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Abstract: We use ideas from distributed computing to study dynamic environments in which computational
nodes, or decision makers, follow adaptive heuristics [16], i.e., simple and unsophisticated rules of behavior, e.g.,
repeatedly “best replying” to others’ actions, and minimizing “regret”, that have been extensively studied in game
theory and economics. We explore when convergence of such simple dynamics to an equilibrium is guaranteed in
asynchronous computational environments, where nodes can act at any time. Our research agenda, distributed
computing with adaptive heuristics, lies on the borderline of computer science (including distributed computing
and learning) and game theory (including game dynamics and adaptive heuristics). We exhibit a general non-
termination result for a broad class of heuristics with bounded recall—that is, simple rules of behavior that
depend only on recent history of interaction between nodes. We consider implications of our result across a
wide variety of interesting and timely applications: game theory, circuit design, social networks, routing and
congestion control. We also study the computational and communication complexity of asynchronous dynamics
and present some basic observations regarding the effects of asynchrony on no-regret dynamics. We believe that
our work opens a new avenue for research in both distributed computing and game theory.
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1 Introduction

Dynamic environments where computational nodes,
or decision makers, repeatedly interact arise in a va-
riety of settings, such as Internet protocols, large-
scale markets, social networks, multi-processor com-
puter architectures, and more. In many such set-
tings, the prescribed behavior of the nodes is often
simple, natural and myopic (that is, a heuristic or
“rule of thumb”), and is also adaptive, in the sense
that nodes constantly and autonomously react to oth-
ers. These “adaptive heuristics”—a term coined in
[16]—include simple behaviors, e.g., repeatedly “best
replying” to others’ actions, and minimizing “regret”,
that have been extensively studied in game theory and
economics.

Adaptive heuristics are simple and unsophisticated,
often reflecting either the desire or necessity for com-
putational nodes (whether humans or computers) to
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provide quick responses and have a limited computa-
tional burden. In many interesting contexts, these
adaptive heuristics can, in the long run, move the
global system in good directions and yield highly ra-
tional and sophisticated behavior, such as in game
theory results demonstrating the convergence of best-
response or no-regret dynamics to equilibrium points
(see [16] and references therein).

However, these positive results for adaptive heuris-
tics in game theory are, with but a few exceptions (see
Section 2), based on the sometimes implicit and often
unrealistic premise that nodes’ actions are somehow
synchronously coordinated. In many settings, where
nodes can act at any time, this kind of synchrony is
not available. It has long been known that asynchrony
introduces substantial difficulties in distributed sys-
tems, as compared to synchrony [12], due to the “lim-
itation imposed by local knowledge” [24]. There has
been much work in distributed computing on identify-
ing conditions that guarantee protocol termination in
asynchronous computational environments. Over the
past three decades, we have seen many results regard-
ing the possibility/impossibility borderline for failure-
resilient computation [11,24]. In the classical results of
that setting, the risk of non-termination stems from
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the possibility of failures of nodes or other compo-
nents.

We seek to bring together these two areas to form
a new research agenda on distributed computing with
adaptive heuristics. Our aim is to draw ideas from
distributed computing theory to investigate provable
properties and possible worst-case system behavior of
adaptive heuristics in asynchronous computational en-
vironments. We take the first steps of this research
agenda. We show that a large and natural class of
adaptive heuristics fail to provably converge to an
equilibrium in an asynchronous setting, even if the
nodes and communication channels are guaranteed to
be failure-free. This has implications across a wide do-
main of applications: convergence of game dynamics
to pure Nash equilibria; stabilization of asynchronous
circuits; convergence to a stable routing tree of the
Border Gateway Protocol, that handles Internet rout-
ing; and more. We also explore the impact of schedul-
ing on convergence guarantees. We show that non-
convergence is not inherent to adaptive heuristics, as
some forms of regret minimization provably converge
in asynchronous settings. In more detail, we make the
following contributions:

General non-convergence result (Section 4). It
is often desirable or necessary due to practical con-
straints that computational nodes’ (e.g., routers’) be-
havior rely on limited memory and processing power.
In such contexts, nodes’ adaptive heuristics are often
based on bounded recall—i.e., depend solely on re-
cent history of interaction with others—and can even
be historyless—i.e., nodes only react to other nodes’
current actions). We exhibit a general impossibil-
ity result using a valency argument—a now-standard
technique in distributed computing theory [11,24]—
to show that a broad class of bounded-recall adaptive
heuristics cannot always converge to a stable state.
More specifically, we show that, for a large family of
such heuristics, simply the existence of two “equilib-
rium points” implies that there is some execution that
does not converge to any outcome even if nodes and
communication channels are guaranteed not to fail.
We also give evidence that our non-convergence result
is essentially tight.

Implications across a wide variety of interesting
and timely applications (Section 5). We apply
our non-convergence result to a wide variety of inter-
esting environments, namely convergence of game dy-
namics to pure Nash equilibria, stabilization of asyn-
chronous circuits, diffusion of technologies in social
networks, routing on the Internet, and congestion con-

trol protocols.

Implications for convergence of r-fairness and
randomness (Section 6). We study the effects on
convergence to a stable state of natural restrictions on
the order of nodes’ activations (i.e., the order in which
nodes’ have the opportunity to take steps), that have
been extensively studied in distributed computing the-
ory: (1) r-fairness, which is the guarantee that each
node selects a new action at least once within every r
consecutive time steps, for some pre-specified r > 0;
and (2) randomized selection of the initial state of the
system and the order of nodes’ activations.

Communication and computational complexity
of asynchronous dynamics (Section 7). We study
the tractability of determining whether convergence
to a stable state is guaranteed. We present two com-
plementary hardness results that establish that, even
for extremely restricted kinds of interactions, this feat
is hard: (1) an exponential communication complex-
ity lower bound; and (2) a computational complexity
PSPACE-completeness result that, alongside its com-
putational implications, implies that we cannot hope
to have short witnesses of guaranteed asynchronous
convergence (unless PSPACE ⊆ NP).

Asynchronous no-regret dynamics (Section 8).
We present some basic observations about the conver-
gence properties of no-regret dynamics in our frame-
work, that establish that, in contrast to other adap-
tive heuristics, regret minimization is quite robust to
asynchrony.

Further discussion of a research agenda in
distributed computing with adaptive heuris-
tics (Section 9) We believe that this work has but
scratched the surface in the exploration of the behav-
ior of adaptive heuristics in asynchronous computa-
tional environments. Many important questions re-
main wide open. We present context-specific prob-
lems in the relevant sections, and also outline general
interesting directions for future research in Section 9.

Before presenting our main results, we overview re-
lated work (Section 2) and provide a detailed descrip-
tion of our model (Section 3).

2 Related work

Our work relates to many ideas in game theory and
in distributed computing. We discuss game theoretic
work on adaptive heuristics and on asynchrony, and
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also distributed computing work on fault tolerance
and self stabilization. We also highlight the appli-
cation areas we consider.

Adaptive heuristics. Much work in game the-
ory and economics deals with adaptive heuristics (see
Hart [16] and references therein). Generally speak-
ing, this long line of research explores the “conver-
gence” of simple and myopic rules of behavior (e.g.,
best-response/fictitious-play/no-regret dynamics) to
an “equilibrium”. However, with few exceptions (see
below), such analysis has so far primarily concen-
trated on synchronous environments in which steps
take place simultaneously or in some other predeter-
mined prescribed order. In contrast, we explore adap-
tive heuristics in asynchronous environments, which
are more realistic for many applications.

Game-theoretic work on asynchronous envi-
ronments. Some game-theoretic work on repeated
games considers “asynchronous moves”.1 (see [23,24],
among others, and references therein). Such work does
not explore the behavior of dynamics, but has other
research goals (e.g., characterizing equilibria, estab-
lishing Folk theorems). We are, to the best of our
knowledge, the first to study the effects of asynchrony
(in the broad distributed computing sense) on the con-
vergence of game dynamics to equilibria.

Fault-tolerant computation. We use ideas and
techniques from work in distributed computing on
protocol termination in asynchronous computational
environments where nodes and communication chan-
nels are possibly faulty. Protocol termination in such
environments, initially motivated by multi-processor
computer architectures, has been extensively studied
in the past three decades [2,4,7,12,20,29], as nicely sur-
veyed in [11,24]. Fischer, Lynch and Paterson [12]
showed, in a landmark paper, that a broad class of
failure-resilient consensus protocols cannot provably
terminate. Intuitively, the risk of protocol nontermi-
nation in [12] stems from the possibility of failures; a
computational node cannot tell whether another node
is silent due to a failure or is simply taking a long time
to react. Our focus here is, in contrast, on failure-free
environments.

Self stabilization. The concept of self stabilization
is fundamental to distributed computing and dates

1Often, the term asynchrony merely indicates that players
are not all activated at each time step, and thus is used to de-
scribe environments where only one player is activated at a time
(“alternating moves”), or where there is a probability distribu-
tion that determines who is activated when.

back to Dijkstra, 1973 (see [8] and references therein).
Convergence of adaptive heuristics to an “equilib-
rium” in our model can be viewed as the self stabiliza-
tion of such dynamics (where the “equilibrium points”
are the legitimate configurations). Our formulation
draws ideas from work in distributed computing (e.g.,
Burns’ distributed daemon model) and in networking
research [14] on self stabilization.

Applications. We discuss the implications of our
non-convergence result across a wide variety of ap-
plications, that have previously been studied: con-
vergence of game dynamics (see, e.g., [18,19]); asyn-
chronous circuits (see, e.g., [6]); diffusion of innova-
tions, behaviors, etc., in social networks (see Morris
[26] and also [21]); interdomain routing [14,30]; and
congestion control [13].

3 The model

We now present our model for analyzing adaptive
heuristics in asynchronous environments.

Computational nodes interacting. There is an in-
teraction system with n computational nodes, 1, . . . , n.
Each computational node i has an action space Ai.
Let A = ×j∈[n]Aj , where [n] = {1, . . . , n}. Let
A−i = ×j∈[n]\{i}Aj . Let ∆(Ai) be the set of all prob-
ability distributions over the actions in Ai.

Schedules. There is an infinite sequence of discrete
time steps t = 1, . . .. A schedule is a function σ that
maps each t ∈ N+ = {1, 2, . . .} to a nonempty set of
computational nodes: σ(t) ⊆ [n]. Informally, σ deter-
mines (when we consider the dynamics of the system)
which nodes are activated in each time-step. We say
that a schedule σ is fair if each node i is activated
infinitely many times in σ, i.e., ∀i ∈ [n], there are in-
finitely many t ∈ N+ such that i ∈ σ(t). For r ∈ N+,
we say that a schedule σ is r-fair if each node is acti-
vated at least once in every sequence of r consecutive
time steps, i.e., if, for every i ∈ [n] and t0 ∈ N+, there
is at least one value t ∈ {t0, t0 + 1, . . . , t0 + r − 1} for
which i ∈ σ(t).

History and reaction functions. Let H0 = ∅, and
let Ht = At for every t > 1. Intuitively, an element in
Ht represents a possible history of interaction at time
step t. For each node i, there is an infinite sequence
of functions fi = (f(i,1), f(i,2), . . . , f(i,t), . . .) such that,
for each t ∈ N+, f(i,t) : Ht → ∆(Ai); we call fi the
reaction function of node i. As discussed below, fi

captures i’s way of responding to the history of inter-
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action in each time step.

Restrictions on reaction functions. We now
present five possible restrictions on reaction functions:
determinism, self-independence, bounded recall, sta-
tionarity and historylessness.

1. Determinism: a reaction function fi is deter-
ministic if, for each input, fi outputs a single
action (that is, a probability distribution where
a single action in Ai has probability 1).

2. Self-independence: a reaction function fi

is self-independent if node i’s own (past and
present) actions do not affect the outcome of fi.
That is, a reaction function fi is self-independent
if for every t > 1 there exists a function gt :
At
−i → ∆(Ai) such that f(i,t) ≡ gt.

3. k-recall and stationarity: a node i has k-recall
if its reaction function fi only depends on the k
most recent time steps, i.e., for every t > k,
there exists a function g : Hk → ∆(Ai) such
that f(i,t)(x) = g(x|k) for each input x ∈ Ht

(x|k here denotes the last k coordinates, i.e., n-
tuples of actions, of x). We say that a k-recall
reaction function is stationary if the time counter
t is of no importance. That is, a k-recall reaction
function is stationary if there exists a function g :
Hk → ∆(Ai) such that for all t > k, f(i,t)(x) =
g(x|k) for each input x ∈ Ht.

4. Historylessness: a reaction function fi is his-
toryless if fi is 1-recall and stationary, that is, if
fi only depends on i’s and on i’s neighbors’ most
recent actions.

Dynamics. We now define dynamics in our model.
Intuitively, there is some initial state (history of in-
teraction) from which the interaction system evolves,
and, in each time step, some subset of the nodes re-
acts to the past history of interaction. This is cap-
tured as follows. Let s(0), that shall be called the
“initial state”, be an element in Hw, for some w ∈ N+.
Let σ be a schedule. We now describe the “(s(0), σ)-
dynamics”. The system’s evolution starts at time
t = w + 1, when each node i ∈ σ(w + 1) simulta-
neously chooses an action according to f(i,w+1), i.e.,
node i randomizes over the actions in Ai according to
f(i,w+1)(s(0)). We now let s(1) be the element in Hw+1

for which the first w coordinates (n-tuples of nodes’
actions) are as in s(0) and the last coordinate is the
n-tuple of realized nodes’ actions at the end of time
step t = w + 1. Similarly, in each time step t > w + 1,
each node in σ(t) updates its action according to f(i,t),
based on the past history s(t−w−1), and nodes’ real-

ized actions at time t, combined with s(t−w−1), define
the history of interaction at the end of time step t,
s(t−w).

Convergence and convergent systems. We say
that nodes’ actions converge under the (s(0), σ)-
dynamics if there exist some t0 ∈ N+, and some ac-
tion profile a = (a1, . . . , an), such that, for all t > t0,
s(t) = a. The dynamics is then said to converge to
a, and a is called a “stable state” (for the (s(0), σ)-
dynamics), i.e., intuitively, a stable state is a global
action state that, once reached, remains unchanged.
We say that the interaction system is convergent if,
for all initial states s(0) and fair schedules σ, the
(s(0), σ)-dynamics converges. We say that the system
is r-convergent if, for all initial states s(0) and r-fair
schedules σ, the (s(0), σ)-dynamics converges.

Update messages. Observe that, in our model,
nodes’ actions are immediately observable to other
nodes at the end of each time step (“perfect monitor-
ing”). While this is clearly unrealistic in some impor-
tant real-life contexts (e.g., some of the environments
considered below), this restriction only strengthens
our main results, that are impossibility results.

Deterministic historyless dynamics. Of special
interest to us is the case that all reaction functions
are deterministic and historyless. We observe that, in
this case, stable states have a simple characterization.
Each reaction function fi is deterministic and history-
less and so can be specified by a function gi : A → Ai.
Let g = (g1, . . . , gn). Observe that the set of all sta-
ble states (for all possible dynamics) is precisely the
set of all fixed points of g. Below, when describing
nodes’ reaction functions that are deterministic and
historyless we sometimes abuse notation and identify
each fi with gi (treating fi as a function from A to
Ai). In addition, when all the reaction functions are
also self-independent we occasionally treat each fi as
a function from A−i to Ai.

4 Non-convergence result

We now present a general impossibility result for
convergence of nodes’ actions under bounded-recall
dynamics in asynchronous, distributed computational
environments.

Theorem 4.1 If each reaction function has bounded
recall and is self-independent then the existence of
multiple stable states implies that the system is not
convergent.
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We note that this result holds even if nodes’ reaction
functions are not stationary and are randomized (ran-
domized initial states and activations are discussed in
Section 6). We present the proof of Theorem 4.1 in
Appendix F. We now discuss some aspects of our im-
possibility result.

Neither bounded recall nor self-independence
alone implies non-convergence We show that the
statement of Theorem 4.1 does not hold if either the
bounded-recall restriction, or the self-independence
restriction, is removed.

Example 4.2. (the bounded-recall restriction
cannot be removed) There are two nodes, 1 and 2,
each with the action space {x, y}. The deterministic
and self-independent reaction functions of the nodes
are as follows: node 2 always chooses node 1’s action;
node 1 will choose y if node 2’s action changed from
x to y in the past, and x otherwise. Observe that
node 1’s reaction function is not bounded-recall but
can depend on the entire history of interaction. We
make the observations that the system is safe and has
two stable states. Observe that if node 1 chooses y
at some point in time due to the fact that node 2’s
action changed from x to y, then it shall continue to
do so thereafter; if, on the other hand, 1 never does
so, then, from some point in time onwards, node 1’s
action is constantly x. In both cases, node 2 shall
have the same action as node 1 eventually, and thus
convergence to one of the two stable states, (x, x) and
(y, y), is guaranteed. Hence, two stable states exist
and the system is convergent nonetheless.

Example 4.3. (the self-independence restriction
cannot be removed) There are two nodes, 1 and
2, each with action set {x, y}. Each node i’s a de-
terministic and historyless reaction function fi is as
follows: fi(x, x) = y; in all other cases the node al-
ways (re)selects its current action (e.g., f1(x, y) = x,
f2(x, y) = y). Observe that the system has three sta-
ble states, namely all action profiles but (x, x), yet can
easily be seen to be convergent.

Connections to consensus protocols. We now
briefly discuss the interesting connections between
Theorem 4.1 and the non-termination result for
failure-resilient consensus protocols in [12]. We elab-
orate on this topic in Appendix A. Fischer et al. [12]
explore when a group of processors can reach a con-
sensus even in the presence of failures, and exhibit
a breakthrough non-termination result. Our proof of
Theorem 4.1 uses a valency argument—an idea intro-
duced in the proof of the non-termination result in

[12].

Intuitively, the risk of protocol non-termination in
[12] stems from the possibility of failures; a compu-
tational node cannot tell whether another node is
silent due to a failure or is simply taking a long
time to react. We consider environments in which
nodes/communication channels cannot fail, and so
each node is guaranteed that all other nodes react
after “sufficiently long” time. This guarantee makes
reaching a consensus in the environment of [12] easily
achievable (see Appendix A). Unlike the results in [12],
the possibility of nonconvergence in our framework
stems from limitations on nodes’ behaviors. Hence,
there is no immediate translation from the result in
[12] to ours (and vice versa). To illustrate this point,
we observe that in both Example 4.2 and Example
[4.3], there exist two stable states and an initial state
from which both stable states are reachable (a “biva-
lent state” [12]), yet the system is convergent (see Ap-
pendix A). This should be contrasted with the result
in [12] that establishes that the existence of an initial
state from which two distinct outcomes are reachable
implies the existence of a non-terminating execution.

We investigate the link between consensus proto-
cols and our framework further in Appendix F, where
we take an axiomatic approach. We introduce a
condition—“Independence of Decisions” (IoD)—that
holds for both fault-resilient consensus protocols and
for bounded-recall self-independent dynamics. We
then factor the arguments in [12] through IoD to es-
tablish a non-termination result that holds for both
contexts, thus unifying the treatment of these dynamic
computational environments.

5 Games, circuits, networks,
and beyond

We present implications of our impossibility result
in Section 4 for several well-studied environments:
game theory, circuit design, social networks and In-
ternet protocols. We now briefly summarize these
implications, that, we believe, are themselves of in-
dependent interest. See Appendix B for a detailed
exposition of the results in this section.

Game theory. Our result, when cast into game-
theoretic terminology, shows that if players’ choices
of strategies are not synchronized, then the existence
of two (or more) pure Nash equilibria implies that
a broad class of game dynamics (e.g., best-response
dynamics with consistent tiebreaking) are not guar-
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anteed to reach a pure Nash equilibrium. This result
should be contrasted with positive results for such dy-
namics in the traditional synchronous game-theoretic
environments.

Theorem 5.1. If there are two (or more) pure
Nash equilibria in a game, then all bounded-recall self-
independent dynamics can oscillate indefinitely for
asynchronous player activations.

Corollary 5.2. If there are two (or more) pure Nash
equilibria in a game, then best-response dynamics,
and bounded-recall best-response dynamics (studied in
[35]), with consistent tie-breaking, can fail to converge
to an equilibrium in asynchronous environments.

Circuits. Work on asynchronous circuits in com-
puter architectures research explores the implications
of asynchrony for circuit design [6]. We observe that
a logic gate can be regarded as executing an inher-
ently historyless reaction function that is independent
of the gate’s past and present “state”. Thus, we show
that our result has implications for the stabilization
of asynchronous circuits.

Theorem 5.3. If two (or more) stable Boolean as-
signments exist for an asynchronous Boolean circuit,
then that asynchronous circuit is not inherently stable.

Social networks. Understanding the ways in which
innovations, ideas, technologies, and practices, dis-
seminate through social networks is fundamental to
the social sciences. We consider the classic economic
setting [26] (that has lately also been approached by
computer scientists [21]) where each decision maker
has two technologies {A,B} to choose from, and each
node in the social network wishes to have the same
technology as the majority of his “friends” (neighbor-
ing nodes in the social network). We exhibit a general
impossibility result for this environment.

Theorem 5.4. In every social network, the diffusion
of technologies can potentially never converge to a sta-
ble global state.

Networking. We consider two basic networking envi-
ronments: (1) routing with the Border Gateway Pro-
tocol (BGP), that is the “glue” that holds together
the smaller networks that make up the Internet; and
(2) the fundamental task of congestion control in com-
munication networks, that is achieved through a com-
bination of mechanisms on end-hosts (e.g., TCP), and
on switches/routers (e.g., RED and WFQ). We exhibit
non-termination results for both these environments.

We abstract a recent result in [30] and prove that
this result extends to several BGP-based multipath
routing protocols that have been proposed in the past
few years.

Theorem 5.5([30]) If there are multiple stable rout-
ing trees in a network, then BGP is not safe on that
network.

We consider the model for analyzing dynamics of
congestion presented in [13]. We present the following
result.

Theorem 5.6. If there are multiple capacity-
allocation equilibria in the network then dynamics of
congestion can oscillate indefinitely.

6 r-convergence and randomness

We now consider the implications for convergence of
two natural restrictions on schedules: r-fairness and
randomization. See Appendix C for a detailed expo-
sition of the results in this section.

Snakes in boxes and r-convergence. Theorem 4.1
deals with convergence and not r-convergence, and
thus does not impose restrictions on the number of
consecutive time steps in which a node can be nonac-
tive. What happens if there is an upper bound on this
number, r? We now show that if r < n−1 then some-
times convergence of historyless and self-independent
dynamics is achievable even in the presence of multi-
ple stable states (and so our impossibility result does
not extend to this setting).

Example 6.1. (a system that is convergent for
r < n − 1 but nonconvergent for r = n − 1)
There are n > 2 nodes, 1, . . . , n, each with the ac-
tion space {x, y}. Nodes’ deterministic, historyless
and self-independent reaction functions are as follows.
∀i ∈ [n], fi(xn−1) = x and fi always outputs y oth-
erwise. Observe that there exist two stable states:
xn and yn. Observe that if r = n − 1 then the fol-
lowing oscillation is possible. Initially, only node 1’s
action is y and all other nodes’ actions are x. Then,
nodes 1 and 2 are activated and, consequently, node
1’s action becomes x and node 2’s action becomes y.
Next, nodes 2 and 3 are activated, and thus 2’s action
becomes x and 3’s action becomes y. Then 3, 4 are
activated, then 4, 5, and so on (traversing all nodes
over and over again in cyclic order). This goes on in-
definitely, never reaching one of the two stable states.
Observe that, indeed, each node is activated at least
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once within every sequence of n− 1 consecutive time
steps. We observe however, that if r < n − 1 then
convergence is guaranteed. To see this, observe that
if at some point in time there are at least two nodes
whose action is y, then convergence to yn is guaran-
teed. Clearly, if all nodes’ action is x then convergence
to xn is guaranteed. Thus, an oscillation is possible
only if, in each time step, exactly one node’s action is
y. Observe that, given our definition of nodes’ reaction
functions, this can only be if the activation sequence
is (essentially) as described above, i.e., exactly two
nodes are activated at a time. Observe also that this
kind of activation sequence is impossible for r < n−1.

What about r > n? We use classical results in com-
binatorics regarding the size of a “snake-in-the-box” in
a hypercube [1] to construct systems are r-convergent
for exponentially-large r’s, but are not convergent in
general.

Theorem 6.2. Let n ∈ N+ be sufficiently large.
There exists a system G with n nodes, in which each
node i has two possible actions and each fi is deter-
ministic, historyless and self-independent, such that G
is r-convergent for r ∈ Ω(2n), but G is not (r + 1)-
convergent.

We note that the construction in the proof of Theo-
rem 6.2 is such that there is a unique stable state. We
believe that the same ideas can be used to prove the
same result for systems with multiple stable states but
the exact way of doing this eludes us at the moment,
and is left as an open question.

Problem 6.3. Prove that for every sufficiently large
n ∈ N+, there exists a system G with n nodes, in
which each node i has two possible actions, each fi is
deterministic, historyless and self-independent, and G
has multiple stable states, such that G is r-convergent
for r ∈ Ω(2n) but G is not (r + 1)-convergent.

Does random choice (of initial state and sched-
ule) help? Theorem 4.1 tells us that, for a broad
class of dynamics, a system with multiple stable states
is nonconvergent if the initial state and the node-
activation schedule are chosen adversarially. Can we
guarantee convergence if the initial state and schedule
are chosen at random?

Example 6.4. (random choice of initial state
and schedule might not help) There are n nodes,
1, . . . , n, and each node has action space {x, y, z}. The
(deterministic, historyless and self-independent) re-
action function of each node i ∈ {3, . . . , n} is such

that fi(xn−1) = x; fi(zn−1) = z; and fi = y
for all other inputs. The (deterministic, historyless
and self-independent) reaction function of each node
i ∈ {1, 2} is such that fi(xn−1) = x; fi(zn−1) = z;
fi(xyn−2) = y; fi(yn−1) = x; and fi = y for all
other inputs. Observe that there are exactly two sta-
ble states: xn and zn. Observe also that if nodes’ ac-
tions in the initial state do not contain at least n− 1
x’s, or at least n−1 z’s, then, from that moment forth,
each activated node in the set {3, . . . , n} will choose
the action y. Thus, eventually the actions of all nodes
in {3, . . . , n} shall be y, and so none of the two stable
states will be reached. Hence, there are 3n possible
initial states, such that only from 4n + 2 can a sta-
ble state be reached. When choosing the initial state
uniformly at random the probability of landing on a
“good” initial state (in terms of convergence) is thus
exponentially small.

7 Complexity of asynchronous
dynamics

We now explore the communication complexity and
computational complexity of determining whether a
system is convergent. We present hardness results in
both models of computation even for the case of de-
terministic and historyless adaptive heuristics. See
Appendix D for a detailed exposition of the results in
this section.

We first present the following communication com-
plexity result whose proof relies on combinatorial
“snake-in-the-box” constructions [1].

Theorem 7.1. Determining if a system with n nodes,
each with 2 actions, is convergent requires Ω(2n) bits.
This holds even if all nodes have deterministic, histo-
ryless and self-independent reaction functions.

The above communication complexity hardness re-
sult required the representation of the reaction func-
tions to (potentially) be exponentially long. What
if the reaction functions can be succinctly described?
We now present a strong computational complexity
hardness result for the case that each reaction func-
tion fi is deterministic and historyless, and is given
explicitly in the form of a boolean circuit (for each
a ∈ A the circuit outputs fi(a)). We prove the follow-
ing result.

Theorem 7.2. Determining if a system with n
nodes, each with a deterministic and historyless re-
action function, is convergent is PSPACE-complete.
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Our computational complexity result shows that
even if nodes’ reaction functions can be succinctly rep-
resented, determining whether the system is conver-
gent is PSPACE-complete. This result, alongside its
computational implications, implies that we cannot
hope to have short “witnesses” of guaranteed asyn-
chronous convergence (unless PSPACE ⊆ NP). Prov-
ing the above PSPACE-completeness result for the
case self-independent reaction functions seems chal-
lenging.

Problem 7.3. Prove that determining if a sys-
tem with n nodes, each with a deterministic self-
independent and historyless reaction function, is con-
vergent is PSPACE-complete.

8 Some basic observations regarding
no-regret dynamics

Regret minimization is fundamental to learning the-
ory, and has strong connections to game-theoretic so-
lution concepts; if each player in a repeated game exe-
cutes a no-regret algorithm when selecting strategies,
then convergence to an equilibrium is guaranteed in a
variety of interesting contexts. The meaning of con-
vergence, and the type of equilibrium reached, vary,
and are dependent on the restrictions imposed on the
game and on the notion of regret. Work on no-regret
dynamics traditionally considers environments where
all nodes are “activated” at each time step. We make
the simple observation that, switching our attention to
r-fair schedules (for every r ∈ N+), if an algorithm has
no regret in the classic setting, then it has no regret
in this new setting as well (for all notions of regret).
Hence, positive results from the regret-minimization
literature extend to this asynchronous environment.
See [3] for a thorough explanation about no-regret
dynamics and see Appendix E for a detailed expla-
nation about our observations. We now mention two
implications of our observation and highlight two open
problems regarding regret minimization.

Observation 8.1. When all players in a zero-sum
game use no-external-regret algorithms then approach-
ing or exceeding the minimax value of the game is
guaranteed.

Observation 8.2. When all players in a (general)
game use no-swap-regret algorithms the empirical dis-
tribution of joint players’ actions converges to a cor-
related equilibrium of the game.

Problem 8.3. Give examples of repeated games

for which there exists a schedule of player ac-
tivations that is not r-fair for any r ∈ N+

for which regret-minimizing dynamics do not con-
verge to an equilibrium (for different notions of re-
gret/convergence/equilibria).

Problem 8.4. When is convergence of no-regret dy-
namics to an equilibrium guaranteed (for different no-
tions of regret/convergence/equilibria) for all r-fair
schedules for non-fixed r’s, that is, if when r is a func-
tion of t?

9 Future research

In this paper, we have taken the first steps towards
a complete understanding of distributed computing
with adaptive heuristics. We proved a general non-
convergence result and several hardness results within
this model, and also discussed some important aspects
such as the implications of fairness and randomness,
as well as applications to a variety of settings. We
believe that we have but scratched the surface in the
exploration of the convergence properties of simple dy-
namics in asynchronous computational environments,
and many important questions remain wide open. We
now outline several interesting directions for future re-
search.

Other heuristics, convergence notions, equilib-
ria. We have considered specific adaptive heuristics,
notions of convergence, and kinds of equilibria. Un-
derstanding the effects of asynchrony on other adap-
tive heuristics (e.g., better-response dynamics, ficti-
tious play), for other notions of convergence (e.g.,
of the empirical distributions of play), and for other
kinds of equilibria (e.g., mixed Nash equilibria, corre-
lated equilibria) is a broad and challenging direction
for future research.

Outdated and private information. We have not
explicitly considered the effects of making decisions
based on outdated information. We have also not
dealt with the case that nodes’ behaviors are depen-
dent on private information, that is, the case that the
dynamics are “uncoupled” [18,19].

Other notions of asynchrony. We believe that
better understanding the role of degrees of fairness,
randomness, and other restrictions on schedules from
distributed computing literature, in achieving conver-
gence to equilibrium points is an interesting and im-
portant research direction.
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Characterizing asynchronous convergence. We
still lack characterizations of asynchronous conver-
gence even for simple dynamics (e.g., deterministic
and historyless).2

Topological and knowledge-based approaches.
Topological [4,20,29] and knowledge-based [15] ap-
proaches have been very successful in addressing fun-
damental questions in distributed computing. Can
these approaches shed new light on the implications
of asynchrony for adaptive heuristics?

Further exploring the environments in Section
5. We have applied our non-convergence result to the
environments described in Section 5. These environ-
ments are of independent interest and are indeed the
subject of extensive research. Hence, the further ex-
ploration of dynamics in these settings is important.
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A Connections to consensus protocols

There are interesting connections between our result
and that of Fischer et al. [12] for fault-resilient consen-
sus protocols. [12] studies the following environment:
There is a group of processes, each with an initial value
in {0, 1}, that communicate with each other via mes-
sages. The objective is for all non-faulty processes to
eventually agree on some value x ∈ {0, 1}, where the
“consensus” x must match the initial value of some
process. [12] establishes that no consensus protocol is
resilient to even a single failure. One crucial ingredient
for the proof of the result in [12] is showing that there
exists some initial configuration of processes’ initial
values such that, from that configuration, the resulting
consensus can be both 0 and 1 (the outcome depends
on the specific “schedule” realized). Our proof of The-
orem 4.1 uses a valency argument—an idea introduced
in the proof of the breakthrough non-termination re-
sult in [12] for consensus protocols.

Intuitively, the risk of protocol nontermination in
[12] stems from the possibility of failures; a compu-
tational node cannot tell whether another node is
silent due to a failure or is simply taking a long
time to react. We consider environments in which
nodes/communication channels do not fail. Thus,
each node is guaranteed that after “sufficiently many”
time steps all other nodes will react. Observe that
in such an environment reaching a consensus is easy;
one pre-specified node i (the “dictator”) waits un-
til it learns all other nodes’ inputs (this is guar-
anteed to happen as failures are impossible) and
then selects a value vi and informs all other nodes;
then, all other nodes select vi. Unlike the results in
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[12], the possibility of nonconvergence in our frame-
work stems from limitations on nodes’ behaviors.
We investigate the link between consensus protocols
and our framework further in Appendix F, where
we take an axiomatic approach. We introduce a
condition—“Independence of Decisions” (IoD)—that
holds for both fault-resilient consensus protocols and
for bounded-recall self-independent dynamics. We
then factor the arguments in [12] through IoD to es-
tablish a non-termination result that holds for both
contexts, thus unifying the treatment of these dynamic
computational environments.

Hence, there is no immediate translation from the
result in [12] to ours (and vice versa). To illustrate
this point, let us revisit Example 4.2, in which the
system is convergent, yet two stable states exist. We
observe that in the example there is indeed an ini-
tial state from which both stable states are reachable
(a “bivalent state” [12]). Consider the initial state
(y, x). Observe that if node 1 is activated first (and
alone), then it shall choose action x. Once node 2 is
activated it shall then also choose x, and the result-
ing stable state shall be (x, x). However, if node 2
is activated first (alone), then it shall choose action
y. Once 1 is activated it shall also choose action y,
and the resulting stable state shall be (y, y). Observe
that in Example 4.3 too there exists an action profile
(x, x) from which multiple stable states are reachable
yet the system is convergent.

B Games, circuits, networks,
and beyond

We present implications of our impossibility result
in Section 4 for several well-studied environments:
game theory, circuit design, social networks and In-
ternet protocols.

B.1 Game dynamics

The setting. There are n players, 1, . . . , n. Each
player i has a strategy set Si. Let S = ×j∈[n]Sj , and
let S−i = ×j∈[n]\{i}Sj . Each player i has a utility
function ui : S → Si. For each si ∈ Si and s−i ∈
S−i let (si, s−i) denote the strategy profile in which
player i’s strategy is si and all other players’ strategies
are as in s−i. Informally, a pure Nash equilibrium
is a strategy profile from which no player wishes to
unilaterally deviate.

Definition B.1. (pure Nash equilibria) We say

that a strategy profile s = (s1, . . . , sn) ∈ S is a
pure Nash equilibrium if, for each player i, si ∈
argmaxsi∈Siui(si, s−i).

One natural procedure for reaching a pure Nash
equilibrium of a game is best-response dynamics: the
process starts at some arbitrary strategy profile, and
players take turns “best replying” to other players’
strategies until no player wishes to change his strat-
egy. Convergence of best-response dynamics to pure
Nash equilibria is the subject of extensive research in
game theory and economics, and both positive [25,28]
and negative [18,19] results are known.

Traditionally, work in game theory on game dy-
namics (e.g., best-response dynamics) relies on the
explicit or implicit premise that players’ actions are
somehow synchronized (in some contexts play is se-
quential, while in others it is simultaneous). We con-
sider the realistic scenario that there is no computa-
tional center than can synchronize players’ selection of
strategies. We cast the above setting into the termi-
nology of Section 3 and exhibit an impossibility result
for best-response, and more general, dynamics.

Computational nodes, action spaces. The com-
putational nodes are the n players. The action space
of each player i is his strategy set Si.

Reaction functions, dynamics. Under best-
response dynamics, each player constantly chooses a
“best response” to the other players’ most recent ac-
tions. Consider the case that players have consis-
tent tie-breaking rules, i.e., the best response is al-
ways unique, and depends only on the others’ strate-
gies. Observe that, in this case, players’ behaviors
can be formulated as deterministic, historyless, and
self-independent reaction functions. The dynamic in-
teraction between players is as in Section 3.

Existence of multiple pure Nash equilibria im-
plies non-convergence of best-response dynam-
ics in asynchronous environments. Theorem 4.1
implies the following result:

Theorem B.2. If there are two (or more) pure Nash
equilibria in a game, then asynchronous best-response
dynamics can potentially oscillate indefinitely.

In fact, Theorem 4.1 implies that the above non-
convergence result holds even for the broader class
of randomized, bounded-recall and self-independent
game dynamics, and thus also to game dynamics such
as best-response with bounded recall and consistent
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tie-breaking rules (studied in [35]).

B.2 Asynchronous circuits

The setting. There is a Boolean circuit, represented
as a directed graph G, in which vertices represent the
circuit’s inputs and the logic gates, and edges repre-
sent connections between the circuit’s inputs and the
logic gates and between logic gates. The activation
of the logic gates is asynchronous. That is, the gates’
outputs are initialized in some arbitrary way, and then
the update of each gate’s output, given its inputs, is
uncoordinated and unsynchronized. We prove an im-
possibility result for this setting, which has been ex-
tensively studied (see [6]).

Computational nodes, action spaces. The com-
putational nodes are the inputs and the logic gates.
The action space of each node is {0, 1}.

Reaction functions, dynamics. Observe that each
logic gate can be regarded as a function that only de-
pends on its inputs’ values. Hence, each logic gate
can be modeled via a reaction function. Interaction
between the different circuit components is as in Sec-
tion 3.

Too much stability in circuits can lead to insta-
bility. Stable states in this framework are assignments
of Boolean values to the circuit inputs and the logic
gates that are consistent with each gate’s truth table
(reaction function). We say that a Boolean circuit
is inherently stable if it is guaranteed to converge to
a stable state regardless of the initial boolean assign-
ment. The following theorem is derived from Theorem
4.1:

Theorem B.3. If two (or more) stable Boolean as-
signments exist for an asynchronous Boolean circuit,
then that asynchronous circuit is not inherently stable.

B.3 Diffusion of technologies in social
networks

The setting. There is a social network of users, rep-
resented by a directed graph in which users are the
vertices and edges correspond to friendship relation-
ships. There are two competing technologies, X and
Y . A user’s utility from each technology depends on
the number of that user’s friends that use that tech-
nology; the more friends use that technology the more
desirable that technology is to the user. That is, a

user would always select the technology used by the
majority of his friends. We are interested in the dy-
namics of the diffusion of technologies. Observe that
if, initially, all users are using X, or all users are us-
ing Y , no user has an incentive to switch to a different
technology. Hence, there are always (at least) two dis-
tinct “stable states” (regardless of the topology of the
social network). Therefore, the terminology of Section
3 can be applied to this setting.

Computational nodes, actions spaces. The users
are the computational nodes. Each user i’s action
space consists of the two technologies {X,Y }.

Reaction functions, dynamics. The reaction func-
tion of each user i is defined as follows: If at least half
of i’s friends use technology X, i selects technology
X; otherwise, i selects technology Y . In our model of
diffusion of technologies, users’ choices of technology
can be made simultaneously, as described in Section
3.

Instability of social networks. Theorem 4.1 im-
plies the following:

Theorem B.4 In every social network, the diffusion
of technologies can potentially never converge to a sta-
ble global state.

B.4 Interdomain routing

The setting. The Internet is made up of smaller
networks called Autonomous Systems (ASes). Inter-
domain routing is the task of establishing routes be-
tween ASes, and is handled by the Border Gateway
Protocol (BGP). In the standard model for analyzing
BGP dynamics [14], there is a network of source ASes
that wish to send traffic to a unique destination AS
d. Each AS i has a ranking function <i that specifies
i’s strict preferences over all simple (loop-free) routes
leading from i to d.3 Under BGP, each AS constantly
selects the “best” route that is available to it. See
[14] for more details. Guaranteeing BGP safety, i.e.,
BGP convergence to a “stable” routing outcome is a
fundamental desideratum that has been the subject of
extensive work in both the networking and the stan-
dards communities. We now cast interdomain routing
into the terminology of Section 3. We then obtain
non-termination results for BGP and for proposals for
new interdomain routing protocols (as corollaries of

3ASes rankings of routes also reflect each AS’s export policy
that specifies which routes that AS is willing to make available
to each neighboring AS.
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Theorem 4.1).

Computational nodes, action spaces. The ASes
are the computational nodes. The action space of each
node i, Ai, is the set of all simple (loop-free) routes
between i and the destination d that are exportable
to i, and the empty route ∅.

Reaction functions, dynamics. The reaction func-
tion fi of node i outputs, for every vector α containing
routes to d of all of i’s neighbors, a route (i, j)Rj such
that (1) j is i’s neighbor; (2) Rj is j’s route in α; and
(3) Rj >i R for all other routes R in α. If there is no
such route Rj in α then fi outputs ∅. Observe that the
reaction function fi is deterministic, self-independent
and historyless. The interaction between nodes is as
described in Section 3.

The multitude of stable routing trees implies
global network instability. Theorem 4.1 implies
a recent result of Sami et al. [30], which shows that
the existence of two (or more) stable routing trees to
which BGP can (potentially) converge implies that
BGP is not safe. Importantly, the asynchronous model
of Section 3 is significantly more restrictive than that
of [30], so the result implied by Theorem 4.1 is even
stronger than that of Sami et al.

Theorem B.5.([30]) If there are multiple stable rout-
ing trees in a network, then BGP is not safe on that
network.

Over the past few years, there have been several pro-
posals for BGP-based multipath routing protocols, i.e.,
protocols that enable each node (AS) to send traffic
along multiple routes, e.g., R-BGP [22] and Neighbor-
Specific BGP [33] (NS-BGP). Under both R-BGP and
NS-BGP each computational node’s actions are in-
dependent of its own past actions and are based on
bounded recall of past interaction. Thus, Theorem
4.1 implies the following:

Theorem B.6. If there are multiple stable routing
configurations in a network, then R-BGP is not safe
on that network.

Theorem B.7. If there are multiple stable routing
configurations in a network, then NS-BGP is not safe
on that network.

B.5 Congestion control

The setting. We now present the model of conges-
tion control, studied in [13]. There is a network of

routers, represented by a directed graph G = (V, E),
where |E| > 2, in which vertices represent routers,
and edges represent communication links. Each edge
has capacity ce. There are n source-target pairs of
vertices (si, ti), termed “connections”, that represent
communicating pairs of end-hosts. Each source-target
pair (si, ti) is connected via some fixed route, Ri.
Each source si transmits at a constant rate γi > 0.4

Routers have queue management, or queueing, poli-
cies, that dictate how traffic traversing a router’s out-
going edge should be divided between the connections
whose routes traverse that edge. The network is asyn-
chronous and so routers’ queueing decisions can be
made simultaneously. See [13] for more details.

Computational nodes, action spaces The com-
putational nodes are the edges. The action space of
each edge e intuitively consists of all possible way
to divide traffic going through e between the con-
nections whose routes traverse e. More formally, for
every edge e, let N(e) be the number connections
whose paths go through e. e’s action space is then
Ai = {x = (x1, . . . , xN(e))|xi ∈ RN(e)

>0 and Σixi 6 ce}.

Reaction functions, dynamics. Each edge
e’s reaction function, fe, models the queue-
ing policy according to which e’s capacity is
shared: for every N(e)-tuple of nonnegative incom-
ing flows (w1, w2, . . . , wN(e)), fe outputs an action
(x1, . . . , xN(e)) ∈ Ai such that ∀i ∈ [N(e)] wi > xi

(a connection’s flow leaving the edge cannot be bigger
than that connection’s flow entering the edge). The
interaction between the edges is as described in Sec-
tion 3.

Multiple equilibria imply potential fluctuations
of connections’ throughputs. Godfrey etal. [13]
show that, while one might expect that if sources
transmit flow at a constant rate, flow will also be
received at a constant rate, this is not necessarily
the case. Indeed, Godfrey etal. present examples in
which connections’ throughputs can potentially fluc-
tuate ad infinitum. Equilibria (which correspond to
stable states in Section 3), are global configurations
of connections’ flows on edges such that connections’
incoming and outgoing flows on each edge are consis-
tent with the queue management policy of the router
controlling that edge. Using Theorem 4.1, we can ob-
tain the following impossibility result:

Theorem B.8. If there are multiple capacity-

4This is modeled via the addition of an edge e = (u, si) to
G, such that ce = γi, and u has no incoming edges.
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allocation equilibria in the network then dynamics of
congestion can potentially oscillate indefinitely.

C r-convergence and randomness

We now consider the implications for convergence of
two natural restrictions on schedules: r-fairness and
randomization.

C.1 Snakes in boxes and
r-convergence

Theorem 4.1 deals with convergence and not r-
convergence, and thus does not impose restrictions
on the number of consecutive time steps in which a
node can be nonactive. What happens if there is an
upper bound on this number, r? We now show that
if r < n − 1 then sometimes convergence of history-
less and self-independent dynamics is achievable even
in the presence of multiple stable states (and so our
impossibility result breaks).

Example C.1. (a system that is convergent for
r < n − 1 but nonconvergent for r = n − 1)
There are n > 2 nodes, 1, . . . , n, each with the ac-
tion space {x, y}. Nodes’ deterministic, historyless
and self-independent reaction functions are as follows.
∀i ∈ [n], fi(xn−1) = x and fi always outputs y oth-
erwise. Observe that there exist two stable states:
xn and yn. Observe that if r = n − 1 then the fol-
lowing oscillation is possible. Initially, only node 1’s
action is y and all other nodes’ actions are x. Then,
nodes 1 and 2 are activated and, consequently, node
1’s action becomes x and node 2’s action becomes y.
Next, nodes 2 and 3 are activated, and thus 2’s action
becomes x and 3’s action becomes y. Then 3, 4 are
activated, then 4, 5, and so on (traversing all nodes
over and over again in cyclic order). This goes on in-
definitely, never reaching one of the two stable states.
Observe that, indeed, each node is activated at least
once within every sequence of n− 1 consecutive time
steps. We observe however, that if r < n − 1 then
convergence is guaranteed. To see this, observe that
if at some point in time there are at least two nodes
whose action is y, then convergence to yn is guaran-
teed. Clearly, if all nodes’ action is x then convergence
to xn is guaranteed. Thus, an oscillation is possible
only if, in each time step, exactly one node’s action is
y. Observe that, given our definition of nodes’ reaction
functions, this can only be if the activation sequence
is (essentially) as described above, i.e., exactly two
nodes are activated at a time. Observe also that this

kind of activation sequence is impossible for r < n−1.

What about r > n? We use classical results in
combinatorics regarding the size of a “snake-in-the-
box” in a hypercube [1] to show that some systems
are r-convergent for exponentially-large r’s, but are
not convergent in general.

Theorem 6.2. Let n ∈ N+ be sufficiently large.
There exists a system G with n nodes, in which each
node i has two possible actions and each fi is deter-
ministic, historyless and self-independent, such that

1. G is r-convergent for r ∈ Ω(2n);

2. G is not (r + 1)-convergent.

Proof. Let the action space of each of the n nodes be
{x, y}. Consider the possible action profiles of nodes
3, . . . , n, i.e., the set {x, y}n−2. Observe that this set
of actions can be regarded as the (n − 2)-hypercube
Qn−2, and thus can be visualized as the graph whose
vertices are indexed by the binary (n− 2)-tuples and
such that two vertices are adjacent iff the correspond-
ing (n− 2)-tuples differ in exactly one coordinate.

Definition C.2. (chordless paths, snakes) A
chordless path in a hypercube Qn is a path P =
(v0, . . . , vw) such that for each vi, vj on P , if vi and vj

are neighbors in Qn then vj ∈ {vi−1, vi+1}. A snake
in a hypercube is a simple chordless cycle.

The following result is due to Abbot and Katchalski
[1].

Theorem C.3.([1]) Let t ∈ N+ be sufficiently large.
Then, the size |S| of a maximal snake in the z-
hypercube Qz is at least λ× 2z for some λ > 0.3.

Hence, the size of a maximal snake in the Qn−2

hypercube is Ω(2n). Let S be a maximal snake in
{x, y}n−2. W.l.o.g., we can assume that xn−2 is on
S (otherwise we can rename nodes’ actions so as to
achieve this). Nodes deterministic, historyless and
self-independent are as follows:

• Node i ∈ {1, 2}: fi(xn−1) = x; fi = y otherwise.
• Node i ∈ {3, . . . , n}: if the actions of nodes 1

and 2 are both y then the action y is chosen,
i.e., fi(yy ∗ . . . ∗) = y; otherwise, fi only de-
pends on the actions of nodes in {3, . . . , n} and
therefore to describe fi it suffices to orient the
edges of the hypercube Qn−2 (an edge from one
vertex to another vertex that differs from it in
the ith coordinate determines the outcome of fi
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for both). This is done as follows: orient the
edges in S so as to create a cycle (in one of two
possible ways); orient edges between vertices not
in S to vertices in S towards the vertices in S;
orient all other edges arbitrarily.

Observation C.4. xn is the unique stable state of
the system.

Observation C.5. If, at some point in time, both
nodes 1 and 2’s actions are y then convergence to the
yn stable state is guaranteed.

Claim C.6. If there is an oscillation then there must
be infinitely many time steps in which the actions of
nodes 2, . . . , n are xn−1.

Proof. Consider the case that the statement does not
hold. In that case, from some moment forth, node
1 never sees the actions xn−1 and so will constantly
select the action y. Once that happens, node 2 shall
also not see the actions xn−1 and will thereafter also
select y. Convergence to yn is then guaranteed. ¤

We now show that the system is convergent for r <
|S|, but is nonconvergent if r = |S|. The theorem
follows.

Claim C.7. If r < |S| then convergence to the stable
state yn is guaranteed.

Proof . Observation C.6 establishes that in an oscilla-
tion there must be infinitely many time steps in which
the actions of nodes 2, . . . , n are xn−1. Consider one
such moment in time. Observe that in the subsequent
time steps nodes’ action profiles will inevitably change
as in S (given our definition of nodes’ 3, . . . , n reac-
tion functions). Thus, once the action profile is no
longer xn−1 there are at least |S| − 1 time steps until
it goes back to being xn−1. Observe that if 1 and 2
are activated at some point in the intermediate time
steps (which is guaranteed as r < |S|) then the ac-
tions of both shall be y and so convergence to yn is
guaranteed. ¤

Claim C.8. If r = |S| then an oscillation is possible.

Proof. The oscillation is as follows. Start at xn and
activate both 1 and 2 (this will not change the action
profile). In the |S| − 1 subsequent time steps activate
all nodes but 1 and 2 until xn is reached again. Repeat
ad infinitum. ¤

This completes the proof of Theorem 6.2. ¤

We note that the construction in the proof of Theo-
rem 6.2 is such that there is a unique stable state. We
believe that the same ideas can be used to prove the
same result for systems with multiple stable states but
the exact way of doing this eludes us at the moment,
and is left as an open question.

Problem C.9. Prove that for every sufficiently large
n ∈ N+, there exists a system G with n nodes, in
which each node i has two possible actions and each
fi is deterministic, historyless and self-independent,
such that

1. G is r-convergent for r ∈ Ω(2n);

2. G is not (r + 1)-convergent;

3. There are multiple stable states in G.

C.2 Does random choice (of initial
state and schedule) help?

Theorem 4.1 tells us that a system with multiple
stable states is nonconvergent if the initial state and
the node-activation schedule are chosen adversarially.
Can we guarantee convergence if the initial state and
schedule are chosen at random?

Example C.10. (random choice of initial state
and schedule might not help) There are n nodes,
1, . . . , n, and each node has action space {x, y, z}. The
(deterministic, historyless and self-independent) re-
action function of each node i ∈ {3, . . . , n} is such
that fi(xn−1) = x; fi(zn−1) = z; and fi = y
for all other inputs. The (deterministic, historyless
and self-independent) reaction function of each node
i ∈ {1, 2} is such that fi(xn−1) = x; fi(zn−1) = z;
fi(xyn−2) = y; fi(yn−1) = x; and fi = y for all
other inputs. Observe that there are exactly two sta-
ble states: xn and zn. Observe also that if nodes’ ac-
tions in the initial state do not contain at least n− 1
x’s, or at least n−1 z’s, then, from that moment forth,
each activated node in the set {3, . . . , n} will choose
the action y. Thus, eventually the actions of all nodes
in {3, . . . , n} shall be y, and so none of the two stable
states will be reached. Hence, there are 3n possible
initial states, such that only from 4n + 2 can a stable
state be reached.

Example C.10 presents a system with multiple sta-
ble states such that from most initial states all possi-
ble choices of schedules do not result in a stable state.
Hence, when choosing the initial state uniformly at
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random the probability of landing on a “good” initial
state (in terms of convergence) is exponentially small.

D Complexity of asynchronous
dynamics

We now explore the communication complexity and
computational complexity of determining whether a
system is convergent. We present hardness results
in both models of computation even for the case
of deterministic and historyless adaptive heuristics.
Our computational complexity result shows that even
if nodes’ reaction functions can be succinctly repre-
sented, determining whether the system is conver-
gent is PSPACE-complete. This intractability result,
alongside its computational implications, implies that
we cannot hope to have short “witnesses” of guar-
anteed asynchronous convergence (unless PSPACE ⊆
NP).

D.1 Communication complexity

We prove the following communication complex-
ity result, that shows that, in general, determining
whether a system is convergent cannot be done effi-
ciently.

Theorem D.1. Determining if a system with n
nodes, each with 2 actions, is convergent requires
Ω(2n) bits. This holds even if all nodes have determin-
istic, historyless and self-independent reaction func-
tions.

Proof. To prove our result we present a reduction
from the following well-known problem in communi-
cation complexity theory.

2-party SET DISJOINTNESS: There are two parties,
Alice and Bob. Each party holds a subset of {1, . . . , q};
Alice holds the subset EA and Bob holds the subset
EB . The objective is to determine whether EA∩EB =
∅. The following is well known.

Theorem D.2. Determining whether EA ∩ EB = ∅
requires (in the worst case) the communication of Ω(q)
bits. This lower bound applies to randomized protocols
with bounded 2-sided error and also to nondetermin-
istic protocols.

We now present a reduction from 2-party SET DIS-
JOINTNESS to the question of determining whether
a system with deterministic, historyless and self-

independent reaction functions is convergent. Given
an instance of SET-DISJOINTNESS we construct a
system with n nodes, each with two actions, as fol-
lows (the relation between the parameter q in SET
DISJOINTNESS and the number of nodes n is to be
specified later). Let the action space of each node be
{x, y}. We now define the reaction functions of the
nodes. Consider the possible action profiles of nodes
3, . . . , n, i.e., the set {x, y}n−2. Observe that this set
of actions can be regarded as the (n − 2)-hypercube
Qn−2, and thus can be visualized as the graph whose
vertices are indexed by the binary (n− 2)-tuples and
such that two vertices are adjacent if and only if the
corresponding (n − 2)-tuples differ in exactly one co-
ordinate.

Definition D.3. (chordless paths, snakes) A
chordless path in a hypercube Qn is a path P =
(v0, . . . , vw) such that for each vi, vj on P , if vi and vj

are neighbors in Qn then vj ∈ {vi−1, vi+1}. A snake
in a hypercube is a simple chordless cycle.

The following result is due to Abbot and Katchalski
[1].

Theorem D.4([4]) Let t ∈ N+ be sufficiently large.
Then, the size |S| of a maximal snake in the z-
hypercube Qz is at least λ× 2z for some λ > 0.3.

Hence, the size of a maximal snake in the Qn−2

hypercube is Ω(2n). Let S be a maximal snake in
{x, y}n−2. We now show our reduction from SET DIS-
JOINTNESS with q = |S|. We identify each element
j ∈ {1 . . . , q} with a unique vertex vj ∈ S. W.l.o.g
we can assume that xn−2 is on S (otherwise we can
rename nodes’ actions to achieve this). For ease of
exposition we also assume that yn−2 is not on S (get-
ting rid of this assumption is easy). Nodes’ reaction
functions are as follows.

• Node 1: If vj = (vj,1, . . . , vj,n−2) ∈ S is a vertex
that corresponds to an element j ∈ EA, then
f1(y, vj,1, . . . , vj,n−2) = x; otherwise, f1 outputs
y.

• Node 2: If vj = (vj,1, . . . , vj,n−2) ∈ S is a vertex
that corresponds to an element j ∈ EB , then
f2(y, vj,1, . . . , vj,n−2) = x; otherwise, f2 outputs
y.

• Node i ∈ {3, . . . , n}: if the actions of nodes 1
and 2 are not both x then the action y is chosen;
otherwise, fi only depends on actions of nodes in
{3, . . . , n} and therefore to describe fi it suffices
to orient the edges of the hypercube Qn−2 (an
edge from one vertex to another vertex that dif-
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fers from it in the ith coordinate determines the
outcome of fi for both). This is done as follows:
orient the edges in S so as to create a cycle (in
one of two possible ways); orient edges between
vertices not in S to vertices in S towards the
vertices in S; orient all other edges arbitrarily.

Observation D.5. yn is the unique stable state of
the system.

In our reduction Alice simulates node 1 (whose re-
action function is based on EA), Bob simulates node 1
(whose reaction function is based on EB), and one of
the two parties simulates all other nodes (whose reac-
tion functions are not based on neither EA nor EB).
The theorem now follows from the combination of the
following claims:

Claim D.6. In an oscillation it must be that there
are infinitely many time steps in which both node 1
and 2’s actions are x.

Proof . By contradiction. Consider the case that from
some moment forth it is never the case that both node
1 and 2’s actions are x. Observe that from that time
onwards the nodes 3, . . . , n will always choose the ac-
tion y. Hence, after some time has passed the actions
of all nodes in {3, . . . , n} will be y. Observe that when-
ever nodes 1 and 2 are activated thereafter they shall
choose the action y and so we have convergence to the
stable state yn. ¤

Claim D.7. The system is not convergent iff EA ∩
EB 6= ∅.

Proof. We know (Claim D.6) that if there is an os-
cillation then there are infinitely many time steps in
which both node 1 and 2’s actions are x. We argue
that this implies that there must be infinitely many
time steps in which both nodes select action x simulta-
neously. Indeed, recall that node 1 only chooses action
x if node 2’s action is y, and vice versa, and so if both
nodes never choose x simultaneously, then it is never
the case that both nodes’ actions are x at the same
time step (a contradiction). Now, when is it possible
for both 1 and 2 to choose x at the same time? Ob-
serve that this can only be if the actions of the nodes
in {3, . . . , n} constitute an element that is in both EA

and EB . Hence, EA ∩ EB 6= ∅. ¤

This completes the proof of Theorem D.1. ¤

D.2 Computational complexity

The above communication complexity hardness re-
sult required the representation of the reaction func-
tions to (potentially) be exponentially long. What
if the reaction functions can be succinctly described?
We now present a strong computational complexity
hardness result for the case that each reaction func-
tion fi is deterministic and historyless, and is given
explicitly in the form of a boolean circuit (for each
a ∈ A the circuit outputs fi(a)).

Theorem 7.2. Determining if a system with n
nodes, each with a deterministic and historyless re-
action function, is convergent is PSPACE-complete.

Proof. Our proof is based on the proof of Fabrikant
and Papadimitriou [9] that BGP safety is PSPACE-
complete. Importantly, the result in [9] does not im-
ply Theorem 7.2 since [9] only considers dynamics in
which nodes are activated one at a time. We present
a reduction from the following problem.

STRING NONTERMINATION: The input is a func-
tion g : Γt → Γ ∪ {halt}, for some alphabet Γ, given
in the form of a boolean circuit. The objective is
to determine whether there exists an initial string
T = (T0, . . . , Tt−1) ∈ Γt such that the following pro-
cedure does not halt.

1. i:=0

2. While g(T ) 6= halt do

• Ti := g(T )

• i := (i + 1) modulo t

STRING NONTERMINATION is closely related to
STRING HALTING from [9] and is also PSPACE-
complete. We now present a reduction from STRING
NONTERMINATION to the question of determining
whether a system with deterministic and historyless
reaction functions is convergent.

We construct a system with n = t + 1 nodes. The
node set is divided into t “index nodes” 0, . . . , t − 1
and a single “counter node” x. The action space of
each index node is Γ ∪ {halt} and the action space
of the counter node is {0, . . . , t − 1} × (Γ ∪ {halt}).
Let a = (a0, . . . , at−1, ax) be an action profile of the
nodes, where ax = (j, γ) is the action of the counter
node. We now define the deterministic and historyless
reaction functions of the nodes:
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• The reaction function of index node i ∈
{0, . . . , t− 1}, fi: if γ = halt, then fi(a) = halt;
otherwise, if j = i, and aj 6= γ, then fi(a) = γ;
otherwise, fi(a) = ai.

• The reaction function of the counter node, fx:
if γ = halt, then fx(a) = ax; if aj = γ, then
fi(a) = ((j +1) modulu t, g(a0, . . . , at−1); other-
wise fi(a) = ax.

The theorem now follows from the following claims
that, in turn, follow from our construction:

Claim D.8. (halt, . . . , halt) is the unique stable state
of the system.

Proof. Observe that (halt, . . . , halt) is indeed a stable
state of the system. The uniqueness of this stable state
is proven via a simple case-by-case analysis. ¤

Claim D.9. If there exists an initial string T =
(T0, . . . , Tt−1) for which the procedure does not ter-
minate then there exists an initial state from which
the system does not converge to the stable state
(halt, . . . , halt) regardless of the schedule chosen.

Proof. Consider the evolution of the system from the
initial state in which the action of index node i is Ti

and the action of the counter node is (0, g(T )). ¤

Claim D.10. If there does not exist an initial string
T for which the procedure does not terminate then the
system is convergent.

Proof. Observe that if there is an initial state a =
(a0, . . . , at−1, ax) and a fair schedule for which the
system does not converge to the unique stable state
then the procedure does not halt for the initial string
T = (a0, . . . , at−1). ¤

This completes the proof of Theorem 7.2. ¤

Proving the above PSPACE-completeness result for
the case self-independent reaction functions seems
challenging.

Problem D.11. Prove that determining if a sys-
tem with n nodes, each with a deterministic self-
independent and historyless reaction function, is con-
vergent is PSPACE-complete.

E Some basic observations regarding
no-regret dynamics

Regret minimization is fundamental to learning the-
ory. The basic setting is as follows. There is a space
of m actions (e.g., possible routes to work), which
we identify with the set [m] = {1, . . . , m}. In each
time step t ∈ {1, . . .}, an adversary selects a profit
function pt : [m] → [0, 1] (e.g., how fast traffic is
flowing along each route), and the (randomized) algo-
rithm chooses a distribution Dt over the elements in
[m]. When choosing Dt the algorithm can only base
its decision on the profit functions p1, . . . , pt−1, and
not on pt (that is revealed only after the algorithm
makes its decision). The algorithm’s gain at time t is
gt = Σj∈[m] Dt(j)pt(j), and its accumulated gain at
time t is Σt

i=1 gt . Regret analysis is useful for design-
ing adaptive algorithms that fair well in such uncertain
environments. The motivation behind regret analysis
is ensuring that, over time, the algorithm performs at
least as well in retrospect as some alternative “simple”
algorithm.

We now informally present the three main notions
of regret (see [3] for a thorough explanation): (1) Ex-
ternal regret compares the algorithm’s performance to
that of simple algorithms that select the exact same
action in each time step (e.g., “you should have always
taken Broadway, and never chosen other routes”). (2)
Internal regret and swap regret analysis compares the
gain from the sequence of actions actually chosen to
that derived from replacing every occurrence of an ac-
tion i with another action j (e.g., “every time you
chose Broadway you should have taken 7th Avenue in-
stead). While internal regret analysis allows only one
action to be replaced by another, swap regret analysis
considers all mappings from [m] to [m]. The algorithm
has no (external/internal/swap) regret if the gap be-
tween the algorithm’s gain and the gain from the best
alternative policy allowed vanishes with time.

Regret minimization has strong connections to
game-theoretic solution concepts. If each player in
a repeated game executes a no-regret algorithm when
selecting strategies, then convergence to an equilib-
rium is guaranteed in a variety of interesting con-
texts. The notion of convergence, and the kind of
equilibrium reached, vary, and are dependent on the
restrictions imposed on the game and on the type of
regret being minimized (e.g., in zero-sum games, no-
external-regret algorithms are guaranteed to approach
or exceed the minimax value of the game; in general
games, if all players minimize swap regret, then the
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empirical distribution of joint players’ actions con-
verges to a correlated equilibrium, etc.). (See [3] and
references therein). Importantly, these results are all
proven within a model of interaction in which each
player selects a strategy in each and every time step.

We make the following simple observation. Con-
sider a model in which the adversary not only chooses
the profit functions but also has the power not to allow
the algorithm to select a new distribution over actions
in some time steps. That is, the adversary also selects
a schedule σ such that ∀t ∈ N+, σ(t) ∈ {0, 1}, where 0
and 1 indicate whether the algorithm is not activated,
or activated, respectively. We restrict the schedule to
be r-fair, in the sense that the schedule chosen must
be such that the algorithm is activated at least once in
every r consecutive time steps. If the algorithm is acti-
vated at time t and not activated again until time t+β
then it holds that ∀s ∈ {t+1, . . . , t+β− 1}, Ds = Dt

(the algorithm cannot change its probability distribu-
tion over actions while not activated). We observe
that if an algorithm has no regret in the above setting
(for all three notions of regret), then it has no regret in
this setting as well. To see this, simply observe that if
we regard each batch of time steps in which the algo-
rithms is not activated as one “meta time step”, then
this new setting is equivalent to the traditional setting
(with pt : [m] → [0, r] for all t ∈ N+).

This observation, while simple, is not uninteresting,
as it implies that all regret-based results for repeated
games continue to hold even if players’ order of acti-
vation is asynchronous (see Section 3 for a formal ex-
position of asynchronous interaction), so long as the
schedule of player activations is r-fair for some r ∈ N+.
We mention two implications of this observation.

Observation E.1. When all players in a zero-sum
game use no-external-regret algorithms then approach-
ing or exceeding the minimax value of the game is
guaranteed.

Observation E.2. When all players in a (general)
game use no-swap-regret algorithms the empirical dis-
tribution of joint players’ actions converges to a cor-
related equilibrium of the game.

Problem E.3. Give examples of repeated games
for which there exists a schedule of player ac-
tivations that is not r-fair for any r ∈ N+

for which regret-minimizing dynamics do not con-
verge to an equilibrium (for different notions of re-
gret/convergence/equilibria).

Problem E.4. When is convergence of no-regret dy-
namics to an equilibrium guaranteed (for different no-
tions of regret/convergence/equilibria) for all r-fair
schedules for non-fixed r’s, that is, if when r is a func-
tion of t?

F An axiomatic approach

We now use (a slight variation of) the framework
of Taubenfeld, which he used to study resilient con-
sensus protocols [31], to prove Theorem 4.1. We first
(Section F.2) define runs as sequences of events; un-
like Taubenfeld, we allow infinite runs. A protocol
is then a collection of runs (which must satisfy some
natural conditions like closure under taking prefixes).
We then define colorings of runs (which correspond to
outcomes that can be reached by extending a run in
various ways) and define the IoD property.

The proof of Theorem 4.1 proceeds in two steps.
First, we show that any protocol that satisfies IoD
has some (fair, as formalized below), non-terminating
activation sequence. We then show that protocols that
satisfy the hypotheses of Theorem 4.1 also satisfy IoD.

F.1 Proof sketch

Proof Sketch. The proof follows the axiomatic ap-
proach of Taubenfeld [31] in defining asynchronous
protocols in which states are colored by sets of col-
ors; the set of colors assigned to a state must be a
superset of the set of colors assigned to any state that
is reachable (in the protocol) from it. We then show
that any such protocol that satisfies a certain pair of
properties (which we call Independence of Decisions or
IoD) and that has a polychromatic state must have a
non-terminating fair run in which all states are poly-
chromatic.

For protocols with 1-recall, self-independence, and
stationarity, we consider (in order to reach a contra-
diction) protocols that are guaranteed to converge.
Each starting state is thus guaranteed to reach only
stable states; we then color each state according to
the outcomes that are reachable from that state. We
show that, under this coloring, such protocols satisfy
IoD and that, as in consensus protocols, the exis-
tence of multiple stable states implies the existence
of a polychromatic state. The non-terminating, poly-
chromatic, fair run that is guaranteed to exist is, in
the context, exactly the non-convergent protocol run
claimed by the theorem statement. We then show that
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this may be extended to non-stationary protocols with
k-recall (for k > 1). ¤

F.2 Events, runs, and protocols

Events are the atomic actions that are used to build
runs of a protocol. Each event is associated with one
or more principals; these should be thought of as the
principals who might be affected by the event (e.g.,
as sender or receiver of a message), with the other
principals unable to see the event. We start with the
following definition.

Definition F.1(Events and runs). There is a set E
whose elements are called events; we assume a finite
set of possible events (although there will be no re-
strictions on how often any event may occur). There
is a set P of principals; each event has an associated
set S ⊆ P, and if S is the set associated to e ∈ E, we
will write eS .

There is a set R whose elements are called runs;
each run is a (possibly infinite) sequence of events.
We say that event e is enabled at run x if the con-
catenation 〈x; e〉 (i.e., the sequence of events that is
x followed by the single event e) is also a run. (We
will require that R be prefix-closed in the protocols
we consider below.)

The definition of a protocol will also make use of
a couple types of relationship between runs; our in-
tuition for these relationships continues to view eP

as meaning that event e affects the set P of princi-
pals. From this intuitive perspective, two runs are
equivalent with respect to a set S of principals ex-
actly when their respective subsequences that affect
the principals in S are identical. We also say that one
run includes another whenever, from the perspective
of every principal (i.e., restricting to the events that
affect that principal), the included run is a prefix of
the including run. Note that this does not mean that
the sequence of events in the included run is a prefix
of the sequence of events in the including run—events
that affect disjoint sets of principals can be reordered
without affecting the inclusion relationship.

Definition F.2(Run equivalence and inclusion). For
a run x and S ⊆ P, we let xS denote the subsequence
(preserving order and multiplicity) of events eP in x
for which P ∩S 6= ∅. We say that x and y are equiva-
lent with respect to S, and we write x[S]y, if xS = yS .
We say that y includes x if for every node i, the re-
striction of x to those events eP with i ∈ P is a prefix

of the restriction of y to such events.

Our definitions of xS and x[S]y generalize defini-
tions given by Taubenfeld [3] for |S| = 1—allowing
us to consider events that are seen by multiple
principals—but other than this and the allowance of
infinite runs, the definitions we use in this section are
the ones he used. Importantly, however, we do not
use the resilience property that Taubenfeld used.

Finally, we have the formal definition of an asyn-
chronous protocol. This is a collection of runs that is
closed under taking prefixes and only allows for finitely
many (possibly 0) choices of a next event to extend the
run. It also satisfies the property (P2 below) that, if a
run can be extended by an event that affects exactly
the set S of principals, then any run that includes this
run and that is equivalent to the first run with respect
to S (so that only principals not in S see events that
they don’t see in the first run) can also be extended
by the same event.

Definition F.3(Asynchronous protocol). An asyn-
chronous protocol (or just a protocol) is a collection of
runs that satisfies the following three conditions.

P1 Every prefix of a run is a run.

P2 Let 〈x; eS〉 and y be runs. If y includes x, and
if x[S]y, then 〈y; eS〉 is also a run.

P3 Only finitely many events are enabled at a run.

F.3 Fairness, coloring, and decisions

We start by recalling the definition of a fair sequence
[31]; as usual, we are concerned with the behavior of
fair runs. We also introduce the notion of a fair ex-
tension, which we will use to construct fair infinite
runs.

Definition F.4(Fair sequence, fair extension). We
define a fair sequence to be a sequence of events such
that: every finite prefix of the sequence is a run; and,
if the sequence is finite, then no event is enabled at
the sequence, while if the sequence is infinite, then ev-
ery event that is enabled at all but finitely many pre-
fixes of the sequence appears infinitely often in the se-
quence. We define a fair extension of a (not necessar-
ily fair) sequence x to be a finite sequence e1, e2, . . . , ek

of events such that e1 is enabled at x, e2 is enabled at
〈x; e1〉, etc.

We also assign a set of “colors” to each sequence of
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events subject to the conditions below. As usual, the
colors assigned to a sequence will correspond to the
possible protocol outcomes that might be reached by
extending the sequence.

Definition F.5(Asynchronous, C-chromatic proto-
col). Given a set C (called the set of colors), we will
assign sets of colors to sequences; this assignment may
be a partial function. For a set C, we will say that
a protocol is C-chromatic if it satisfies the following
properties.

C1 For each c ∈ C, there is a protocol run of color
{c}.

C2 For each protocol run x of color C ′ ⊆ C, and
for each c ∈ C ′, there is an extension of x that
has color {c}.

C3 If y includes x and x has color C ′, then the
color of y is a subset of C ′.

We say that a fair sequence is polychromatic if the set
of colors assigned to it has more than one element.

Finally, a C-chromatic protocol is called a decision
protocol if it also satisfies the following property:

D Every fair sequence has a finite monochromatic
prefix, i.e., a prefix whose color is {c} for some
c ∈ C.

F.4 Independence of decisions (IoD)

We turn now to the key (two-part) condition that
we use to prove our impossibility results.

Definition F.6(Independence of Decisions (IoD)). A
protocol satisfies Independence of Decisions (IoD) if,
whenever

• a run x is polychromatic and
• there is some event e is enabled at x and 〈x; e〉

is monochromatic of color {c},

then

1. for every e′ 6= e that is enabled at x, the color
of 〈x; e′〉 contains c, and

2. for every e′ 6= e that is enabled at x, if 〈〈x; e′〉 ; e〉
is monochromatic, then its color is also {c}.

Figure 1 illustrates the two conditions that form
IoD. Both parts of the figure include the polychromatic
run x that can be extended to 〈x; e〉 with monochro-
matic color {c}; the color of x necessarily includes c.

The left part of the figure illustrates condition 1, and
the right part of the figure illustrates condition 2. The
dashed arrow indicates a sequence of possibly many
events, while the solid arrows indicate single events.
The labels on a node in the figure indicate what is
assumed/required about the set that colors the node.

Condition 1 essentially says that, if an event e de-
cides the outcome of the protocol, then no other event
can rule out the outcome that e produced. The name
“Independence of Decisions” derives from condition
2, which essentially says that, if event e decides the
outcome of the protocol both before and after event
e′, then the decision that is made is independent of
whether e′ happens immediately before or after e.

In working with IoD-satisfying protocols, the follow-
ing lemma will be useful.

Lemma F.7. If IoD holds, then for any two events e
and e′ that are enabled at a run x, if both 〈x; e〉 and
〈x; e′〉 are monochromatic, then those colors are the
same.

Proof . By IoD, the color of 〈x; e′〉 must contain the
color of 〈x; e〉, and both of these sets are singletons.¤

F.5 IoD-Satisfying protocols don’t
always converge

To show that IoD-satisfying protocols don’t always
converge, we proceed in two steps: first, we show
(Lemma F.8) that a polychromatic sequence can be
fairly extended (in the sense of . . . ) to another poly-
chromatic sequence; second, we use that lemma to
show (Theorem F.9) . . . .

Lemma F.8(The Fair-Extension Lemma). In a poly-
chromatic decision protocol that satisfies IoD, if a run
x is polychromatic, then x can be extended by a fair
extension to another polychromatic run.

Proof. Assume that, for some C ′, there is a run x
of color C ′ that cannot be fairly extended to another
polychromatic run. Because |C ′| > 1, there must be
some event that is enabled at x; if not, we would con-
tradict D. Figure 2 illustrates this (and the arguments
in the rest of the proof below).

Consider the extensions of x that use as many dis-
tinct events as possible and that are polychromatic,
and pick one of these y that minimizes the number of
events that are enabled at every prefix of y (after x
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Figure 1: Illustration of the two conditions of loD.

has already been executed) but that do not appear in
y. If y contains no events (illustrated in the top left
of Figure 2), then every event e that is enabled at x
is such that 〈x; e〉 is monochromatic. By Lemma F.7,
these singletons must all be the same color {c}; how-
ever, this means that for c′ ∈ C ′ \ {c} 6= ∅, x does not
have any extensions whose color is c′, contradicting
C2.

If y contains one or more events (illustrated in the
top right and bottom of Figure 2), then (because it is
not a fair extension of x) there is at least one event
e that is enabled everywhere in the extension, includ-
ing at 〈x;y〉, but that does not appear anywhere in y.
Because y was chosen instead of 〈y; e〉 (or another ex-
tension with the same number of distinct events), the
color of 〈〈x;y〉 ; e〉 must be a singleton {c}. Because
〈x;y〉 is polychromatic, it has some extension z that
is (eventually) monochromatic with color {d} 6= {c};
let e′ be the first event in this extension. Because IoD
is satisfied, the color of 〈〈x;y〉 ; e′〉 also contains c and
is thus polychromatic. The event e is again enabled
here (else 〈〈x;y〉 ; e′〉 would have been chosen instead
of y). If 〈〈〈x;y〉 ; e′〉 ; e〉 is not monochromatic (top
right of Figure 2), then it is a polychromatic exten-
sion of x that uses more distinct events than does y,
a contradiction. If 〈〈〈x;y〉 ; e′〉 ; e〉 is monochromatic
(bottom of Figure 2), then by IoD it has color {c}.
We may then inductively move along the extension
z; after each additional event from z is appended to
the run, the resulting run is polychromatic (its color
set must include d, but if it is monochromatic it must
have color {c}) and again enables e (by our choice of
y). Again by our choice of y, appending e to this run
must produce a monochromatic run, which (by IoD)
must have color {c}. Proceeding along z, we must
then eventually reach a polychromatic run at which
e is enabled (and produces a monochromatic run of
color {c}) and which also enables a different event
that yields a monochromatic run of color {d}. This

contradicts Lemma F.7. ¤

Theorem F.9. Any IoD-satisfying asynchronous pro-
tocol with a polychromatic initial state has a fair
sequence that starts at this initial state and never
reaches a decision, i.e., it has a fair sequence that does
not have a monochromatic prefix.

Proof. Start with the empty (polychromatic) run and
iteratively apply the fair-extension lemma to obtain an
infinite polychromatic sequence. If an event e is en-
abled at all but finitely many prefixes in this sequence,
then in all but finitely many of the fair extensions, e is
enabled at every step of the extension. Because these
extensions are fair (in the sense of Definition F.4), e is
activated in each of these (infinitely many) extensions
and so appears infinitely often in the sequence, which
is thus fair. ¤

F.6 1-recall, stationary, self-independ-
ent protocols need not converge

We first recall the statement of Theorem 4.1. We
then show that 1-recall, historyless protocols satisfy
IoD when colored as in Definition F.10. Theorem F.9
then implies that such protocols do not always con-
verge; it immediately follows that this also applies to
bounded-recall (and not just 1-recall) protocols.

Theorem 4.1. If each node i has bounded recall, and
each reaction function fi is self-independent and sta-
tionary, then the existence of two stable states implies
that the computational network is not safe.

Definition F.10(Stable coloring). In a protocol de-
fined as in Section 3, the stable coloring of protocol
states is the coloring that has a distinct color for each
stable state and that colors each state in a run with
the set of colors corresponding to the stable states that
are reachable from that state.
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Figure 2: Illustration of proof of Lemma F.8.

We model the dynamics of a 1-recall, historyless
protocol as follows. There are two types of actions:
the application of nodes’ reaction functions, where ei

is the action of node i acting as dictated by fi, and
a “reveal” action W . The nodes scheduled to react
in the first timestep do so sequentially, but these ac-
tions are not yet visible to the other nodes (so that
nodes after the first one in the sequence are still re-
acting to the initial state and not to the actions per-
formed earlier in the sequence). Once all the scheduled
nodes have reacted, the W action is performed; this
reveals the newly performed actions to all the other
nodes in the network. The nodes that are scheduled
to react at the next timestep then act in sequence,
followed by another W action, and so on. This con-
verts the simultaneous-action model of Section 3 to
one in which actions are performed sequentially; we
will use this “act-and-tell” model in the rest of the
proof. We note that all actions are enabled at ev-
ery step (so that, e.g., ei can be taken multiple times
between W actions; however, this is indistinguishable
from a single ei action because the extra occurrences
are not seen by other nodes, and they do not affect i’s
actions, which are governed by a historyless reaction
function).

Once we cast the dynamics of 1-recall, history-
less protocols in the act-and-tell model, the following
lemma will be useful.

Lemma F.11(Color equalities). In a 1-recall, histo-

ryless protocol (in the act-and-tell model):

1. For every run pair of runs x,y and every i ∈ [n],
the color of 〈〈x; eiWeiW 〉 ;y〉 is the same as the
color of 〈〈x; WeiW 〉 ;y〉.

2. For every run pair of runs x,y and every i, j ∈
[n], the color of 〈〈x; eiej〉 ;y〉 is the same as the
color of 〈〈x; ejei〉 ;y〉. Informally, the first color
equality says that, if all updates are announced
and then i activates and then all updates are re-
vealed again (i’s new output being the

only new one), it makes no difference whether or not
i was activated immediately before the first reveal ac-
tion. The second color equality says that, as long as
there are no intervening reveal event, the order in
which nodes compute their outputs does not matter
(because they do not have access to their neighbors’
new outputs until the reveal event).

Proof. For the first color equality, because the proto-
col is self-independent, the first occurrence of ei (after
x) in 〈〈x; eiWeiW 〉 ;y〉 does not affect the second oc-
currence of ei. Because the protocol has 1-recall, the
later events (in y) are also unaffected.

The second color equality is immediate from the
definition of the act-and-tell model. ¤

Lemma F.12. If a protocol is 1-recall and history-
less, then the protocol (with the stable coloring) satis-
fies IoD.
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Figure 3: Illustrations of the arguments in the proof of Lemma F.12.

Proof. Color each state in the protocol’s runs accord-
ing to the stable states that can be reached from it.
Assume x is a polychromatic run (with color C ′) and
that some event e is such that 〈x; e〉 is monochromatic
(with color {c}). Let e′ be another event (recall that
all events are always enabled). If e and e′ are two dis-
tinct node events ei and ej (i 6= j), respectively, then
the color of 〈〈x; ej〉 ; ei〉 is the color of 〈〈x; ei〉 ; ej〉 and
thus the (monochromatic) color of 〈x; ei〉, i.e., {c}. If
e and e′ are both W or are the same node event ei,
then the claim is trivial.

If e = ei and e′ = W (as illustrated in the left of
Figure 3), then we may extend 〈x; ei〉 by WeiW to
obtain a run whose color is again {c}. By the second
color equality, this is also the color of the extension
of 〈x; W 〉 by eiW , so the color of 〈x;W 〉 contains c
and if the extension of 〈x; W 〉 by ei is monochromatic,
its color must be {c} as well. If, on the other hand,
e = W and e′ = ei (as illustrated in the right of
Figure 3), we may extend 〈x;W 〉 by eiW and 〈x; ei〉
by WeiW to obtain runs of color {c}; so the color
of 〈x; ei〉 must contain c and, arguing as before, if the
intermediate extension 〈〈x; ei〉 ; W 〉 is monochromatic,
its color must also be {c}. ¤

Lemma F.13. If a 1-recall, historyless computation
that always converges can, for different starting states,
converge to different stable states then there is some
input from which the computation can reach multiple
stable states. In particular, under the stable coloring,
there is a polychromatic state.

Proof. Assume there are (under the stable coloring)
two different monochromatic input states for the com-
putation, that the inputs differ only at one node v,
and that the computation always converges (i.e., for
every fair schedule) on both input states. Consider a
fair schedule that activates v first and then proceeds
arbitrarily. Because the inputs to v’s reaction func-
tion are the same in each case, after the first step in
each computation, the resulting two networks have the
same node states. This means that the computations
will subsequently unfold in the same way, in particular
producing identical outputs.

If a historyless computation that always converges
can produce two different outputs, then iterated appli-
cation of the above argument leads to a contradiction
unless there is a polychromatic initial state. ¤

Proof of 1-recall, stationary part of Theorem 4.1 Con-
sider a protocol with 1-recall, self independence, and
stationarity, and that has two different stable states.
If there is some non-convergent run of the protocol,
then the network is not safe (as claimed). Now as-
sume that all runs converge; we will show that this
leads to a contradiction. Color all states in the proto-
col’s runs according to the stable coloring (Definiton
F.10). Lemma F.13 implies that there is a polychro-
matic state. Because, by Lemma F.12, the IoD is satis-
fied, we may apply Theorem F.9. In this context (with
the stable coloring), this implies that there is an in-
finite run in which every state can reach at least two
stable states; in particular, the run does not converge.
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¤

F.7 Extension to non-stationary
protocols

We may extend our results to non-stationary pro-
tocols as well.

Theorem F.14. If each node i has 1-recall, the ac-
tion spaces are all finite, and each reaction function
fi is self-independent but not necessarily stationary,
then the existence of two stable states implies that the
computational network is not safe.

Proof. In this context, a stable state is a vector of ac-
tions and a time t such that, after t, the action vector
is a fixed point of the reaction functions. Let T be
the largest such t over all the (finitely many) stable
states (and ensure that T is at least k for generalizing
to k-recall). Assume that the protocol is in fact safe;
this means that, under the stable coloring, every state
gets at least one color. If there are only monochro-
matic states, consider the states at time T ; we view
two of these states as adjacent if they differ only in
the action (or action history for the generalization to
k-recall) of one node. Because the protocol is self-
independent, that node may be activated (k times if
necessary) to produce the same state. In particular,
this means that adjacent states must have the same
monochromatic color. Because (among he states at
time T ) there is a path (following state adjacencies)
from any one state to any other, only one stable state
is possible, contradicting the hypotheses of the theo-
rem.

Considering the proof of Lemma F.12, we see that
the number of timesteps required to traverse each of
the subfigures in Figure 3 does not depend on which
path (left or right) through the subfigure we take. In
particular, this means that the reaction functions are
not affected by the choice of path. Furthermore, the
non-W actions in each subfigure only involve a single
node i; the final action performed by i along each path
occurs after one W action has been performed (after
x), so these final actions are the same (because the
timesteps at which they occur are the same, as are
the actions of all the other nodes in the network). ¤

F.8 Extension to bounded-recall
protocols

If we allow k-recall for k > 1, we must make a

few straightforward adjustments to the proofs above.
Generalizing the argument used in the proof of the
color equalities (Lemma F.11), we may prove an ana-
logue of these for k-recall; in particular, we replace the
first color equality by an equality between the colors of〈〈

x; eiW (eiW )k
〉
;y

〉
and

〈〈
x; W (eiW )k

〉
;y

〉
. This

leads to the analogue of Lemma F.12 for bounded-
recall protocols; as in Lemma F.12, the two possible
paths through each subfigure (in the k-recall analogue
of Figure 3) require the same number of timesteps, so
non-stationarity is not a problem.

Considering adjacent states as those that differ only
in the actions of one node (at some point in its depth-k
history), we may construct a path from any monochro-
matic initial state to any other such state. Because
the one node that differs between two adjacent states
may be (fairly) activated k times to start the compu-
tation, two monochromatic adjacent states must have
the same color; as in the 1-recall case, the existence
of two stable states thus implies the existence of a
polychromatic state.

G Implications for resilient decision
protocols

The consensus problem is fundamental to dis-
tributed computing research. We give a brief descrip-
tion of it here, and we refer the reader to [31] for a
detailed explanation of the model. We then show how
to apply our general result to this setting. This al-
lows us to show that the impossibility result in [12],
which shows that no there is no protocol that solves
the consensus problem, can be obtained as a corollary
of Theorem F.9.

G.1 The consensus problem

Processes and consensus. There are N > 2 pro-
cesses 1, . . . , N , each process i with an initial value
xi ∈ {0, 1}. The processes communicate with each
other via messages. The objective is for all non-faulty
processes to eventually agree on some value x ∈ {0, 1},
such that x = xi for some i ∈ [N ] (that is, the value
that has been decided must match the initial value of
some process). No computational limitations what-
soever are imposed on the processes. The difficulty
in reaching an agreement (consensus) lies elsewhere:
the network is asynchronous, and so there is no upper
bound on the length of time processes may take to
receive, process and respond to an incoming message.
Intuitively, it is therefore impossible to tell whether a
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process has failed, or is simply taking a long time.

Messages and the message buffer. Messages are
pairs of the form (p, m), where p is the process the
message is intended for, and m is the contents of the
message. Messages are stored in an abstract data
structure called the message buffer. The message
buffer is a multiset of messages, i.e., more than one
of any pair (p,m) is allowed, and supports two opera-
tions: (1) send(p,m): places a message in the message
buffer. (2) receive(p): returns a message for proces-
sor p (and removes it from the message buffer) or the
special value, that has no effects. If there are several
messages for p in the message buffer then receive(p)
returns one of them at random.

Configurations and system evolution. A config-
uration is defined by the following two factors: (1)
the internal state of all of the processors (the current
step in the protocol that they are executing, the con-
tents of their memory), and (2) the contents of the
message buffer. The system moves from one configu-
ration to the next by a step which consists of a pro-
cess p performing receive(p) and moving to another
internal state. Therefore, the only way that the sys-
tem state may evolve is by some processor receiving a
message (or null) from the message buffer. Each step
is therefore uniquely defined by the message that is
received (possibly) and the process that received it.

Executions and failures. From any initial starting
state of the system, defined by the initial values of
the processes, there are many different possible ways
for the system to evolve (as the receive(p) operation
is non-deterministic). We say that a protocol solves
consensus if the objective is achieved for every possi-
ble execution. Processes are allowed to fail according
to the fail-stop model, that is, processes that fail do
so by ceasing to work correctly. Hence, in each ex-
ecution, non-faulty processes participate in infinitely
many steps (presumably eventually just receiving once
the algorithm has finished its work), while processes
that stop participating in an execution at some point
are considered faulty. We are concerned with the han-
dling of (at most) a single faulty process. Hence, an
execution is admissible if at most one process is faulty.

G.2 Impossibility of resilient
consensus

We now show how this fits into the formal frame-
work of Appendix F. The events are (as in [12]) mes-
sages annotated with the intended recipient (e.g., mi).

In addition to the axioms of Appendix F, we also as-
sume that the protocol satisfies the following resiliency
property, which we adapt from Taubenfeld [31]; we call
such a protocol a resilient consensus protocol. (Intu-
itively, this property ensures that if node i fails, the
other nodes will still reach a decision.)

Res For each run x and node i, there is a monochro-
matic run y that extends x such that x [i]y.

Figure 4: Illustration of argument in the proof of Lemma

G.1.

We show that resilient consensus protocols satisfy
IoD. Unsurprisingly, the proof draws on ideas of Fis-
cher, Lynch, and Paterson.

Lemma G.1. Resilient consensus protocols satisfy
IoD.

Proof. Assume x is a polychromatic run of a resilient
consensus protocol and that 〈x; mi〉 is monochromatic
(of color {c}). If e′ = m′

j for j 6= i, then e = mi and
e′ commute (because the messages are processed by
different nodes) and the IoD conditions are satisfied.
(In particular, 〈〈x; e〉 ; e′〉 and 〈〈x; e′〉 ; e〉 both have
the same monochromatic color.)

If e′ = m′
i, then consider a sequence σ from x that

reaches a monochromatic run and that does not in-
volve i (the existence of σ is guaranteed by Res); this
is illustrated in Figure 4. Because σ doesn’t involve
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i, it must commute with e and e′; in particular, the
color of the monochromatic run reachable by apply-
ing σ to 〈x; e〉 is the same as the color of the run
〈〈x; σ〉 ; e〉. Thus σ must produce the same color {c}
that e does in extending x. On the other hand, we may
apply this same argument to e′ to see that 〈〈x; e′〉 ;σ〉
must also have the same color as 〈x; σ〉, so the color
of 〈x; e′〉 contains the color of 〈x; e〉. The remain-
ing question is whether 〈〈x; e′〉 ; e〉 can be monochro-
matic of a different color than 〈x; e〉. However, the
color (if it is monochromatic) of 〈〈〈x; e′〉 ; e〉 ;σ〉 must
be the same (because σ does not involve i) as the
color of 〈〈〈x; e′〉 ; σ〉 ; e〉, which we have already estab-
lished is the color of 〈x; e〉; thus, 〈〈x; e′〉 ; e〉 cannot be
monochromatic of a different color. ¤

Using Theorem F.9 and the fact that there must be
a polychromatic initial configuration for the protocol
(because it can reach multiple outcomes, as shown in
[12]), we obtain from this lemma the following cele-
brated result of Fischer, Lynch, and Paterson [12].

Theorem G.2(Fischer–Lynch–Paterson[12]). There
is no always-terminating protocol that solves the con-
sensus problem.
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