the non-private setting. While
some more recent works in the literature [5, 6] provide guarantees on the number of required
queries or alternatively provide regret bounds [34], the heuristics used in this paper for
point selection do not allow for straightforward application of such analysis techniques. We
therefore leave providing theoretical utility guarantees as future work.

We give an empirical evaluation of tradeoffs between label complexity, privacy, and error
for our method in the context of anomaly detection.

1.2. Software System. The software prototype system provides tools which enable decision
makers to perform exploratory analysis of a private online learning system and develop
intuitions about how differentially private classifiers perform in comparison to traditional
counterparts. In Section 5 we describe the prototype in detail. The system provides detailed
performance metrics for the classifier and its training. In particular, it updates these
measures after each batch in the online processing environment to illustrate how selecting
new data points affects the performance.

The system also allows users to test under different selectable conditions such as dataset,
features, classifier and noise model, and training and privacy parameters. The tool currently
implements linear support vector machine (SVM) and logistic regression algorithms in both
their private and non-private versions. Other kinds of classification algorithms can be readily
added as long as differentially private mechanisms can be designed for their static (i.e.,
non-active) versions. Users can tune specific model parameters for privacy, optimization,
batch size, and sample selection configurations.
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This system will enable machine learning practitioners to better understand the practical
implications of differential privacy. It allows practitioners to develop intuitions about the
tradeoffs between accuracy and privacy and how different configurations can affect the ratios
of these tradeoffs. The goal of the system is to encourage practitioners to feel more confident
about the results of adopting differentially private systems.

2. Preliminaries

We consider a model, shown in Figure 1, in which a collection Dx = {xt ∈ Rd : t = 1, 2, . . .}
of samples is presented to a learning algorithm in an online manner. We assume all data
points are bounded, so

‖xt‖ ≤M. (2.1)

Associated with each sample point xt is a (hidden) label yt, which is known to an oracle
O. In the anomaly detection context, the vector xt specifies the value of measured features
about an event or individual observed at time t, and the label yt ∈ {−1,+1} indicates
whether the sample is anomalous. Let D = {(xt, yt)} be the labeled dataset. The feature
vectors, but not the labels, are given to the online learning algorithm. The algorithm must
decide at each time t whether to query the oracle for the label of xt or discard it before
observing the next sample. The goal of the algorithm is to learn a classifier w that assigns a
correct label ŷ to a feature vector x. The labels are assigned by applying the sign function
to the inner product of w and x, i.e. ŷ = sgn(〈w,x〉).

The state of the algorithm is given by the current classifier w. At each time t =
1, 2, . . . , N , the state is wt and the algorithm makes two choices. First, it selects whether or
not to request the label yt from the oracle. Second, it can choose to update the classifier/state
wt and publish the resulting update. We consider models in which wt is updated based on
new labeled data; updates are either based on a fixed schedule (if there is no new labeled
data the algorithm publishes the previous state) or based on the number of new labeled
points. We call the time between updates a selection window . The algorithm requires
a buffer that keeps the labeled points during each selection window until the end of the
window.

The overall output of the algorithm over n iterations is the sequence of classifier
estimates {wt : t = 1, 2, . . . , n} or alternatively the pairs of update time and update
{(Ti,wTi) : i = 1, 2, . . .}, which determine the times {Ti} when the algorithm chooses to
update the classifier.

Support vector machine: We use support vector machine (SVM) to find a classifier by
approximately solving the following regularized risk minimization problem:

min
w∈Rd

f(w) = R(w) + EP [`h(w; (x, y))] , (2.2)

where (x, y) is a sample-label pair such that x ∈ Rd and y ∈ Y = {−1, 1}, P is the underlying
joint distribution of the pair (x, y), and R(w) = λ

2‖w‖
2 is a regularizer. The loss function

`h is defined as the hinge loss `h(w; (x, y)) = [1− y 〈w,x〉]+, which is convex. Throughout
this paper, we use words sample, data point, and instance interchangeably to refer to x.

For a training set of labeled points S (which in our case will be the subset of the
data points whose points have been labeled), the SVM algorithm minimizes the regularized
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empirical risk as a proxy for (2.2):

min
w∈Rd

f(w) = R(w) +
1

|S|
∑

(x,y)∈S

`h(w; (x, y)). (2.3)

In the online setting, we assume that the true distribution P is unknown to the machine learn-
ing algorithm. Instead, the learner is presented sequentially with samples {xi : i = 1, 2, . . .}
drawn from the marginal distribution PX . The regularized empirical risk minimization
framework includes many classification and regression problems, we use SVM for simplicity
of exposition.

Differential privacy: Differential privacy [16] is a statistical method for measuring the
privacy risk from publishing functions of private data. In our setting, the private data is the
set of pairs {(xt, yt) : t = 1, 2, . . .}. For a finite time horizon n, consider two data streams
that differ in a single point, say at time κ:

D = (x1, y1), (x2, y2), . . . , (xκ, yκ), (xκ+1, yκ+1), . . . , (xn, yn)

D = (x1, y1), (x2, y2), . . . , (x′κ, y
′
κ), (xκ+1, yκ+1), . . . , (xn, yn),

where all data vectors satisfy (2.1). We call such databases neighboring. We call a randomized
algorithm A, operating on D, ε-differentially private if the presence of any individual data
point does not change the probability of the algorithm output A(D) ∈ C by much, for any set
of C. Formally, we say algorithm A provides ε-differential privacy if for any two neighboring
databases D and D’ and any set of outputs C,∣∣∣∣log

P(A(D) ∈ C)
P(A(D′) ∈ C)

∣∣∣∣ ≤ ε, (2.4)

where A(D) is the output of A on the dataset D.
For the online algorithms described above, the output set would consist of n-tuples of

classifiers {wt : t = 1, 2, . . . , n}. Thus, we are interested in controlling the total amount
of privacy risk ε due to both the selection of points for updating the classifiers as well as
the updated classifiers. In the differential privacy threat model, an adversary observes the
output of the algorithm and attempts to infer whether the outcome came from input D or D′;
successful adversarial inference would mean that the adversary would learn whether (xκ, yκ)
or (x′κ, y

′
κ) was in the data stream. The parameter ε controls how difficult this hypothesis

test is, bounding the tradeoff between false alarm and missed detection (Type I and Type
II) errors [31, 55].

Privacy-preserving stream-based learning: Because our procedure reveals the classi-
fiers over time, an adversary observes both the updates and the timing of updates. This
means that potentially, the selection of points whose labels we query as well as the classifier
updates must guarantee a total ε-differential privacy. To gain insight, let us consider two
extremes.

The first example in Algorithm 1 simply asks for all labels and sets corresponding
classifiers to zero. Next, it performs one update at time n using a batch ε-differentially
private SVM training method such as objective perturbation [11]; we call this DPERM in
Algorithm 1. Since the algorithm selects all points, the point selection process trivially
guarantees differential privacy, and the SVM training is differentially private from previous
results [11]. This approach has high label complexity and high computation cost from
training an SVM on the entire dataset at time n.
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Algorithm 1 Batch SVM

Input: ε, stream {xt}.
Initialize: w0 = 0, S0 = ∅.
for t = 1 to n do

Ask oracle O for label yt of xt.
St ← St−1 ∪ {(xt, yt)}.
Set wt = wt−1.

end for
Update wt using DPERM(Sn, ε).
Output wt.

Algorithm 2 Private Stochastic Gradient Descent

Input: ε, stream {xt}, step sizes {ηt}
Initialize: w0 = 0
for t = 1 to n do

Ask oracle O for label yt of xt.
Update wt using DPSGD(wt−1,xt, yt, ηt, ε).
Output wt.

end for

On the other end of the update-frequency spectrum, we have Algorithm 2, which simply
performs noisy stochastic gradient updates that guarantee differential privacy [50]. Again,
this algorithm asks for the label of every data point and the updates are performed in a
differentially private way, so the overall algorithm guarantees ε-differential privacy. This
approach has low per-iteration complexity.

In settings where the learning algorithm is processing private or sensitive data, we would
like to limit the privacy risk by not querying the labels of many points. It is also beneficial
to limit the number of labels that must be queried in cases where training labels for anomaly
detection must be generated by costly experts. In the next section, we describe how to use
ideas from active learning to design algorithms that trade off label complexity, privacy, and
classifier accuracy in this setting.

3. SVM Private Active Learning

In our system model, both the sample selection and classifier update must be made differ-
entially private. In anomaly detection problems we are concerned with label complexity.
When selecting samples for labeling, we would like to select points that are informative. We
use a heuristic introduced by Tong and Koller [52] for training a support vector machine
(SVM) using active learning. Their approach uses an informativeness measure based on the
closeness to a hyperplane estimate w. In our model, the informativeness of point x with
respect to a hyperplane w is measured by its closeness to the hyperplane. Let

d(x,w) ,
| 〈w,x〉 |
‖w‖

(3.1)

The informativeness is
c(x,w) = exp (−d(x,w)) ∈ [0, 1].
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Tong and Koller originally suggested this method for active learning in the pool-based setting:
at iteration t the learner would select the point xi with the largest informativeness c(xi,w)
and ask the oracle for the label. The algorithm then estimates a new w by retraining an
SVM on the entire data set.

In our model, samples come in sequentially, so we define

c(t) = c(xt,wt) (3.2)

at time t. In a non-private selection strategy, if the informativeness of sample xt meets a
certain threshold τ , then the learner queries the oracle to obtain yt and updates the classifier.
Otherwise, it discards xt and waits for the next instance while setting wt+1=wt. Note that
the condition c(t) > τ is equivalent to d(xt,wt) < log 1

τ , which means that the sample xt is

within a selection slab of width 2 log 1
τ around wt. We call this an online active learning

strategy.

3.1. Differentially Private Point Selection. As mentioned earlier, the active learning
algorithms we propose here make two decisions at each time t: first, whether to request the
label yt and add (xt, yt) to the training set, and secondly, whether to update the classifier so
that wt+1 6= wt. We refer to our selection strategy as an online T-K (Tong-Koller) strategy.
The original T-K heuristic’s decision to query was deterministic, so to guarantee privacy
we must randomize both the decision to query and the gradient step. At time t, based on
the current state wt, the algorithm selects xt to be labeled based on whether it passes the
informativeness threshold. We can therefore use randomized mechanisms to select whether
to label the point or not. When the algorithm decides to update wt we can use private
stochastic gradient descent (SGD) [7, 50].

Bernoulli selection: The simplest approach is to compare the informativeness c(t) to a
threshold and then use randomized response [54] to select the point. More formally, for
parameters p > 1/2 and τ , the selection variable st ∼ Bern(p) if c(t) ≥ τ and st ∼ Bern(1−p)
if c(t) < τ . Standard arguments imply that this provides εber = log p

1−p differential privacy

(Lemma 4.1).

Exponential selection: A strategy that is more in the spirit of the Tong-Koller method
uses the exponential mechanism [37]. Consider a threshold on d(·, ·), so that we consider
d(·, ·) ≤ b and d(·, ·) > b as separate cases. Within the selection slab defined by b, the
algorithm selects points with constant probability. Outside the slab it selects with probability
that decays exponentially with the distance.

Let

q(t) =

{
e−bε/∆ d(xt,wt) ≤ b
e−d(xt,wt)ε/∆ d(xt,wt) > b

= exp (−max {b, d(xt,wt)} · ε/∆) (3.3)

where ∆ = (1− b
M )M and ε > 0. For this strategy, st ∼ Bern(q(t)). In this way, every point

has a chance of being selected, so the adversary cannot infer whether an observed point is
inside the selection slab or not. However, more informative points are still more likely to be
selected. The privacy guarantee of this method is given in Lemma 4.2.
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3.2. Differentially Private Update. In addition to making the point selection private, we
must also make the update step private. We consider two strategies based on mini-batching:
the fixed-length selection window (FLSW) policy, which updates after a fixed number of
time steps, and the fixed-length mini-batch (FLMB) policy, which updates after a fixed
number of selected points. Both strategies use a mini-batch update rule. Mini-batching is a
well-known method in stochastic optimization for machine learning to control the variance
of the subgradient estimates. In a privacy preserving algorithm, it also provides ambiguity
in the contribution of each member of the mini-batch to the approximate gradient [49].

To retain the privacy of the users whose data are present in D, during gradient update
step, one method is to follow the differentially private SGD update [50]. In this method,
a controlled noise term zt is added to each update. More specifically, in order to make
updates εg-differentially private, we add a random noise vector zt ∈ Rd drawn i.i.d. from
the following probability distribution:

P(z) = γe−(εg/2M)‖z‖ (3.4)

where M is an upper bound on every xi ∈ DX and γ is a normalizing constant.
For a labeled point (x, y) let

u = 1(`h(w; (x, y)) > 0) (3.5)

be the indicator that the hinge loss is positive. For a batch B = {(xt, yt)} of B = |B| points,
the differentially-private mini-batch update rule is given by

w′ = w − η

(
λw − 1

B

∑
t∈B

ytxtut +
1

B
z

)
(3.6)

where z ∼ P(z) in (3.4), ut is given by (3.5), η is the learning rate, and λ is the regularization
parameter.

Fixed-length selection windows (FLSW):. In this update method, the learner collects
labeled samples into a batch B during an interval of length N where the data stream has
length n > N . It updates the classifier at a rate slower than it observes incoming samples:
once every N observations. Since the adversary can only see the updates in wt when t
mod N = 0, we can take advantage of the ambiguity in the number of the samples selected
during the N -length interval. An extreme version of the FLSW rule is the immediate update
rule, which takes N = 1.

Fixed-length mini-batches (FLMB):. Here, before updating the classifier, the algorithm
waits until a mini-batch of L labeled instances are collected. As before, the algorithm needs
to decide whether or not to select a given sample for labeling immediately after it observes
the sample. Thus the batch B has size B = L in update rule (3.6). Unlike the FLSW
method, the number of labeled samples in a batch is fixed. However, the adversary can
observe the number of samples that are observed by the algorithm in each interval before L
samples are selected. For the first L− 1 samples in the batch, the selection result (to label
or not to label) for each observation is not available to the adversary, and this ambiguity in
the index of the labeled samples provides privacy. By construction, the index – but not the
value – of the Lth labeled sample is indeed visible to the adversary. Privacy guarantees for
FLMB are discussed in the next section.
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Algorithm 3 FLSW update with randomized screening

Input: εs, εg, stream {xt}, step sizes {ηt}, λ, N , batch B.
Initialize: w0 = 0 and B = ∅.
for t = 1 to n do

Use εs-DP method and wt−1 to decide whether to ask oracle O for label yt of xt.
if yt labeled by O then

Add (xt, yt) to B.
end if
if t mod N = 0 then

Update wt using (3.6) with wt−1, εg, ηt, λ and batch B.
Set B = ∅.
Output wt.

else
Set wt = wt−1.

end if
end for

Algorithm 4 FLMB update with randomized screening

Input: εs, εg, stream {xt}, step sizes {ηt}, λ, L, batch B.
Initialize: w0 = 0 and B = ∅.
for t = 1 to n do

Use εs-DP method and wt−1 to decide whether to ask oracle O for label yt of xt.
if yt labeled by O then

Add (xt, yt) to B.
end if
if |B| = L then

Update wt using (3.6) with wt−1, εg, ηt, λ and batch B.
Set B = ∅.
Output wt.

else
Set wt = wt−1.

end if
end for

4. Analysis

We now quantify the differential privacy guarantees under our models and update procedures.
We compare the utility performance of the different methods empirically. As mentioned
in the introduction, providing theoretical guarantees in terms of label complexity for our
method is challenging. Some works in the literature (see e.g. [5, 6]) obtain such guarantees
by carefully quantifying the reduction in the version space at every step of the point selection
procedure of their proposed algorithms. This approach is however not applicable to our
method since our subset selection rules do not permit a clear analysis of the version space
reduction. The main idea behind the selection rules in this paper is the following: since the
current SVM hyperplane wt is the center of the largest hypersphere that can fit inside the
current version space [52], points closer to current classifier are more “likely” to halve the
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current version space (see Tong and Koller [52] for a more detailed discussion). However,
even in the non-private scenario, we cannot quantify the reduction in the version space.
This is even more challenging in the differentially private scenarios where we introduce
randomness to the point selection rule. Therefore, we leave theoretical analysis of the label
complexity of our methods as an open question.

4.1. Privacy Analysis for Individual Steps. In the proofs of the theorems in this section,
let st ∈ {0, 1} indicate whether the algorithm queries the label of the tth point. We begin
with privacy guarantees for the selection steps and mini-batch steps that make up the
algorithm.

Bernoulli selection strategy: Lemma 4.1 bounds the privacy risk of the Bernoulli selection
strategy.

Lemma 4.1. Consider an online active learning algorithm with the Bernoulli selection
strategy as described in Section 3.1 with p > 1

2 . Assuming that the most recent value of wt

is public, this query strategy is εber-differentially private, where εber = log
(

p
1−p

)
.

Please refer to Appendix A.1 for the proof.

Exponential selection strategy: Lemma 4.2 presents the privacy guarantee provided by
the exponential mechanism.

Lemma 4.2. Consider an online active learning algorithm with the exponential selection
strategy as described in Section 3.1. Suppose that b in (3.3) satisfies exp(−bεexp/∆) ≤ 1/2.
Assuming that the most recent value of wt is public, this query strategy is εexp-differentially
private.

Please refer to Appendix A.2 for the proof.

Mini-batch update:

Lemma 4.3. The gradient step in (3.6) with batch B is εg-differentially private.

Please refer to Appendix A.3 for the proof.

4.2. Immediate Update. As a baseline, we analyze the FLSW scheme with window size
N = 1, which corresponds to immediate updates. Standard composition theorems [31, 36]
allows us to find the overall differential privacy guarantee under each scenario under either
Bernoulli or exponential sampling.

Corollary 4.4. Each update in Algorithm 3 with N = 1 is εg-differentially private.

Proof. The proof follows from Lemma 4.3 with batch size B = 1.
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Theorem 4.5. The FLSW algorithm in Algorithm 3 with N = 1 is (εs + εg)-differentially
private.

Please refer to Appendix A.4 for the proof. The immediate update strategy provides a
baseline performance against which to compare the two mini-batch strategies in Algorithms
3 and 4.

4.3. Mini-batch Update with FLSW. Under the FLSW policy, updates happen every
N observations. Privacy stems from the fact that the individual point selections within this
interval of length N are hidden, and only the updates {wkN} are revealed.

Selection step: Each update of the classifier in the FLSW algorithm consists of N differ-
entially private selection steps. The only conclusion an adversary can make with regards
to the selection process by observing the decision vectors {wkN}, is whether any samples
have been selected in the kth window or not. Therefore, we consider only two events: one
where no sample has been selected at all, i.e., Sk = 0, and the other where at least one
sample is selected to be queried for its label, i.e., Sk = 1. First, consider the case where
w(k+1)N = wkN , which means that st = 0 for all kN ≤ t ≤ (k + 1)N . In this worst case
scenario, there is no ambiguity as to which points have been selected during the given
window. Thus, the privacy guarantee for Sk = 0 is the same as when we use the immediate
update.

When Sk = 1, the information revealed is always less than when the selection result
for every observation is available to the adversary, which happens in the immediate update
scenario. Consequently, the privacy guarantee here is also no worse than that of the selection
strategies in the immediate update method, which means that the entire selection step in
the FLSW mini-batch method is εs-differentially private.

Gradient step: The following Corollary states the privacy guarantee provided for a mini-
batch gradient update.

Corollary 4.6. The gradient update step in Algorithm 3 (FLSW) is εg-differentially private.

Proof. The proof follows from Lemma 4.3 with batch size Bk.

Note that the guarantee in this Corollary is εg-DP by design of the gradient step.
Because each step averages Bk points, the effective noise per sample is reduced by a factor
of Bk. Since the gradient step is less noisy, the performance of the algorithm should improve,
empirically. However, because the batch size varies in each length-N epoch, the noise level
will also be variable. As we will see, this variability can affect the empirical performance
of the FLSW method. For larger N the expected batch size E[Bk] will be larger, so longer
windows can help improve performance at the expense of a (possibly) larger buffer size for
the learning algorithm.

4.3.1. Overall Privacy Guarantees.

Theorem 4.7. The FLSW algorithm in Algorithm 3 with general N guarantees at most
(εs + εg)-differential privacy.

Please refer to Appendix A.5 for the proof.
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Figure 2. Classifier performance as a function of number of iterations and
the number of labels requested for the KDD Cup 1999 dataset.

4.4. Mini-batch Update with FLMB. As mentioned earlier, the adversary can see the
number of data points observed by the learner before it collects L labeled points. By
randomizing the selection process and the gradient update rule, we guarantee differential
privacy of the FLMB mini-batch algorithm. In this section, we discuss this guarantee.

Selection step: In FLMB, the adversary does not discover whether any sample is selected
or not, but finds out how many samples are observed before L samples are selected for
re-labeling and updating the model. For the Lth sample in the batch, the adversary discovers
the index of the data stream at which the batch B was completed. Privacy results from the
differential privacy model, in which the adversary does not know whether the value of any
given sample in the retraining batch D is the same as, or different from, the value of the
corresponding sample in his adjacent data stream D′. This argument applies also to two
corner cases, namely (1) L = 1 (2) L sample points are observed and all of them are selected.
For all other cases, parameters of the Bernoulli or exponential selection strategies can be
chosen to provide εs-DP during the sample selection process, based on Lemmas 4.1 and 4.2.

Gradient step: The FLMB method guarantees a fixed batch size of L samples per iteration.
Thus for the same privacy guarantee εg, it uses a factor L less noise.

Corollary 4.8. The gradient update step in in Algorithm 4 is εg-differentially private.

Proof. The proof follows from Lemma 4.3 with batch size L.

4.4.1. Overall Privacy Guarantees.

Theorem 4.9. The FLMB algorithm in Algorithm 4 with batch size L guarantees at most
(εs + εg)-differential privacy.

Proof. Please refer to Appendix A.6 for the proof.

4.5. Evaluation of Our Theoretical Approach.
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Dataset and preprocessing: We apply our classification methods on the KDD Cup 1999

dataset [40], which contains information about network intrusion detection and closely
matches our anomaly detection motivation. For this paper, our dataset is composed of about
494,000 samples, out of which the first 400,000 samples are used to extract training and
validation data, while the final 94,000 samples are used as the test dataset(also called the
evaluation dataset). The task is to build an intrusion detection model that can differentiate
“normal” network connections from “intrusions” or “attacks”. As a preprocessing step,
we remove two irrelevant features (numoutbound_cmds and is_host_login) and convert 7
remaining categorical features into binary vectors. This process leaves us with 120 features.
We then project all entries of both data sets onto the unit ball.

Evaluation procedure: In this section, we set differential privacy guarantees εg = 1 and
εs = 1. We set p = e/(1 + e) to make the Bernoulli selection processes also 1-differentially
private. Parameter b in (3.3) is set to 0.2. We used step sizes ηt = η/t and found values of
η and the regularization parameter λ using cross-validation1. Unless stated otherwise, the
threshold τ in Bernoulli strategies is set to e−0.2 ≈ 0.8. At every classifier update iteration
we add noise according to (3.4), and the iterate is projected onto the uniform ball. We
averaged the results obtained over 10 random permutations of training data streams. The
error bars in Figure 3 are 1-standard deviation error bars.

Error rate over time: Fig. 2a shows the misclassification error rates of FLSW and FLMB
update methods. For both FLSW and FLMB, we set the selection window size to 5. We
observe that even though all of the methods show fast convergence to their limit value, due
to the added gradient noise we see a small gap between the non-private batch error rate
and the limit error rates of our proposed methods. After processing many samples, progress
slows due to the small step size in the SGD iterations. This shows the trade-off between
privacy and accuracy in our algorithms. We observe that, in general, the FLMB performance
tends to be better than the FLSW performance. We conjecture that the fixed batch size
controls the variance of the subgradient steps in the SGD iterations.

Error rate versus label cost: A comparison between different methods based on Fig. 2a
would not be fair as each method uses a different number of labeled points. Therefore we
compare the error rates against number of labeled points. Fig. 2b shows the misclassification
error rates as a function of label costs, assuming that each label costs 1 unit to acquire.
Observe that the FLMB method is more efficient than FLSW in the sense that it achieves
better error rates for a given label budget. We believe this is because for our choice of
parameters, the number of labeled points per iteration, denoted by B in (3.6), in FLSW
is smaller than or equal that of FLMB. This means, according to update rule (3.6), larger
mini-batches are selected and smaller noise is added to the iterate during an FLMB update.

We note that in our FLSW experiment in this section, the values on the label complexity
axis (x-axis) are not equally spaced and the spaces also differ across experiments over
different permutations. In order to address this issue, we use piece-wise linear interpolation
and sample the interpolated iterate values at the desired equally spaced points.

1We did not use differential privacy to select these parameters, although this approach could also be used as
suggested by Chaudhuri and Vinterbo [12]



15

0 2 4 6 8 10 12 14 16 18 20
Batch Size

0

20

40

60

80
Er

ro
r R

at
e

KDD -- Error rate After 200 Labeled Samples

0 2 4 6 8 10 12 14 16 18 20
Batch Size

0

20

40

60

80

Er
ro

r R
at

e

MNIST -- Error rate After 100 Labeled Samples
Figure 3. Classifier performance as a function of batch size for FLMB with
Bernoulli strategy

0 100 200 300 400 500 600 700 800 900 1000
# Observed Instances

0

200

400

600

800

# 
La

be
le

d 
In

st
an

ce
s Fixed Slab

Bernoulli FLSW
Bernoulli FLMB

0 100 200 300 400 500 600 700 800 900 1000
# Observed Instances

0

200

400

600

800

# 
La

be
le

d 
In

st
an

ce
s Shrinking Slab

Bernoulli FLSW
Bernoulli FLMB

(a) #labels vs #iterations for fixed & time-
varying Bernoulli strategy in FLMB for KDD

Cup 1999

0 200 400 600 800 1000 1200 1400 1600 1800 2000
# Labeled Points

0

10

20

30

40

50

Er
ro

r r
at

e

Shrinking Slab Bernoulli FLSW
Bernoulli FLMB
NonPrivate-Batch

0 200 400 600 800 1000 1200 1400 1600 1800 2000
# Labeled Points

0

10

20

30

40

50
Er

ro
r r

at
e

Fixed Slab Bernoulli FLSW
Bernoulli FLMB
NonPrivate-Batch

(b) Error versus #labels for fixed & time-
varying Bernoulli strategy in FLBM for KDD

Cup 1999

Figure 4. Comparing fixed and shrinking slabs for different strategies in
terms of labels complexity and error performance.

Selection method: Surprisingly, we see from the experiments in Figures 2a and 2b that
the difference between the Bernoulli and Exponential selection methods is negligible in terms
of overall performance. We conjecture two reasons for this. First, by choosing a large value
of εs for the selection step, the difference between the two sampling distributions is not too
significant. Second, the active learning heuristic provides the most improvements in the
early stages of the classifier training process: once the classifier has stabilized, additional
training samples do not improve the performance significantly. Noting the slight superiority
of the FLMB algorithm with Bernoulli sampling, we will use that combination in more
detailed experimentation described in Section 5.

Effect of mini-batching: Fig. 3 shows the error rate of the FLMB update method with
Bernoulli selection strategy for batch sizes {1, 2, 5, 10, 20}. The results are from 200 labeled
examples. We observe that mini-batching, as expected, reduces the variance in results.
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Time-varying selection strategies: Label costs are not necessarily constant over time.
It can be the case that the more the learner queries for labels, the more the oracle charges
per label. Moreover, as the classifier is updated using more labeled points, it becomes more
accurate and points far from the classifier are more likely to be noisy. Therefore, we would
like to lower the chances of labeling uninformative, noisy data points by making the selection
policy stricter.

As an example, we study the performance of both FLSW and FLMB methods with
time-varying Bernoulli selection strategy over the KDD Cup 99 dataset. We compare using a

fixed threshold τ = e−0.2 ≈ 0.8 versus a time-varying threshold τ = e−
1
m . The latter case

uses a selection slab that shrinks linearly over time. Here, m is the counter for classifier
updates, not the data stream counter. The results of this experiment are given in Figures 4a
and 4b. Fig. 4a shows a considerable reduction in the label complexity in the time-varying
query method. In fact, we observe that the selection rate is not linear anymore and becomes
sublinear.

As shown in Fig. 4b, the generalization performance of the FLMB method, for given
number of labeled points, is not compromised. This is not surprising since each update
uses a fixed mini-batch size and the learner is simply more selective about informativeness
and needs to wait for a longer time to collect a batch. The results show that this selection
strategy is actually querying more informative points and does not lose much by discarding
more points. We expect that for some datasets this strategy actually could improve the
performance by using its labeling budget more judiciously.

On the other hand, the classification performance of the FLSW algorithm is considerably
compromised. We suspect that with a shrinking selection slab the bar for selection is too
high; so few instances can pass the informativeness threshold that this method (in later
iterations) effectively loses the “mini-batch” property.

5. Software Prototype for Privacy-Aware Online Active Learning

We built a software tool to facilitate analysis of the proposed differentially private anomaly
detection approach. In particular, because this approach has various design variables,
our goal is to enable researchers and engineers to evaluate the effect of changing privacy
parameters (e.g., εs, εg, batch size, informativeness metrics, visualization parameters) as
well as the classifier parameters (e.g., learning rate and regularization parameters) on the
performance of anomaly detection and on the evolution of the learned classifiers.

5.1. Proposed Architecture. The software architecture of the proposed differentially
private active learning system is depicted in Fig. 5. The initial training data set as well
as the streaming data to be classified is assumed to reside in separate databases, which
could be mySQL database or csv files. The learning component of the system consists of an
Application Programming Interface (API) that enables the use of available fast numerical
computation and machine learning libraries, such as scikit-learn, Theano and TensorFlow.
In our tool prototype, we use csv files and the Theano library. To perform the training in a
differentially private manner, we selected the algorithms for sample selection and classifier
update that showed better performance as reported in Section 4.5. While we describe a
version of the prototype based on the differential privacy methods proposed in Section 3,
the architecture accommodates other well-known differential privacy mechanisms. These
include adding noise directly to the data (input perturbation), or to the trained classifier
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Figure 5. Software architecture of the proposed differentially private active
learning system.

parameters (output perturbation), or to intermediate quantities such as objective functions
(objective perturbation) or gradient calculations [48]. The architecture supports privacy
parameters of noise distributions, which are chosen based on the desired level of privacy.
Privacy parameters such as ε and δ are presented as inputs to the learning component.

The architecture defines a visual interface (shown in the diagram of Fig. 5) in order
to provide a means for choosing the dataset and attributes to be processed, to specify the
settings for the classification algorithm, the differential privacy parameters, the schedule
of model updates, and other input settings as well as to report status and progress of the
learning tasks. An example user interface implementing the architecture visual interface
is presented in the next section (See Fig. 6). Finally, the architecture supports streaming
of input data for classifiers which predict corresponding class labels. These predictions are
used for the presentation of classification results in various forms, for example: (1) a plot of
the instantaneous class label against time for the streaming data; (2) a constantly updating
readout of the accuracy of the classifier calculated over batches of the streaming data; (3) a
histogram of class labels; and (4) various metrics including accuracy, precision, recall, etc.

5.2. Active Learning Tool. We developed a software tool prototype based on the system
architecture described above. We included a small subset of classification capabilities –
linear SVMs and logistic regression – with a goal to demonstrate, evaluate and visualize
differentially private active learning functionality2. A screenshot of the prototype during
operation is depicted in Fig. 6.

The left pane of the screenshot represents the Input Pane of the prototype. Here, the
user is able to specify the location from which the prototype gains access to the training and
test (evaluation) datasets. As is typical in data classification, a portion of the training data

2We plan to make our tool available upon request for researchers to run their own experiments and expand
the set of available classifiers and online active learning strategies.
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Figure 6. A screenshot of prototype software system showing differentially
private active learning on the KDD Cup 1999 dataset from the UCI machine
learning repository.

is extracted and used as a validation dataset. The analyst sees all the attributes of the data
and can choose the attributes that he wants to include in the classification algorithm. He
can choose the classifier, as well as the mode of operation (output or objective perturbation,
active learning, etc.) and the values of parameters such as the regularization and learning
rate of the classifier, batch sizes, and the differential privacy parameters, εs and εg. Our
prototype does not implement (ε, δ) differential privacy at this stage.

The right half of the screenshot represents the Output Pane of the prototype, in which
the user is able to view the various aspects of classifier performance. The Output Pane
displays the classification accuracy plotted against the time, where the time parameter is
captured by the checkpoint number. Essentially, at each checkpoint, the tool retrieves the
current values of the classification parameters, and checks the anomaly detection performance
on the validation dataset and the next batch from the training dataset stream. Since, we
want to evaluate the performance with and without privacy, the accuracy of a non-private
active classifier is also displayed at each checkpoint. After the classifier is trained using the
FLMB approach, it is evaluated on a test (evaluation) dataset, and its prediction performance
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is depicted both graphically and in a table of relevant metrics including the classification
accuracy, precision, recall, specificity, F1 Score and MCC.

5.3. Evaluation of Prototype. We experimented with several datasets, but will describe
the results obtained with the KDD Cup 1999 dataset. As mentioned earlier, we extracted
training and validation data from the first 400,000 samples. In particular, from those 400,000
samples, we extracted 800 labeled samples uniformly at random with equal number of normal
and anomalous samples and used them as our training set. Additionally, we extracted 200
randomly chosen samples, again with equal numbers of normal samples and anomalous
samples, and used them as our validation set. Finally, the last 94021 samples were used as
our test (evaluation) set. As described in Section 3 the only changes we made to the publicly
available dataset was to remove two irrelevant features and convert 7 categorical features
into binary vectors, giving a total of 120 features. Note that, unlike the results shown in
Fig. 2 which were averaged over a number of simulations, the software tool shows individual
runs. Indeed, providing the ability to examine such runs, and to reason about the choice
of parameter values for differentially private classification was one of the motivations for
building the tool.

Motivated by the evaluation results from Section 3, which showed the superiority of
FLMB over FLSW and Bernoulli selection strategy over the exponential selection strategy,
the results we discuss here all use the FLMB approach with Bernoulli selection of the
informative samples (see Section 3.2). We have shown in earlier work that the online active
learning strategy provides superior classification performance than its static non-adaptive
counterpart [8]. Here, we will compare the classification performance with and without
regard for informativeness under different privacy constraints. Observe in Fig. 7 that for
relatively high values of εs, (i.e., lower privacy), the classification performance is retained
irrespective of whether the samples sent to the oracle are highly informative (τ = 0.8) or
less informative (τ = 0.2). In contrast, for lower values of εs, (i.e., stronger privacy), the
classification accuracy drops dramatically with respect to the non-private classifier when the
samples sent to the oracle are less informative, as depicted in Fig. 7.

6. Related Work

Anomaly detection is a key application area for machine learning techniques. In this paper,
in contrast to studying a particular application for anomaly detection, we focus on the
privacy issues that may arise in learning an anomaly detector using sensitive streaming data.
A 2009 survey by Chandola et al. [10] discusses several approaches for anomaly detection as
well as applications. Hodge and Austin [26] survey many outlier detection techniques, some
using machine learning methods. Omar et al. [38] provide an overview of machine learning
techniques for anomaly detection. More recently, many researchers have proposed employing
deep learning for anomaly detection in a variety of applications [13, 29, 56]. We evaluate our
method on the KDD Cup ’99 dataset [40], which is a network intrusion detection problem
widely studied by the machine learning community (for example, Tang and Cao [51]).

The online learning framework we use has been studied extensively in the machine
learning community, starting with the work of Zinkevich [60]. Shalev-Shwartz’s 2011
survey [45] gives a comprehensive introduction to the online learning problem; our algorithm
is an instance of online learning in that framework. McMahan’s 2014 survey [35] covers
more recent work on adaptive regularizers. We do not incorporate this type of adaptivity
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in our work, but these ideas combined with our approach could be used to yield anomaly
detection methods for scenarios in which the data distribution changes over time.

Active learning has received significant attention in the recent years. In active learning,
the learning algorithm can adaptively select training examples based on previous data; this
adaptivity can lead to significant improvements in sample complexity over “passive learning”
approaches that use a random sample of the data [3, 44]. There is a rich body of work on
active learning; we refer the reader to the surveys by Settles [44], Fu et al. [22], and the
monograph by Hanneke [25] for more details. Recently, deep active learning approaches
have been proposed in different applications [21, 23, 33, 46, 59]. In contrast, our approach
is based on SVM, a “shallow” learning method.

Our approach uses an active learning heuristic proposed by Tong and Koller [52], which
is a simple “pool-based” active learning algorithm using a support vector machine classifier.
In pool-based active learning [25], the learning algorithm selects samples to be labeled
from a pool of unlabeled data. We propose a “stream-based” version of this heuristic. In
stream-based active learning, in each iteration t the algorithm is given point xt and has to
decide whether or not to request the label yt from an oracle. Sabato and Hess [42] recently
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identified conditions under which stream-based and pool-based active learning can simulate
each other. A different line of work in active learning considers the case where the algorithm
can choose x as well. Such active query algorithms [9] are related to probabilistic bisection
methods [27].

Differential privacy has been widely studied since its introduction in 2006 [16]; Dwork
and Roth’s book [19] provides an inclusive review. Duchi et al. [15] study statistical learning
problems under local privacy conditions measured by mutual information between private
observations and non-private original data, as well as by differential privacy. Dwork et
al. formalize the notion of pan-privacy [17, 18] for streaming algorithms. Roughly speaking,
pan-private algorithms guarantee differential privacy even when their internal memory state
becomes available to an adversary. We partially expose the current state of the algorithm
by publishing the learned classifier over time. However, we do assume the buffer of labeled
points is kept secret and so do not guarantee pan-privacy.

Online learning has also been studied with differential privacy [2, 28, 53, 58]. Balcan
and Feldman [4] describe a framework for designing offline active learning algorithms that
are tolerant to classification noise and show that these algorithms are also differentially
private. Our algorithms operate in an online manner and use a specific differentially private
online active learning algorithm.

7. Discussion

In this paper, we introduced a differentially private learning algorithm and a web tool
prototype. We draw some conclusions from each of these contributions.

Differentially Private Online Learning Algorithm: We proposed randomized query
strategies for privacy-preserving selection of informative instances in a stream, and explored
two mini-batching techniques that improve the classifier performance of the Tong-Koller-
based active learning heuristic in our setting. We prove theoretically that the techniques
provide differential privacy. When applied in the context of SVM classifiers, the proposed
algorithms have acceptable generalization performance while preserving differential privacy
of the users whose data is given as input to the algorithms. In particular, mini-batching
reduces the variance in the results and improves the convergence of our algorithms. Although
the differential privacy guarantees for the mini-batch methods are the same as those for the
immediate update method, the worst case scenarios are less likely to happen as the selection
window/batch size gets larger. We demonstrated empirically that a time-varying selection
strategy where the informativeness criterion becomes stricter with time can substantially
reduce label costs while showing acceptable generalization performance, as long as the
mini-batching structure is not compromised.

Web Tool Prototype: Differential privacy is an unfamiliar concept for most practitioners
of data science: Even with an understanding of the technical definitions, it is difficult to
set privacy parameters because – unlike precision, recall, false positive rates, etc. – DP
parameters do not have an immediately accessible interpretation. We created a web applica-
tion prototype that enables analysts to conduct exploratory data analysis with differentially
private online learning systems. The prototype uses our privacy-aware active learning
heuristics to update classifier models using informative samples from the input stream. It
allows the analyst to observe the changes in classifier performance over successive batches
of streaming data and relate those changes to the privacy parameters and informativeness
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thresholds. We believe that, using the same underlying theoretical approach, we can extend
the capabilities of the web application to include other classifier models beyond SVMs and
logistic regression.

Outlook and future work: Our proposed online active learning algorithm uses standard
techniques to create a differentially private version of the Tong-Koller active learning
algorithm. It could be possible to use a different subset selection and update rule to permit
a more detailed analysis of the utility (see Section 4). In particular, using a rule similar to
that of Malago et al. [34] could permit a version space analysis [5, 6] of the update rule.
Making this rule differentially private and adapting the analysis is an interesting topic for
future work. In this work we focused on classification tasks: extending the algorithm to
other forms of empirical risk minimization seems straightforward. However, extensions of
the general approach to nonlinear classifiers or other settings could be interesting and useful
for practical scenarios.

Recall that our procedure employed a fixed cost function over time; designing cost-
aware algorithms for settings where label cost increases with the number of queries seems
challenging. Investigating tradeoffs with respect to εs, εg, batch size and classifier learning
parameters using a software tool such as the one described herein, could shed light on how
stronger privacy guarantees affect the speed of learning and label complexity. Identifying
how privacy risk and label complexity interact could yield algorithms which can switch
between more and less aggressive active learning techniques.

Finally, because this work is motivated by problems in anomaly detection, evaluating and
adapting the private online active learning framework here to domain-specific problems could
give more guidance on how to set ε in practical scenarios. Implementing practical differentially
private machine learning algorithms (as opposed to statistical aggregates/estimators) can
tell us when reasonable privacy guarantees are or are not feasible.
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Appendix A. Appendices

A.1.

Proof. Consider two databases Dx and D′x that differ in a single point: for some j, the jth
point of Dx is xp and the jth point of D′x is xq. The selection procedure reveals wt at each
iteration t. Since the samples are presented online, until time τ the iterations have the same
distribution.

Then, ∣∣∣∣log
P (st = 1|D,wt)

P (st = 1|D′,wt)

∣∣∣∣ ≤ log
P (st = 1|it = p,wt)

P (st = 1|it = q,wt)

≤ log
P (st = 1|cp(t) > τ)

P (st = 1|cq(t) < τ)

≤ log
p

1− p
. (A.1)

Similarly, the same result can be shown for the case st = 0. This concludes the proof.

A.2.

Proof. Let xp and xq be the jth entries of two neighboring datasets Dx and D′x, respectively.
Then, ∣∣∣∣log

P (st = 1|D,wt)

P (st = 1|D′,wt)

∣∣∣∣
≤
∣∣∣∣log

exp (−max{b, d(xp,wt)}εs/∆)

exp (−max{b, d(xq,wt)}εs/∆)

∣∣∣∣
≤ |max{b, d(xq,wt)} −max{b, d(xp,wt)}|

εexp
∆

≤ (M − b)εexp
∆

= εexp. (A.2)

Similarly, considering the assumption exp(−bεexp/∆) ≤ 1/2, we have∣∣∣∣log
P (st = 0|D,wt)

P (st = 0|D′,wt)

∣∣∣∣ ≤ log
1− exp(−Mεexp/∆)

1− exp(−bεexp/∆)

≤ εexp. (A.3)

This concludes the proof.
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A.3.

Proof. let xp be the jth entry of Dx and xq be the jth entry of Dx. Furthermore, assume
without loss of generality that | 〈wt,xp〉 | ≤ | 〈wt,xq〉 |.

P (w′|D,w)

P (w′|D′,w)

≤ γe
− εgB

2ηM
‖w′−w+ηλw− 1

B

∑
i∈B:i 6=p ηyixiui−

η
B
ypxpup‖

γe
− εgB

2ηM
‖w′−w+ηλw− 1

B

∑
i∈B:i 6=q ηyixiui−

η
B
yqxquq‖

≤ e(εg/2M)‖xp−xq‖

≤ eεg . (A.4)

Similarly, we can show that if B = ∅,
P
(
w′|D,w

)
= P

(
w′|D′,w

)
and thus ∣∣∣∣log

P (w′|D,w)

P (w′|D′,w)

∣∣∣∣ = 0 ≤ εg. (A.5)

so the result is differentially private for two neighboring datasets. This concludes the proof.

A.4.

Proof. Each selection step incurs εs privacy risk. If we show that each update incurs at most
εg privacy risk, so the risk per sample (by composition) is at most εs + εg.

Suppose the algorithm runs for T iterations and define the matrixWT = [w>0 ,w
>
1 ,w

>
2 , . . . ,w

>
T ]>

of revealed values. From this an adversary can infer QT = [s1, s2, . . . , sT ], the vector of
selection results. Let D and D′ be two neighboring databases that differ in the jth element:
xj = xp in D and x′j = xq in D′. We calculate the log-likelihood ratio:∣∣∣∣log

P(WT , QT |D)

P(WT , QT |D′)

∣∣∣∣
=

∣∣∣∣∣∣∣∣∣log

T∏
t=1

P(wt, st|D,Wt−1)

T∏
t=1

P(wt, st|D′,Wt−1)

∣∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣∣log

T∏
t=1

P(wt|D,Wt−1, st)P(st|D,Wt−1)

T∏
t=1

P(wt|D′,Wt−1, st)P(st|D′,Wt−1)

∣∣∣∣∣∣∣∣∣ . (A.6)



29

Now, we use the fact that up until time j, the distribution of the two algorithms’ decisions
are identical: ∣∣∣∣log

P(WT , QT |D)

P(WT , QT |D′)

∣∣∣∣
(a)
=

∣∣∣∣∣∣∣∣∣log

T∏
t=1

P(wt|D,wt−1, st)P(st|D,wt−1)

T∏
t=1

P(wt|D′,wt−1, st)P(st|D′,wt−1)

∣∣∣∣∣∣∣∣∣
(b)
=

∣∣∣∣log
P(wj |D,wj−1, sj)P(sj |D,wj−1)

P(wj |D′,wj−1, sj)P(sj |D′,wj−1)

∣∣∣∣
≤
∣∣∣∣log

P(wj |D,wj−1, sj)

P(wj |D′,wj−1, sj)

∣∣∣∣+

∣∣∣∣log
P(sj |D,wj−1)

P(sj |D′,wj−1)

∣∣∣∣
≤ εg + εs, (A.7)

Equality (a) above results from the fact that given the most recent classifier wt, the
probability distributions of wt and st are independent of the previous classifiers. Equality
(b) follows from the assumption the observed samples do not appear again in the stream, so
except for the iteration where the streams are different, the conditional probabilities are
identical.

A.5.

Proof. Suppose that we run the algorithm for K iterations each consisting of N sample
observations and a gradient update. Similar to Theorem 4.5, define the collection of updates
WK = (w0,wN ,w2N . . . ,wKN ) and also QK = (S1, S2, . . . , SK) where Sk indicates if any
samples have been labeled during the kth interval. We have∣∣∣∣log

P(WKN , QK |D)

P(WKN , QK |D′)

∣∣∣∣
=

∣∣∣∣∣∣∣∣∣log

K∏
k=1

P(wkN , Qk|D,W(k−1)N )

K∏
k=1

P(wkN , Qk|D′,W(k−1)N )

∣∣∣∣∣∣∣∣∣
(a)
=

∣∣∣∣∣∣∣∣∣log

T∏
t=1

P(wkN |D,w(k−1)N , st)P(st|D,w(k−1)N )

T∏
t=1

P(wkN |D′,w(k−1)N , st)P(st|D′,w(k−1)N )

∣∣∣∣∣∣∣∣∣
(b)
=

∣∣∣∣log
P(wj |D,wj−1, sj)P(sj |D,wj−1)

P(wj |D′,wj−1, sj)P(sj |D′,wj−1)

∣∣∣∣
≤
∣∣∣∣log

P(wj |D,wj−1, sj)

P(wj |D′,wj−1, sj)

∣∣∣∣+

∣∣∣∣log
P(sj |D,wj−1)

P(sj |D′,wj−1)

∣∣∣∣
≤ εs + εg, (A.8)
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where j here indicates the window in which the jth entries of the datasets appear. Equalities
(a) and (b) above are explained in Theorem 4.5.

A.6. Suppose that we run the algorithm for T iterations each consisting of Tl sample
observations and a (possible) gradient update. As before, define the sets of outputs WT =
(w0,w1,w2, . . . ,wT ) and QT = (T1, T2, . . . , TT ). We have∣∣∣∣log

P(WT , QT |D)

P(WT , QT |D′)

∣∣∣∣
=

∣∣∣∣∣∣∣∣∣log

T∏
t=1

P(wt, Tt|D,Wt−1)

T∏
t=1

P(wt, Tt|D′,Wt−1)

∣∣∣∣∣∣∣∣∣
(a)
=

∣∣∣∣∣∣∣∣∣log

T∏
t=1

P(wt|D,wt−1, Tt)P(Tt|D,wt−1)

T∏
t=1

P(wt|D′,wt−1, Tt)P(Tt|D′,wt−1)

∣∣∣∣∣∣∣∣∣
(b)
=

∣∣∣∣log
P(wj |D,wj−1, Tj)P(Tj |D,wj−1)

P(wj |D′,wj−1, Tj)P(Tj |D′,wj−1)

∣∣∣∣
≤
∣∣∣∣log

P(wj |D,wj−1, Tj)

P(wj |D′,wj−1, Tj)

∣∣∣∣+

∣∣∣∣log
P(Tj |D,wj−1)

P(Tj |D′,wj−1)

∣∣∣∣
≤ εs + εg. (A.9)

where j indicates the window in which the jth entries of the datasets appear. Equalities (a)
and (b) above are explained in Theorem 4.5.
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