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Abstract

We consider the problem of distributed rein-
forcement learning (DRL) from private per-
ceptions. In our setting, agents' perceptions,
such as states, rewards, and actions, are not
only distributed but also should be kept pri-
vate. Conventional DRL algorithms can han-
dle multiple agents, but do not necessarily
guarantee privacy preservation and may not
guarantee optimality. In this work, we design
cryptographic solutions that achieve optimal
policies without requiring the agents to share
their private information.

1. Introduction

With the rapid growth of computer networks and net-
worked computing, a large amount of information is
being sensed and gathered by distributed agents phys-
ically or virtually. Distributed reinforcement learning
(DRL) has been studied as an approach to learn a con-
trol policy thorough interactions between distributed
agents and environments|for example, sensor net-
works and mobile robots. DRL algorithms, such as the
distributed value function approach (Schneider et al.,
1999) and the policy gradient approach (Moallemi &
Roy, 2004), typically seek to satisfy two types of physi-
cal constraints. One is constraints on communication,
such as an unstable network environment or limited
communication channels. The other is memory con-
straints to manage the huge state/action space. There-
fore, the main emphasis of DRL has been to learn
good, but sub-optimal, policies with minimal or lim-
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ited sharing of agents' perceptions.

In this paper, we consider the privacy of agents' per-
ceptions in DRL. Speci�cally, we provide solutions for
privacy-preserving reinforcement learning (PPRL), in
which agents' perceptions, such as states, rewards, and
actions, are not only distributed but are desired to be
kept private. Consider two example scenarios:

Optimized Marketing (Abe et al., 2004): Consider
the modeling of the customer's purchase behavior as
a Markov Decision Process (MDP). The goal is to ob-
tain the optimal catalog mailing strategy which max-
imizes the long-term pro�t. Timestamped histories of
customer status and mailing records are used as state
variables. Their purchase patterns are used as actions.
Value functions are learned from these records to learn
the optimal policy. If these histories are managed sep-
arately by two or more enterprises, they may not want
to share their histories for privacy reasons (for exam-
ple, in keeping with privacy promises made to their
customers), but might still like to learn a value func-
tion from their joint data in order that they can all
maximize their pro�ts.

Load Balancing (Cogill et al., 2006): Consider a load
balancing among competing factories. Each factory
wants to accept customer jobs, but in order to max-
imize its own pro�t, may need to redirect jobs when
heavily loaded. Each factory can observe its own back-
log, but factories do not want to share their backlog
information with each other for business reasons, but
they would still like to make optimal decisions.

Privacy constraints prevent the data from being com-
bined in a single location where centralized reinforce-
ment algorithms (CRL) could be applied. Although
DRL algorithms work in a distributed setting, they
are designed to limit the total amount of data sent be-
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tween agents, but do not necessarily do so in a way
that guarantees privacy preservation. Additionally,
DRL often sacri�ces optimality in order to learn with
low communication. In contrast, we propose solutions
that employ cryptographic techniques to achieve op-
timal policies (as would be learned if all the informa-
tion were combined into a centralized reinforcement
learning (CRL) problem) while also explicitly protect-
ing the agents' private information. We describe solu-
tions both for data that is \partitioned-by-time" (as
in the optimized marketing example) and \partitioned-
by-observation" (as in the load balancing example).

Related Work. Private distributed protocols have
been considered extensively for data mining, pioneered
by Lindell and Pinkas (Lindell & Pinkas, 2002), who
presented a privacy-preserving data-mining algorithm
for ID3 decision-tree learning. Private distributed pro-
tocols have also been proposed for other data min-
ing and machine learning problems, including k-means
clustering (Jagannathan & Wright, 2005; Sakuma &
Kobayashi, 2008), support vector machines (Yu et al.,
2006), boosting (Gambs et al., 2007), and belief prop-
agation (Kearns et al., 2007).

Agent privacy in reinforcement learning has been pre-
viously considered by Zhang and Makedon (Zhang &
Makedon, 2005). Their solution uses a form of average
reward reinforcement learning that does not necessar-
ily guarantee an optimal solution; further, their solu-
tion only applies partitioning by time. In contrast, our
solutions guarantee optimality under appropriate con-
ditions and we provide solutions both when the data
is partitioned by time and by observation.

In principle, private distributed computations such as
these can be carried out using secure function evalu-
ation (SFE) (Yao, 1986; Goldreich, 2004), which is a
general and well studied methodology for evaluating
any function privately. However, although asymptot-
ically polynomially bounded, these computations can
be too ineÆcient for practical use, particular when the
input size is large. For the reinforcement learning al-
gorithms we address, we make use of existing SFE so-
lutions for small portions of our computation in order
as part of a more eÆcient overall solution.

Our Contribution. We introduce the concepts of
partitioning by time and partitioning by observation
in distributed reinforcement learning (Section 2). We
show privacy-preserving solutions for SARSA learn-
ing algorithms with random action selection for both
kinds of partitioning (Section 4). Additionally, these
algorithms are expanded to Q-learning with greedy or
�-greedy action selection (Section 5). We provide ex-
perimental results in Section 6.

comp. comm. accuracy privacy
CRL good good good none
DRL good good medium imperfect
IDRL good good bad perfect
PPRL medium medium good perfect
SFE bad bad good perfect

Table 1. Comparison of di�erent approaches

Table 1 provides a qualitative comparison of vari-
ants of reinforcement learning in terms of eÆciency,
learning accuracy, and privacy loss. We compare �ve
approaches: CRL, DRL, independent distributed re-
inforcement learning (IDRL, explained below), SFE,
and our privacy-preserving reinforcement learning so-
lutions (PPRL). In CRL, all the agents send their per-
ceptions to a designated agent, and then a centralized
reinforcement is applied. In this case, the optimal con-
vergence of value functions is theoretically guaranteed
when the dynamics of environments follow a discrete
MDP; however, privacy is not provided, as all the data
must be shared.

On the opposite end of the spectrum, in IDRL (inde-
pendent DRL), each agent independently applies CRL
only using its own local information; no information is
shared. In this case, privacy is completely preserved,
but the learning results will be di�erent and indepen-
dent. In particular, accuracy will be unacceptable if
the agents have incomplete but important perceptions
about the environment. DRL can be viewed as an in-
termediate approach between CRL and IDRL, in that
the parties share only some information and accord-
ingly reap only some gains in accuracy.

The table also includes the direct use of general SFE
and our approach of PPRL. Both PPRL and SFE ob-
tain good privacy and good accuracy. Although our
solution incurs a signi�cant cost (as compared to CRL,
IDRL, and DRL) in computation and communication
to obtain this, it does so with signi�cantly improved
computational eÆciency over SFE. We provide a more
detailed comparison of the privacy, accuracy, and eÆ-
ciency of our approach and other possible approaches
along with our experimental results in Section 6.

2. Preliminaries

2.1. Reinforcement Learning and MDP

Let S be a �nite state set and A be a �nite action set.
A policy � is a mapping from state/action pair (s; a)
to the probability �(s; a) with which action a is taken
at state s. At time step t, we denote by st, at, and rt,
the state, action, and reward at time t, respectively.

A Q-function is the expected return Q�(s; a) =
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Figure 1. Partitioning model in the two-agent case
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, where  is a dis-

count factor (0 �  < 1). The goal is to learn the op-
timal policy � maximizing the Q-function: Q�(s; a) =
max�Q(s; a) for all (s; a). In SARSA learning, Q-
values are updated at each step as:

�Q(st; at)  �(rt + Q(st+1; at+1)�Q(st; at));

Q(st; at)  �Q(st; at) +Q(st; at); (1)

where � is the learning rate. Q-learning is obtained
by replacing the update of �Q by:

�Q(st; at)  �(rt + max
a

Q(st+1; a)�Q(st; at)):

Iterating these updates under appropriate conditions,
optimal convergence of Q-values is guaranteed with
probability 1 in discrete MDPs (Sutton & Barto, 1998;
Watkins, 1989); the resulting optimal policy can be
readily obtained.

2.2. Modeling Private Information in DRL

Let ht = (st; at; rt; st+1; at+1), let H = fhtg, and sup-
pose there are m agents. We consider two kinds of
partitioning of H (see Fig. 1).

Partitioned-by-Time. This model assumes that
only one agents interacts with the environment at
any time step t. Let T i be the set of time steps at
which only ith agent has interactions with the envi-
ronment. Then T i \ T j = ;; (i 6= j) and the set
H i = fht j t 2 T ig is considered the private infor-
mation of the ith agent.

Partitioned-by-Observation. This model assumes
that states and actions are represented as a collection
of state and action variables. The state space and the
action space are S =

Q
i S

i and A =
Q

iA
i where

Si and Ai are the space of the ith agent's state and
action variables, respectively. Without loss of gener-
ality (and for notational simplicity), we consider each
agent's local state and action spaces to consist of a sin-
gle variable. If st 2 S is the joint state of the agents
at time t, we denote by sit the state that ith agent per-
ceives and by ait the action of ith agent. Let rit be the

local reward of ith agent obtained at time t. We de�ne
the global reward (or reward for short) as rt =

P
i r

i
t in

this model. Our Q-functions are evaluated based on
this global reword. The perception of the ith agent at
time t is denoted as hit = fs

i
t; a

i
t; r

i
t; s

i
t+1; a

i
t+1g. The

private information of the ith agent is H i = fhitg.

We note that partitioning by observation is more gen-
eral than partitioning by time, in that one can always
represent a sequence that is partitioned by time by
one that is partitioned by observation. However, we
provide more eÆcient solutions in simpler case of par-
titioning by time.

Let �c be a policy learned by CRL. Then, informally,
the objective of PPRL is stated as follows:

Statement 1. The ith agent takes H i as inputs. Af-
ter the execution of PPRL, all agents learn a policy �
which is equivalent to �c. Furthermore, no agent can
learn anything that cannot be inferred from � and its
own private input.

This problem statement can be formalized as in
SFE (Goldreich, 2004). This is a strong privacy re-
quirement which precludes consideration of solutions
that reveal intermediate Q-values, actions taken, or
states visited. We assume our agents behave semi-
honestly, a common assumption in SFE|this assumes
agents follows their speci�ed protocol properly, but
might also use their records of intermediate computa-
tions in order to attempt to learn other parties' private
information.

3. Cryptographic Building Blocks

Our solutions make use of several existing crypto-
graphic tools. Speci�cally, in our protocol, Q-values
are encrypted by an additive homomorphic cryptosys-
tem, which allows the addition of encrypted values
without requiring their decryption, as described in Sec-
tion 3.1. Using the homomorphic properties, this al-
lows encrypted Q-values are updated in the regular RL
manner, while unencrypted Q-values are not known to
agents. For computations which cannot be treated by
the homomorphic property, we use SFE as a primitive,
as we describe in Section 3.2.

3.1. Homomorphic Public Key Cryptosystems

In a public key cryptosystem, encryption uses a public
key that can be known to everyone, while decryption
requires knowledge of the corresponding private key.
Given a corresponding pair of (sk; pk) of private and
public keys and a message m, then c = epk(m; `) de-
notes a (random) encryption of m, and m = dsk(c)
denotes decryption. The encrypted value c uniformly
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distributes over ZN if ` is taken from ZN randomly.
An additive homomorphic cryptosystem allows addi-
tion computations on encrypted values without knowl-
edge of the secret key. Speci�cally, there is some op-
eration � (not requiring knowledge of sk) such that
for any plaintexts m1 and m2, epk(m1 + m2; `) =
epk(m1; `1) � epk(m2; `2); where ` is uniformly random
provided that at least one of `1 and `2 is. Based on this
property, it also follows that given a constant k and the
encryption epk(m1; `), we can compute multiplications
by k via repeated application of �. This also enables a
re-randomization property, which allows the computa-
tion of a new random encryption c0 = epk(m; `0) of m
from an existing encryption c = epk(m; `) of m, again
without knowledge of the private key or of m, as fol-
lows: epk(m; `) = Encpk(m; `1) � Encpk(0; `2). In the
rest of the paper, we omit the random number ` from
our encryptions for simplicity.

In an (m; t)-threshold cryptosystem, m agents share a
common public key pk while the agents hold di�er-
ent private keys sk1; :::; skn. Each agent can encrypt
any message with the common public key. Decryption
cannot be performed by fewer than t agents, and can
be performed by any group of at least t agents us-
ing a recovery algorithm based on the public key and
their decryption shares dsk1(c); :::; dskn(c). We require
a cryptosystem that provides semantic security (un-
der appropriate computational hardness assumptions),
re-randomization, the additive homomorphic property,
and threshold decryption, such as the generalized Pail-
lier cryptosystem (D�amgard & Jurik, 2001).

3.2. Private Comparison and Division

As mentioned, secure function evaluation (SFE) is a
cryptographic primitive which allows two or more par-
ties to evaluate a speci�ed function of their inputs
without revealing (anything else about) their inputs
to each other (Goldreich, 2004; Yao, 1986). Although
our overall solution is more eÆcient than using SFE,
we do make use of SFE for two kinds of computations.

One is the problem of private comparison of random
shares. Let x = (x1; :::; xd) 2 Z

d
N. For our purposes,

A and B have random shares of x if A has xA =
(xA1 ; :::; x

A
d ) and B has xB = (xB1 ; :::; x

B
d ) such that

xAi and xBi are uniformly distributed in ZN such that
xi = (xAi +xBi ) mod N for all i. If A holds xA and B
holds xB , where xA and xB are random shares of x,
then private comparison of random shares computes
the index i� such that i� = argmaxi(x

A
i +xBi ) in such

a way that A learns only i� and B learns nothing.

The other is a problem of private division of random
shares. The input of A and B are random shares of

x, xA 2 ZN and xB 2 ZN, respectively. Let K be an
integer known to both parties. Then, private division
of random shares computes random shares QA and
QB of quotient Q 2 ZN such that x = (QK + R)
mod N , where R 2 ZN (0 � R < K); Q = (QA +QB)
mod N . After the protocol, A and B learn QA and
QB , respectively, and nothing else.

We use private division of random shares in several
places in our protocols to achieve private division of
encrypted values. Suppose agent A has a key pair
(pk; sk) and agent B knows pk and epk(x). The follow-
ing protocol allows B to learn the encrypted quotient
epk(Q) from epk(x) and K:

1. B computes c epk(x)�epk(�x
B); xB 2r ZN and send

c to A.

2. A computes the decryption xA  dsk(c)(� x � xB

mod N) .

3. Using SFE for private division on A and B's inputs
xA and xB, respectively, A and B obtain outputs QA

and QB , respectively.

4. A sends epk(Q
A) to B.

5. B computes epk(Q) epk(Q
A) � epk(Q

B).

4. Private Q-Value Update

In this section, we describe privacy-preserving SARSA
update of Q-values under random action selection is
described for our two partitioning models. We ex-
tend this to (�-)greedy action selection in Section 5.
We assume that reward r, learning rate �, and dis-
count rate  are non-negative rational numbers and
that

P
1

t=1(
tLrmax) < N , where rmax is the largest

reward that agents can obtain and L 2 ZN is a param-
eter de�ned in Section 4.1. In this paper, we describe
protocols for two agents; these can be extended to m-
agent case (m � 3) straightforwardly, as will be shown
in an extended version of the paper.

4.1. Partitioned-by-Time Model

We �rst restrict our attention to the case where agent
A has perceptions during TA = f1; :::; t � 1g and B

has perceptions during TB = ftg. In this setting, A
�rst computes can learn intermediate Q-values during
the time period TA, because they can be locally com-
puted only from A's perception. At time t, the new
Q-values must be computed based on the intermediate
Q-values known to A and B's observation at time t.
In brief, we do this by carrying out the update on en-
crypted Q-values using the homomorphic property to
carry this out privately. However, the update includes
the multiplication of rational numbers, such as � or ,
so the computation is not closed in ZN. Hence, we �rst
scale these rational numbers by multiplying with large
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� Public input; L;K, learning rate �, discount rate 

� A's input: Q(s; a) (trained by A during TA)

� B's input: (st; at)

� A's output: Nothing

� B's output: Encryption of updated Q-value c(st; at)

1. A: Compute eA(Q(s; a)) for all (s; a) and send to B.

2. B: Take action at and get rt; st+1.

3. B: Choose at+1 randomly.

4. Update Q-value:
(a) B: Compute eA(K�Q(st; at)) by eq. 3.

(b) B: Do private division of eA(K�Q(st; at))
with A, then B learns eA(�Q0(st; at)).

(c) B: Update c(st; at) by eq. 4.

Figure 2. Private update of Q-values in partitioned-by-
time model (SARSA/random action selection)

enough integers so that all computations are closed in
ZN. We use private division of encrypted values to
remove the scaling.

We now describe our protocol for private update,
shown in Fig. 2, in more detail. Let pkA be A's pub-
lic key. At step 1, A computes c(s; a) = epk

A
(Q(s; a))

for all (s; a) and sends them to B. B takes action at,
gets rt; st+1 (step 2), and chooses at+1 randomly (step
3). A and B must now update the encrypted Q-value
c(s; a). By encrypting both sides of SARSA update
(eq. 1), we obtain:

c(st; at)  epk
A
(�Q(st; at) +Q(st; at));

= epk
A
(�Q(st; at)) � epk

A
(Q(st; at))

= �c(st; at) � c(st; at); (2)

where �c(st; at) = epk
A
(�Q(st; at)). If �c(st; at) is

computed by B from what B observes, B can update
c(st; at) by eq. 2 locally. Therefore, step 4 is devoted
to the computation of �c(st; at).

As mentioned, large integersK and L are used to treat
the multiplication of rationals � and , where �K 2
ZN and Lrt 2 ZN for all rt. Multiplying K to both
sides of eq. 1 and multiplying L to rt, we obtain

K�Q(st; at) K�(Lrt + Q(st+1; at+1)�Q(st; at));

in which the computation is closed in ZN. Encrypting
both sides by A's public key, we obtain

epk
A
(K�Q(st; at))

= epk
A
(Lrt)

�K � c(st+1; at+1)
�K � c(st; at)

��K :(3)

Since K;L; �;  are public and B has rt, c(s; a), B
can compute epk

A
(K�Q(st; at)) by eq. 3 (step 4(a)).

B needs to divide epk
A
(K�Q(st; at)) by K, however,

division is again not allowable. Instead, a quotient
�Q0(st; at) satisfying �Q(st; at) = K�Q0(st; aT ) +
R(0 � R < K) is computed by private encrypted
division and B obtains epk

A
(�Q0(st; at)) (step 4(b)).

Then, B �nally computes

c(st; at) epk
A
(�Q0(st; at)) � c(st; at): (4)

It follows that eq. 4 is equivalent to eq. 2 except for
the truncation error included by the private encrypted
division step (step 4(c)). This truncation is negligibly
small if L is suÆciently large.

Lemma 1. If A and B behave semi-honestly, then af-
ter the private update of Q-values for SARSA and ran-
dom action selection in partitioned-by-time model, B
correctly updates encrypted Q-values but learn nothing
else. A learns nothing.

The proof of this lemma (omitted for space) follows the
standardized proof methodology of secure multi-party
computation (Goldreich, 2004), showing that one can
create the required algorithms, called simulators, for
A and B. Intuitively, Step 4(b) is secure because it is
implemented by SFE. Everything else that B receives
except for messages received at steps for step 4(b) are
encrypted by A's public key, so do not reveal anything.
A does not receive anything except messages that are
part of the SFE in step 4(b), so does not learn any-
thing. Thus, the protocol is secure overall.

For the general setting of TA and TB, after time t, if B
interacts with the environment at time t+1 again, the
protocol can be started from step 2. When interaction
switches back to A, an SFE step is used to change the
encryption of the Q-values from A's private key to B's
private key via an SFE step, and then the roles of A
and B are switched.

4.2. Partitioned-by-Observation Model

In this model, we use a (2; 2)-threshold cryptosystem.
Both parties share a common public key pk: encryp-
tion of m by pk is denoted by e(m) in this section. A
and B hold di�erent secret keys sk

A and sk
B for de-

cryption shares, respectively. A and B cannot decrypt
without both cooperating.

In this partitioning model, we write at = (aAt ; a
B
t ),

st = (sAt ; s
B
t ), and rt = rAt + rBt . A receives only

(sAt ; a
A
t ; r

A
t ) and B receives only (sBt ; a

B
t ; r

B
t ). Private

update of Q-values in this model is shown in Fig. 3.
In this model, eq. 3 is rewritten as

e(K�Q(st; at)) = XA �XB �X (5)

XA = e(LrAt )
�KL; XB = e(LrBt )

�KL;

X = c(st+1; at+1)
�K � c(st; at)

��K :
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XA and XB can be computed by A and B. To obtain
c(st+1; at+1) and c(st; at), let h; i; j; k be indices of Q-
tables where h 2 SA; i 2 SB ; j 2 AA; k 2 AB . At
step 4(a), A sends XA and tables fcikg; fc0ikg with re-
randomization such that

cik = c(sAt ; i; a
A
t ; k) � e(0) (i 2 S

B ; k 2 AB); (6)

c0ik = c(sAt+1; i; a
A
t+1; k) � e(0) (i 2 S

B; k 2 AB); (7)

to B. B determines c(st; at) = csB
t
;aB
t
, c(st+1; at+1) =

c0
sB
t+1

;aB
t+1

and obtains e(K�Q(st; at)) by eq. 5 (step

4(b)). Then computes e(�Q0(st; at)) by private divi-
sion (step 4(c)). For all (hijk), B sets

�chijk  

�
e(�Q0(st; at)) (i = sBt ; k = aBt )

e(0) (o.w.) (8)

and sends f�chijkg to A (step 4(d)). Finally, for all
(ik), Q-values are updated as

c(sAt ; i; a
A
t ; k)  c(sAt ; i; a

A
t ; k) ��csA

t
iaA
t
k: (9)

by A. With this update, e(�Q0(st; at)) is added
only when (h; i; j; k) = (sAt ; s

B
t ; a

A
t ; a

B
t ). Otherwise,

e(0) is added. Note that A cannot tell which ele-
ment is e(�Q0(st; at)) in f�chijkg because of the re-
randomization. Thus, eq. 9 is the desired update.

Lemma 2. If A and B behave semi-honestly, then
after the private update of Q-values for SARSA and
random action selection in partitioned-by-observation
model, A updates encrypted Q-values correctly but
learns nothing. B learns nothing.

By iterating private updates, encrypted Q-values
trained by SARSA learning are obtained.

5. Private Greedy Action Selection

Private distributed algorithms for greedy action selec-
tion to compute a� = argmaxaQ(s; a) from encrypted
Q-values in both partitioning models are described.
These are used for: (1) (�-)greedy action selection, (2)
max operation in updates of Q-learning, and (3) ex-
tracting learned policies from �nal Q-values. In the
partitioned-by-time model, this is readily solved by us-
ing private comparison, so is omitted.

5.1. Private Greedy Action Selection in

Partitioned-by-observation Model

When A and B observe sAt and sBt , respec-
tively, private greedy action selection requires that
(1) A obtains aA� and nothing else, (2) B ob-
tains aB� and nothing else, where (aA�; aB�) =
argmax(aA;aB)(Q(s

A
t ; a

A; sBt ; a
B)).

The protocol is described in Fig. 4. Threshold de-
cryption is used here, too. First, A sends encrypted

� Public input; L;K, learning rate �, discount rate 

� A's input: (sAt ; a
A
t ), B's input: (s

B
t ; a

B
t )

� A's output: Encryption of updated Q-value c(st; at)

� B's output: Nothing

1. A: Initialize Q(s; a) arbitrarily and compute
c(s; a)(= e(Q(s; a))) for all (s; a).

2. Interaction with the environment:
� A: Take action aAt and get rAt ; s

A
t+1.

� B: Take action aBt and get rBt ; s
B
t+1.

3. Action selection:
� A: Choose aAt+1 randomly.

� B: Choose aBt+1 randomly.
4. Update Q-value:

(a) A: Send XA; fcikg; fc
0

ikg to B by eq. 6, 7.

(b) B: Compute e(K�Q(st; at)) by eq. 5

(c) B: Do private division of e(K�Q(st; at)) with
A, then B learns e(�Q0(st; at)).

(d) B: Generate f�chijkg by eq. 8 and send it to
A.

(e) A: Update c(s; a) with f�chijkg by eq. 9.

Figure 3. Private update of Q-values in partitioned-by-
observation model (SARSA/random action selection)

Q-values c(sAt ; i; j; k) with re-randomization for all
(i; j; k). For all (i; k), B generates and sends a table
fcikg and f�ikg whose values are set to

cik = c(sAt ; i; s
B
t ; �(k)) � e(�Q

B
i�(k)); (10)

�Bik = dB(cik); (11)

where � : SB 7! SB is a random permutation
and QB

i�(k) 2r ZN. At the third step, A recov-

ers QA
ik(= Q(sAt ; i; s

B
t ; k) � QB

ik). With these ran-
dom shares of Q(sAt ; i; s

B
t ; �(k)), the values (i

�; k�) =
argmax(i;k)(Q

A
ik+Q

B
ik) are obtained by A using private

comparison. Finally, B learns aB� = ��1(k�), where
��1 is the inverse of �.

Lemma 3. If A and B behaves semi-honestly, then,
after the execution of private greedy action selection, A
learns aA� and nothing else. B learns aB� and nothing
else.

Note that aB� is not learned by A because index k is
obscured by the random permutation generated by B.

5.2. Security of PPRL

Privacy-preserving SARSA learning is constructed by
alternate iterations of private update and random ac-
tion selection. The policy � can be extracted by
computing argmaxaQ(s; a) for all (s; a) using private
greedy action selection. The security follows from the
earlier lemmas:
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� A's input: c(s; a) for all (s; a), sAt , B's input: s
B
t

� A's output: aA�, B's output: aB�

1. A: For all i 2 SB ; j 2 AA; k 2 AB, send c(sAt ; i; j; k)
to B.

2. B: For all j 2 AA; k 2 AB, compute cik(eq. 10),
�Bik(eq. 11) and send fcikg; f�ikgto A.

3. A: For all i 2 AA; k 2 AB , compute �Bik = dB(cik).
Then, compute QA

ik by applying the threshold de-
cryption recovery algorithm with public key pk and
shares �Aik; �

B
ik.

4. A and B: Compute (i�; k�) = argmax(i;k)(Q
A
ik +

QB
ik) by private comparison. (A learns (i�:k�).)

5. A: Send k� to B. Then output aA� = i�.

6. B: Output aB� = ��1(k�).

Figure 4. Private greedy action selection in partitioned-by-
observation model

Theorem 1. SARSA learning with private update of
Q-values and random action selection is secure in the
sense of Statement 1.

Privacy-preserving SARSA learning and Q-learning
with (�-)greedy action selection can be constructed by
combining private update and private greedy random
action selection. However, these PPRLs do not follow
Statement 1 because it does not allow agents to know
greedy actions obtained in the middle of the learning.
Therefore, the problem de�nition is relaxed as follows:

Statement 2. The ith agent takes H i as inputs. Af-
ter the execution of PPRL, all agents learn a series
of greedy actions during learning steps and a policy
� which is equivalent to �c. Furthermore, no agent
learns anything else.

Theorem 2. SARSA and Q-learning with private up-
date of Q-values and private greedy/�-greedy action se-
lection is secure in the sense of Statement 2.

6. Experimental Results

We performed experiments to examine the eÆciency
of PPRL. Programs were written in Java 1.5.0. As the
cryptosystem, (D�amgard & Jurik, 2001) with 1024-bit
keys was used. For SFE, Fairplay (Malkhi et al., 2004)
was used. Experiments were carried out under Linux
with 1.2 GHz CPU and 2GB RAM.

6.1. Random Walk Task

This random walk task is partitioned by time. The
state space is S = fs1; :::; sng(n = 40) and the action
space is A = fa1; a2g. The initial and goal states are
s1 and sn, respectively. When a1 is taken at sp(p 6= n),

the agent moves to sp+1. When a2 is taken at sp(p 6=
1), the agent moves to sp�1, but the agent does not
move when p = 1. A reward r = 1 is given only when
the agent takes a1 at sn�1; else, r = 0. The episode is
terminated at sn or after 1; 000 steps.

A learns 15; 000 steps and then B learns 15; 000 steps.
CRL, IDRL, PPRL, and SFE were compared. SARSA
learning with random or �-greedy action selection was
used for all settings. Table 2 shows the comparison re-
sults of computational cost, learning accuracy (number
of steps to reach the goal state, averaged over 30 trials,
and number of trials that successfully reach the goal
state), and privacy preservation.

Learning accuracy of PPRL and SFE are the same as
CRL because the policy learned by PPRL and SFE are
guaranteed to be equal to the one learned by CRL.
In contrast, the optimal policy is not obtained suc-
cessfully by IDRL because learning steps for IDRL
agents correspond to the half of others. Because most
of the computation time is spent for private division
and comparison, computation time with random se-
lection is much smaller than with �-greedy selection.
These experiments demonstrate that PPRL obtains
good learning accuracy, while IDRL does not, though
computation time is larger than DRL and IDRL.

6.2. Load Balancing Task

In these experiments, we consider a load balancing
problem (Cogill et al., 2006) in the partitioned-by-
observation model with two factories A and B. Each
factory can observe its own backlog sA; sB 2 f0; :::; 5g.
At each time step, each factory decides whether or
not to pass a job to other factories; the action vari-
able is aA; aB 2 f0; 1g. Jobs arrive and are pro-
cessed independently at each time step with probabil-
ity 0:4 and 0:48, respectively. Agent A receives reward
rA = 50 � (sA)2. If A passes the job to B, then A's
reward is reduced by 2 as a cost for redirection. If
an overow happens, the job is lost and rA = 0 is
given. Similarly, rB is computed as well. Perceptions
(sA; aA; rA) and (sB ; aB ; rB) are to be kept private.
(In this task, actions cannot be kept private because
the parties learn them from whether the job was passed
or not.)

Distributed reward DRL (RDRL) (Schneider et al.,
1999) is tested in addition to the four RLs tested
earlier. RDRL is a variant of DRL, which is the
same with IDRL except that global rewards are shared
among distributed agents (Schneider et al., 1999).
SARSA/�-greedy action selection was used in all set-
tings. Fig 5 shows the changes of sum of global rewards
per episode. For avoiding overows, cooperation be-
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Table 2. Comparison of eÆciency in random walk tasks
comp. accuracy privacy
(sec) avg. #goal loss

CRL/rnd. 0:901 40.0 30/30 disclosed all
IDRL/rnd. 0:457 247 8/30 Stmt. 1

PPRL/rnd. 4:71� 103 40.0 30/30 Stmt. 1
SFE/rnd. > 7:0� 106 40.0 30/30 Stmt. 1

CRL/�-grd. 0:946 40.0 30/30 disclosed all
IDRL/�-grd. 0:481 | 0/30 Stmt. 2

PPRL/�-grd. 3:36� 104 40.0 30/30 Stmt. 2
SFE/�-grd. > 7:0� 106 40.0 30/30 Stmt. 2

Table 3. Comparison of eÆciency in load balancing tasks.
comp. (sec) accuracy privacy loss

CRL 5.11 90.0 disclosed all
RDRL 5.24 87.4 partially disclosed
IDRL 5.81 84.2 Stmt. 1
PPRL 8.85 �105 90.0 Stmt. 2
SFE > 2:0� 107 90.0 Stmt. 2
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Figure 5. Performance evaluation (sum of global rewards
in an episode, normalized by the number of steps in an
episode) in load balancing tasks (average of 100 trials).

tween agents is essential in this task. The performance
of IDRL agents is inferior to others because sel�sh be-
havior is learned. In contrast, CRL, PPRL and SFE
agents successfully obtain cooperative behavior. The
performance of RDRL is intermediate because percep-
tions of RDRL agents are limited. EÆciency is shown
in Table 3. Since �-greedy action selection was used,
the privacy of IDRL, PPRL and SFE follow Statement
2. The privacy preservation of RDRL is between CRL
and PPRL. As discussed in Section 1, PPRL achieves
both the guarantee of privacy preservation and the op-
timality which is equivalent to that of CRL; SFE does
the same, but at a much higher computational time.
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