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Abstract

A wide variety of powerful cryptographic tools have been built using RSA, Diffie-Hellman,
and other similar assumptions as their basis. Computational security has been achieved relative
to complexity assumptions about the computational difficulty of a variety of number theoretic
problems. However, these problems are closely related, and it is likely that if any one of them
turns out to be efficiently solvable with new mathematical advances or new kinds of computa-
tional devices, then similar techniques could be applicable to all of them. To provide greater
diversity of security assumptions so that a break of one of them is less likely to yield a break of
many or all of them, it is important to expand the body of computational problems on which
security systems are based. Specifically, we suggest the use of hardness assumptions based on
the complexity of logic problems, and in particular, we consider the well known Boolean 3Sat

problem.
In this paper, we consider the use of the 3Sat problem to provide a cryptographic primitive,

secure set membership. Secure set membership is a general problem for participants holding set
elements to generate a representation of their set that can then be used to prove knowledge of
set elements to others. Set membership protocols can be used, for example, for authentication
problems such as digital credentials and some signature problems such as timestamping.

1 Introduction

The most popular computational foundation for cryptographic security is based on number-theoretic
problems such as factoring, discrete logarithm, and elliptic logarithm [DH76, RSA78, BF03]. These
problems are all related, so if one is broken it is likely that they all will be broken [dM04]. Their
security is not proven and is likely to either remain unproven or be broken. They are also vul-
nerable to quantum attacks [Sho94]. It would be desirable to have many kinds of cryptographic
primitives whose security is based on a wide array of unrelated assumptions. This would mean that
if one system is compromised, they are not necessarily all compromised. In this paper, we present
a system based on an alternative logic-based assumption that does not appear to be closely related
to these other assumptions.

Specifically, we consider the use of the well known Boolean satisfiability problem to provide a
very general cryptographic primitive, secure set membership. Secure set membership can be used
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to provide digital credentials, with or without identification, as well as for some signature problems
such as timestamping. For example, consider a system for maintaining encrypted PINs for credit
cards. Each credit card may have multiple PINs (for multiple users); any solution should hide the
PINs in such a way that the system accepts valid PINs, but nobody can determine any valid PIN
that he does not already know. If the system is used in a setting in which it is reasonable for
the system to be able to determine which user it is talking to, then it is possible for the system
to simply store hashes of all the valid PINs and compare a received hashed PIN with this list to
determine if it is valid. This is an example of credentials with identification. However, if the users
of the credit card do not want to identify themselves, or if the credit card issuer prefers to have
users not identify themselves, except as a valid user of the credit card in question, when they make
a purchase, then this results in the goal of anonymous credentials. For anonymous credentials, the
user wants to prove that he has valid credentials without giving the credentials away.

In this paper, we provide a means for constructing a secure set membership system that can be
used both for credentials with identification and for anonymous credentials. Secure set membership
can be used as an alternative to digital signatures for some applications including timestamping
[BdM94]. We note that our system has the desirable property that each participant can choose
her own set elements. In the setting of digital credentials, this allows participants to choose their
credential values (rather than having them determined by a third party or as an output of a dis-
tributed credential generation algorithm), thus making the system suitable for use with credentials
that are determined by user-chosen passwords or biometrics.

Our solution is based on the Boolean satisfiability problem (Sat), which has not previously
been used for digital credentials. We are aware that the use of the problem of finding witnesses
for 3Sat instances as a security assumption is unusual and the practice of basing cryptographic
hardness on NP-completeness is shaky in general, because the worst case hardness required for
NP-completeness does not say anything about most cases or the expected case. However, we think
it is of interest nonetheless. First, algorithmic advances and new computing models threaten many
of the commonly used cryptographic assumptions, such as the hardness of factoring. Secondly, Sat

is perhaps one of the most studied NP-complete problems, and a fair bit is known about how to
choose instances that appear to be hard. We discuss this further in Section 3.4 and Section 5 in
the context of our proposed solution.

1.1 Related Work

The set membership problem was first addressed by Benaloh and de Mare with one-way accumu-
lators in 1993 [BdM94]. A number of schemes based on one-way accumulators were developed
including schemes for digital credentials [CL02, BP97]. The schemes for credentials typically differ
from the other schemes, which tend to concentrate on the idea of a distributed signature, in several
ways. These include central authorities in the credential scheme, as well as support of additional
properties such as revocation. All these schemes depend on the difficulty of the RSA problem for
their security.

Another approach to set membership is to use Merkle trees or similar tree-based methods to
store the elements of the set [Mer82, Mer88, BdM91]. In these methods, each participant retains
a certificate and her own set element. In effect, each element of the set is signed by a central
authority. However, these methods are either not storage-efficient or require more than a constant
amount of time to check relative to the number of entries [Szy04].

In a credential system, members of the credentialed group have, or are given, credentials that
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they can use to prove their membership in the set of authorized persons, without revealing which of
the members they are. Biometric data may be used to prevent transferability of credentials, together
with zero knowledge proofs of knowledge, for a group member to prove to a verifier that she holds a
valid credential without revealing it. Anonymous credentials have been widely studied and solutions
based on various cryptographic assumptions have been given (e.g. [CL01, CL02, Acq03, IM03]).

Several approaches have been taken to digital credentials. Most of these approaches require a
central authority (such as [BdM94, CL02]), though some approaches based on one-way accumulators
do not require a central authority. In contrast, our approach can work with or without a central
authority. The combination of one-way accumulators and zero-knowledge proofs was introduced by
Camenisch and Lysyanskaya [CL02]. Other credential systems allow revocation of anonymity such
as a different system by Camenisch and Lysyanskaya [CL01].

Our work makes use of the assumed computational difficulty of finding satisfying assignments
to certain kinds of satisfiable 3Sat instances. A related use of the hardness of Sat for achiev-
ing security has been recently proposed for hiding information in anomaly detection applica-
tions [EAFH04, EFH04a, EFH04b, Esp05]. Their work is concerned with maintaining lists of
information that, if compromised, will not compromise the larger system for applications such as
intrusion detection. The central idea of our system is to represent an element of a set by an as-
signment to a set of variables, and the set of elements by a 3Sat instance that is satisfied by the
corresponding assignments. In comparison, the work of Esponda et al. uses a Sat instance to
represent a database; in their case, they represent the values not in the database by satisfying
assignments.

We note that both our use of 3Sat and Esponda et al.’s use of Sat do not have the same
difficulties as with earlier use of NP-complete problems for cryptography, such as the knapsack
problem [Odl90], because it is not necessary to embed a trapdoor to be used for operations such as
decryption.

1.2 Our Contribution

Our contribution includes three protocols with applications to anonymous credentials, credentials
with identification, accounts with multiple users, and digital timestamping.

Our protocols propose a solution to the set membership problem. Specifically, we provide a
method for generating representations of sets of provided elements. We also provide a method
of using a resulting representation to prove a particular element was in the set at the time the
representation was generated, and a method of using the representation to show a party holds
a valid set element without revealing the element itself. Our representations are random 3Sat

instances of a particular form which accept the chosen witnesses. Theorem 1 shows that among
3Sat instances that accept the selected witnesses and have the selected number of clauses, the
algorithm chooses one uniformly at random. The security of the scheme relies on the computational
difficulty of finding satisfying assignments to such 3Sat instances. Our system has the following
properties:

• It generates instances of 3Sat that are satisfied by a given set of strings.

• It generates any suitable instance of 3Sat with equal probability. This is shown in Theorem 1.

• In combination with zero knowledge proofs for 3Sat, it provides interactive proofs that can
be used for anonymous credentials.
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• Assuming the 3Sat instances generated are appropriately hard, it provides security against
an attacker either finding a participant’s element from the information needed to verify set
membership or finding other bit strings that satisfy the set membership problem.

We define the set membership problem in Section 2. We present our system in Section 3. In
Section 4, we discuss applications, including anonymous credentials and digital timestamping. We
conclude with further discussion in Section 5.

2 Preliminaries

In this section, we define the secure set membership problem. A secure set membership system
consists of two parts. First, the set must be established. Later, holders of set elements can prove
their elements’ set membership to others. Depending on the application, it may be desirable for the
proof to reveal the set element or to keep it secret. Specifically, we have the following definitions.

Definition: A set establishment protocol is a protocol carried out by some number m of partic-
ipants P1, . . . , Pm. Each Pi holds as input set element wi. The output of the protocol is a set
representation T = T (w1, . . . , wm).

Definition: A set membership protocol is a protocol carried out by a participant P holding a set
element w and a verifier V holding a set representation T . An honest verifier accepts if and only if
the representation T was generated from a set of elements including w, even if P is cheating. The
verifier learns w.

Obviously, the set membership protocol is unsuitable for credential systems in which the set
elements are reusable credentials, because it allows both V (and possibly eavesdroppers) to learn
w and thereby to masquerade as P in the future to others. The protocol is also unsuitable for
anonymous credential systems unless further measures are taken because it allows V to distinguish
between different provers because they have differing credentials. Fortunately, both of these diffi-
culties can be eliminated by using a proof of possession protocol, defined below, instead of a set
membership protocol.

Definition: A proof of possession protocol is a protocol carried out by a participant P holding
a set element w and a verifier V holding a set representation T . An honest verifier accepts if and
only if the representation T was generated from a set of elements including w, even if P is cheating.
The verifier V does not learn w, even if V is cheating.

These definitions can be formalized according to the standard definitions of zero knowledge and
simulatability.

In the sequel, we assume all participants are computationally bounded. In particular, our
solutions depend on the computational infeasibility of finding witnesses for certain 3Sat expressions
(also called instances). We discuss the validity of this assumption further in Section 3.4.

When we discuss a 3Sat instance, we pay attention to two parameters. These are the number,
ℓ, of variables and the number, n, of clauses, also called the size of the instance. We also consider
the clause density α = n

ℓ
, which is an important parameter for determining the difficulty of a 3Sat

instance [ABS03].
In our solution, the elements of the set are interpreted as assignments to a set of variables,

also called witnesses. We refer to a 3Sat instance that represents the set of elements as a set
representation or, when clear from context, simply as a set .
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3 Secure Set Membership

In this section, we describe our secure set membership protocols. We first describe in Section 3.1 a
centralized process for a trusted party to establish a set representation for a set of given elements.
In Section 3.2, we describe a distributed version of the set establishment protocol, which can be
carried out by the participants holding set elements and does not require a centralized trusted
party. In Section 3.3, we describe how to show set membership for elements of the established set.
We discuss the security of our solutions in Section 3.4.

3.1 Centralized Set Establishment Protocol

Let W = {w1, w2, · · · , wm} be a set of assignments to ℓ variables V = {v1, . . . , vℓ}. Each wi

represents an individual element. The trusted party, say T , generates a set representation for
W—that is, a 3Sat instance satisfied by each wi ∈ W . To do this, T repeatedly generates random
clauses that are the conjunction of 3 literals over variables in V . He checks each clause he generates
to determine whether it is satisfied by every wi ∈ W . If there is some wi ∈ W that does not satisfy
the clause, then T discards the clause and randomly selects a replacement clause which goes through
the same test. Once n satisfied clauses are found, where n is a security parameter representing the
desired size of the expression, their conjunction forms the desired set representation T , which is
output by T . The complete algorithm is given in Algorithm 1.

Note that the output T is an instance of the 3Sat problem satisfied by the assignments that the
participants have specified as elements. It may also be satisfied by some other unknown assignments.
However, even if there are such spurious witnesses, that does not mean they are easy for an
attacker to find. Nonetheless, it seems desirable to avoid having many such spurious witnesses.
One can reduce the number of spurious witnesses by choosing a large n, because the probability of
a given assignment satisfying a 3Sat instance decreases exponentially with the size of the instance.
Specifically, n should be chosen to be large enough to satisfy three security criteria:

• The conjunction of the clauses should be satisfied by very few assignments that are not valid
elements.

• The size of the conjunctive normal form (CNF) expression that is made by the clauses should
be large enough that there is high probability that it is not an instance of Sat for which an
efficient solution is known.

• The size of the CNF expression should be large enough that it can potentially be computa-
tionally infeasible to find satisfying assignments.

In general, this can be accomplished by choosing a suitably large number of variables and setting
the clause density to a suitable value. The security of the scheme is discussed further in Section 3.4.

We now turn our attention to the computational complexity of this algorithm. We note that
there is some chance that the algorithm might not even terminate, if there are not a sufficient
number of available clauses that satisfy the given witnesses. However, if ℓ is chosen relatively large
in comparison to m, and ℓ is sufficiently large compared to m and n, there should be a sufficient
number of clauses that satisfy the witnesses. Further analysis or experiments are needed in order
to determine appropriate values to use.

Assuming that there is a large number of clauses that satisfy the given witnesses, consider a
particular witness representing one set element and consider a single randomly chosen 3Sat clause.
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Input: A set of variable assignments W = {w1, w2, · · · , wm}, the number ℓ of variables to be
used, and the target number n of clauses.
Output: A 3Sat instance satisfied by all w ∈ W .

While there are fewer than n clauses do:

1. Select three different random numbers {v1, v2, v3} ∈ {1, . . . , ℓ}.

2. Select three random bits n1, n2, n3. For each bit, if the bit is set, the corresponding random
number is considered to be a negation of the variable.

3. If another clause has the same three numbers and corresponding negations discard v1, v2, v3

and n1, n2, n3 and return to Step 1.

4. For each wj do

If, for all i ∈ {1, 2, 3} ((ni is true and vi is set in wj) or (ni is false and vi is not set
in wj)) then delete v1, v2, v3, n1, n2, n3 and goto Step 1.

5. Add the clause represented by {(n1, v1), (n2, v2), (n3, v3)} to the instance.

Algorithm 1: A centralized protocol for establishing a set

There are three variables in a clause, all of which are given some assignment in the witness. Each
variable in the clause can appear as a literal in either positive or negative form, so there are eight
possible cases. Of these, seven are satisfied by the witness; it is only not satisfied (and therefore not
accepted) in the case where none of the three literals is satisfied. Thus, the probability of a clause
satisfying one witness is 7

8 . If there are m witnesses, then the probability of a clause satisfying all of
them is (7

8)m. It follows that the expected number of tries required to generate a clause in the set
representation is (8

7 )m. It takes O(log ℓ) bits to represent a clause and the clause must be checked
against m witnesses, each of which can be done in constant time. Therefore, it takes O(m log ℓ)
time to test a clause to determine whether it is satisfied by all the witnesses.

In order to generate n clauses, it is necessary to find n distinct clauses that are satisfied by
W . As each clause is found, it becomes slightly harder to find the next clause, as duplicates will
sometimes be chosen. However, as long as n is very small relative to the total number of clauses
that satisfy W , this has a negligible effect. If the probability that a random chosen clause passes
both tests (satisies W and is not a duplicate) were fixed at (7

8)m, then the expected running time
to generate a set representation would be O(n((8

7)m)m log ℓ). We note that in cases where n is a
significant fraction of the total number of clauses that satisfy W , then this would not be the case.

In practice, this means that it is only computationally efficient to generate an instance for at
most up to around a hundred witnesses. A hundred witnesses leads to an expectation of 629,788
rejected clauses per accepted clause, easily doable with current computers. When the number
of witnesses reaches a hundred and fifty, there is an expectation of about five hundred million
rejected clauses for each accepted clause, probably infeasible for a typical modern computer when
the number of clauses is considered.
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3.2 Distributed Set Establishment Protocol

We now discuss the distributed protocol for establishing T , which is given in Algorithm 2. This
algorithm works for honest-but-curious participants, who are assumed to follow their specified
protocols. It also has some resilience against cheating participants; for example, cheating parties
can cause an easy instance of 3Sat to be chosen, but in some cases the other participants can detect
that this may be happening. At a high level, the protocol executes as follows: the participants
locally generate local copies of the same random clause. Each determines if the clause is satisfied
by her own witness and communicates this information to the others. If the clause is satisfied by
all the witnesses, it is kept. Otherwise, it is discarded.

In order to protect the participants’ witnesses from being disclosed, we use a verifiable secret-
ballot election scheme by Benaloh [Ben87]. The scheme is based on homomorphic encryption and
secret sharing . It operates by designating some participants as tellers. Participants give secret
shares of their votes to the tellers. The tellers then use the homomorphic properties of the secret-
sharing scheme to compute shares of the tally. They then collaborate to compute the actual tally
and provide a proof to the participants that the tally was computed correctly.

In order to detect cheating of individual participants in our scheme, the tellers count the number
of times that any participant votes “no” for any given clause. This can be accomplished without
revealing the votes to the tellers by using the homomorphic property of the election scheme. The
tellers maintain a running sum of each participant’s votes and collaborate to determine that sum
after a clause is chosen. If this sum exceeds a threshold value maxreject , then the instance is
discarded and the protocol restarted from the beginning. Depending on the application setting for
the protocol, it may be desirable to exclude participants who have exceeded the maxreject threshold
some number of times from further participation. We note that even if a cheating participant
succeeds in influencing the outcome of the protocol, she can neither learn another participant’s
witness nor cause another participant’s witness to not satisfy the resulting 3Sat instance.

The goal is to choose maxreject high enough so that it detects cheating at levels that could
lead to malicious participants being able to break the security of the result, but low enough so that
it does not unnecessarily restart the protocol when no participants are cheating. As a somewhat
arbitrary threshold, we suggest:

maxreject =

(

8
7

)m

8
−

n

log 7
8

−
2

log 7
8

,

which is derived as follows. As mentioned previously, the probability of a random clause satisfying
a given witness is 7

8 . The first term of the formula for maxreject is the inverse of the probability
of all the witnesses being satisfied for a single clause divided by the number of them that a single
witness rejects. This is not sufficient to give a useful probability of an honest run not being rejected
because there are n clauses yielding a probability that all n is satisfied of 2−n. The second term of
the formula for maxreject brings the probability of an honest run being rejected to 1/2 by being the
solution to the equation: (7

8 )f(n) = 2−n. By adding f(n) to the number of elections, we are dividing
the probability by 2−n for probabilities not approaching one. The third term further increases the
probability that all terms are satisfied to 7

8 by dividing the probability by 1
4 . Further analysis or

experiments are needed in order to determine how effective this or any choice of maxreject is.
To ensure termination and also to provide some protection against multiple cheating participants

colluding and “spreading out” their “no” votes in order not to individually exceed the maxreject
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Input: A set of variable assignments W = {w1, w2, · · · , wm}. Each wi is known to participant
Pi. All participants also know the number ℓ of variables to be used and the target number n of
clauses, as well as a sufficiently long random string R.
Output: An instance of 3Sat that is satisfied by all participants’ witnesses.

• set

maxreject =

(

8
7

)m

8
−

n

log 7
8

−
2

log 7
8

• While there are fewer than n clauses do:

1. Using R, select three different variables v1, v2, v3 and three flags n1, n2, n3.

2. Construct the clause where the flags denote the negation of variables.

3. If the clause is equivalent to a clause already generated, discard it and return to Step 1.

4. Hold a verifiable secret-ballot election (see [Ben87]) using “yes” if the clause is satisfied
by the witness and “no” otherwise. If the tally is unanimously “yes”, then add the clause
to the instance. Otherwise, delete it. Each teller should maintain a running sum of each
participant’s shares of votes.

5. return to Step 1.

• Use the homomorphic property to compute the number of “no” votes for each participant. If
one exceeds maxreject , discard all the clauses.

Algorithm 2: A distributed algorithm

threshold, it would also be a good idea to have a check in each iteration of the while loop that the
loop has not been executed too many times, and to abort the protocol if this occurs.

In our set establishment protocol, the participants have a public shared source R of random or
pseudorandom numbers. Using R, each participant generates a clause as the disjunction of three
elements. Since the same random source is used, all the participants generate the same clause. The
participants hold a verifiable secret-ballot election. If the tally is unanimously “yes”, the clause
is kept; otherwise, it is rejected. If a participant votes “no”, then the clause is discarded. This
process is repeated until the target number n of clauses has been generated.

It is easy to verify that the output T is satisfied by all the inputs w1, . . . , wm, so Algorithm 2
meets the definition of a set establishment protocol. Assuming that parties behave honestly, the
expected number of tries to find a clause is (8

7 )m as in the centralized protocol of Section 3.1.

3.3 Set Membership

Our set representations lend themselves easily to both set membership and proof of possession
protocols.

Set membership involves a participant P , who knows his element w, and a verifier V , who knows
T . P wants to convince V that T was generated as a set representation that included the element
w. In our case, then, P wants to convince V that w satisfies T .

A straightforward set membership protocol (in which V is allowed to communicate w to P , as
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per the definitions in Section 2), is for P to communicate w to V , who can then easily check in
polynomial time whether w satisfies T . If it does, V accepts; otherwise, V rejects.

For proof of possession, it is important that the verifier never learns the credentials and cannot
impersonate the prover. Fortunately, in our solution, it is not necessary to present the element to
show set membership, but rather it is sufficient to show that one knows a satisfying string. This can
be done with a zero knowledge proof. Assuming trapdoor one-way functions exist, then such zero
knowledge proofs are possible for 3Sat using a generic construction that applies to any NP-complete
problem [GMW87]. Additionally, this can be made secure against quantum computers [Wat06], in
keeping with our motivation to avoid reliance on number-theoretic assumptions. If one is willing to
rely on such assumptions, there are also simple examples of zero knowledge proofs for 3Sat that
rely on factoring [BC87, Ben87].

3.4 Security

The security of the set membership protocol and the proof of possession protocol depends on the
difficulty of finding witnesses that satisfy a set representation T constructed by the set establishment
protocol. We show below in Theorem 1 that the representation T is random among all instances of
3Sat with n clauses and ℓ variables satisfied by the specified assignments W = {w1, . . . , wm}. The
instance T may possibly be satisfied by some other assignments. That is, given a set of witnesses
and a specified number of clauses, there is an equal probability that our algorithm produces any
instance that is satisfied by the witnesses and has the proper number of variables and clauses. The
probability that T is hard is the same as the probability that it is hard to find a witness for a
random such instance of 3Sat. Unfortunately, it is not known what this probability is. (In fact, if
P = NP, then the probability is zero.)

Our system rests on the assumption that a sufficiently large random instance of 3Sat satisfying
a given set of witnesses and having an appropriately chosen clause density has a high probability of
being hard to solve. If this assumption holds, then it is hard for anyone to find a witness which is
not an element. It is also hard for a party who does not already know an element of T to find one.
These two properties provide the security for both the set membership protocol and the proof of
possession protocol. In particular, for the set membership protocol, the ability for an adversary to
succeed in forging a witness without overhearing one is precisely the adversary’s ability to determine
a satisfying assignment to T , because this property can be exactly checked by the verifier. In the
case of the proof of possession protocol, the security additionally relies on the soundness of the zero
knowledge proof. An adversary who cannot find a valid witness has only negligible probability of
convincing the verifier to accept.

Theorem 1 Algorithms 1 and 2 generate with equal probability any 3Sat instance consisting of n
different clauses that is satisfied by all the assignments in W .

Proof (sketch): The same argument applies to both Algorithm 1 and Algorithm 2. This is
because Algorithms 1 and 2 save or reject clauses for the same reasons. The only difference is
whether the checking is handled by the participants or by a centralized authority.

Consider the “random algorithm,” which simply has a list of all the possible instances consisting
of n distinct 3-literal clauses over ℓ variables that are satisfied by all w ∈ W and selects one instance
uniformly at random.

First, we show that our algorithm generates the same set of instances as the random algorithm.
Suppose a possible 3Sat instance (in the random algorithm’s list) cannot be generated by our
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algorithm. Then a clause in it must be rejected by our algorithm either because it is a duplicate
or because some assignment does not satisfy the clause. It cannot be a duplicate, as this violates
the requirement for the random algorithm’s list that the clauses be distinct. If some assignment
does not satisfy the clause, then no instance including that clause is satisfied by the assignment.
Therefore, including it would violate the condition for the random algorithm’s list that it must be
satisfied by W . Hence, all instances in the list drawn on by the random algorithm are candidates
for generation by our algorithm.

Conversely, suppose a 3Sat instance generated by our algorithm cannot be generated by the
random algorithm. Then there are two possible reasons. The first is that there is a duplicate clause
resulting in the number of unique clauses being less than n. This instance cannot be generated
by our algorithm because the duplicate clause will be suppressed. The other possible reason is
that it is not satisfied by one of the witnesses. In this case, one of the clauses is not satisfied by
that witness (as the instance is a conjunction of the clauses). This clause will be rejected by our
algorithm, so this instance cannot be generated. Therefore, the set of instances selected by the
random algorithm is exactly the set of instances that our algorithm can generate. Call the size of
this set N .

Finally, we show that our algorithm generates each instance with the same probability as the
random algorithm. The random algorithm has probability 1/N of choosing each of the N instances
that it can generate. Our algorithm also generates each of these instances with equal probability.
To see this, note that in our algorithm, each clause has a constant probability depending on how
many clauses have already been chosen. The product of a fixed number of constants is a constant.
Therefore all of the instances have the same probability. It follows that, for our algorithm, each
clause has probability 1

N
, as desired.

Theorem 1 states that, given ℓ and n, the system can generate any 3Sat instance of ℓ variables
with n clauses that is satisfied by the specified witnesses. We make some observations and propose
some heuristic recommendations for selecting the security parameters:

• Beyond a certain threshold, increasing the number of variables without increasing the num-
ber of clauses actually reduces security because there are not enough instantiations of the
variables.

• Recall that the clause density of an instance is defined as α = n
ℓ
. Alekhnovich and Ben-

Sasson [ABS03] show that if α ≤ 1.63, then the instance can be solved in linear time. They
also demonstrate empirically that α < 2.5 seems to be easy to solve. We recommend taking
α ≥ 8 (i.e., choosing n ≥ 8ℓ) for security. For example, ℓ = 128 and n = 1024. If one is
concerned about quantum attacks, then we suggest ℓ = 256 and n = 2048 due to the quadratic
advantage given by Grover’s algorithm [Gro96].

• A certain number of variables are trivial in any particular instance (i.e., because they either
do not appear in positive form or in negative form, and therefore it is clear how to set them
in a satisfying assignment). This can reduce the security of the system, by making it easier
for an adversary to find satisfying assignments. Additionally, once the trivial variables are
assigned, an adversary can then “remove” those clauses, potentially resulting in more trivial
variables.

If our instances were random among all 3Sat instances with n clauses and ℓ variables, then the
expected number of trivial variables could be limited by taking the clause density sufficiently
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large. However, as noted before, our instances are random only among those 3Sat instances
that are actually satisfied by the set W of witnesses. Further study is needed to determine
how many trivial variables our instances are likely to have and whether this can be reduced.

The phase boundary of 3Sat is the clause density at which instances go abruptly from being
mostly satisfiable to mostly unsatisfiable. The 3Sat decision problem—determining whether a
3Sat instance is satisfiable or not—is believed to be hardest when instances are just above the
phase boundary [HS00]. However, our problem is a little different. Our set representation instances
are always satisfiable (since they are specifically chosen to satisfy a particular set of witnesses).
The problem at hand for an attacker is to find a satisfying assignment. We conjecture that the
problem of finding satisfying assignments for instances that are known to be satisfiable gets harder
as the probability of a random instance of the same parameter being satisfiable gets smaller—i.e.,
well above the phase boundary.

SATLIB contains resources for experimental research on Sat and 3Sat, including the results of
competitions in solving random Sat instances. The literature on SATLIB suggests that progress has
not been made on high clause density instances [HS00]. We also note that there is an optimization
variant of the Sat problem called MaxSat [HS00, H̊as01, KZ97]. Specifically, it is possible to
approximate 3Sat by finding assignments that satisfy most, but not all clauses. Known algorithms
are polynomial time for finding a 7/8 assignment, but become exponential in the worst case when
trying to do a full assignment.

Multiple cheating participants might collude to try to “spread out” their cheating rejections
so that they can influence the outcome without exceeding maxreject . This can be compensated
for by decreasing maxreject or by limiting the total number of rejections allowed cumulatively for
all participants rather than for individual participants. However, this also increases the chance of
“false positives,” in which the protocol is restarted even without cheating behavior, so it is only
likely to work well for a small number of colluding participants. It remains open to address other
types of cheating and collusions.

4 Applications

There are a number of applications of the set membership problem, including credentials and
document timestamping.

4.1 Digital Credentials

Our system applies to anonymous credentials in a fairly straightforward manner. The credentials are
the elements. They are generated using either the centralized protocol or the distributed protocol
and they are verified using the proof of possession protocol. In this way, the credentials are all
generated at once and then the instance is distributed to the verifiers. Verifiers use the instance
to anonymously determine whether a member is credentialed. If credentials with identification are
desired, then the member can present his witness; the verifier can check that the witness satisfies
the instance.

4.2 Accounts with multiple users

The system is also useful in situations where there need to be multiple authentication strings for a
single account. An example is accounts with multiple users. Suppose there are three debit cards
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issued on one bank account and they all have the same number but each has a different PIN. The
PINs can then be used as witnesses in constructing an instance. When a user wants to demonstrate
that she is an authorized user of the account, she runs the proof of possession protocol using her
PIN. This way, joint holders of an account can access the account without giving away their PINs
(which might also be used for other accounts that are not shared).

Other applications of multiple user accounts include the use of RFID tags as witnesses in an
access control system based on proximity sensors and other access control situations where it is not
desirable to uniquely identify the user.

4.3 Document timestamping

Document timestamping [BdM91, BdM94] may require a little more explanation. In document
timestamping applications, we think of the distributed protocol as a distributed signature. All the
parties participating in the protocol are attesting that one of their number knew each witness at
the time the protocol was run by accepting the set that results from the protocol. It would not be
possible for the protocol participant to execute the protocol and then choose a satisfying witness
at some later date.

The timestamping system proceeds in rounds. All documents submitted during the same round
are considered to be simultaneous, like patent applications arriving at the patent office on the same
day. Each participant’s witness is a hash of the document(s) she would like to timestamp. The
distributed protocol is run, and everyone remembers the round’s set, which is the timestamp. The
parties may jointly publish it if they wish to allow anyone to verify a timestamp.

To verify that a document was submitted during a given round, the verifier merely needs to
run the set membership protocol. The security of this system does not depend on computational
security, in that if a cheating prover wishes to make his specific document appear to be timestamped
and it does not satisfy the 3Sat instance, there is nothing he can do to change that. (We note,
though, that in most practical settings, the adversary may be able to change his document in ways
that do not affect its meaning, but do affect its encoding into a bit string, so this guarantee is not
absolute.)

Digital timestamping can be used for intellectual property disputes, among other applications.
In the intellectual property application, a consortium generates a timestamp with each company
using a hash of the hashes of all of its documents. Each company retains the daily timestamp and
publishes it for other interested parties. In a patent dispute, for instance, a party can get all the
other honest participants to attest to its possession of a document on or before a certain date. This
could also be used to prevent backdating in stock or other business transactions.

5 Discussion

We have presented a general solution to the set membership problem whose security depends on
the difficulty of finding witnesses to random 3Sat instances satisfying a given set of witnesses. We
have also presented applications to access control, digital credentials, and timestamping. We have
shown a distributed protocol for establishing a set.

A strong justification for considering security based on 3Sat is the increased worry that advances
in conventional or quantum computing may one day yield efficient algorithms for problems such
as factoring and discrete logarithms typically used as a source of hardness in cryptography. It is
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therefore important to investigate cryptographic algorithms based on alternate (plausible) hardness
assumptions to provide resilience against “breaking” of any one assumption or class of assumptions.

Further work includes analysis and experiments to determine the probability distribution of the
output of our set establishment protocol with respect to all 3Sat instances. In particular, it should
be investigated experimentally whether a randomly generated instance of 3Sat of size n that is
satisfied by the chosen witnesses falls into one of the patterns whose solution is known to be easy,
as well as determining whether all such instances can be specifically avoided.

Our protocol can be used for digital credentials including anonymous credentials, timestamping,
and other set membership applications. It can also be used for applications where multiple users
share an account. These include some access control and financial applications. For set membership
applications like timestamping, the set representation can be thought of as a distributed signature.
It can be proven to any honest participant or observer using the set membership protocol that a
document was used for inclusion in the set. These applications have broad applicability to problems
in cryptography and security. The advantages of this method over one-way accumulators include not
needing to remember a second string and not being dependent on the factoring problem [BdM94].

As previously discussed, the expected number of clauses that must be tried to generate a clause
in the set representation is (8

7)m, where m is the number of witnesses to be represented. We note
that this probability depends on the number of elements and is independent of n and ℓ. In contrast,
the security of the system is based on the adversary’s difficulty of finding an element as a function
of n and ℓ, so it may be possible to limit m so as to have efficient solutions for the participants
without making the adversary’s task solvable. As described earlier in Section 3.1, we believe that
one hundred witnesses can be dealt with easily, but that as the number of witnesses begins to reach
one hundred fifty, it becomes infeasible to generate an instance. For the distributed protocol, the
limits may be slightly lower to compensate for communication overhead. This can be countered by
replacing 3Sat with k-Sat where k is Θ(m). This eliminates the exponential complexity for the
participants. However, in this case, it is necessary to make α significantly greater than the phase
boundary for k-Sat. It is an open problem to determine the phase boundary of k-Sat for k > 3.

The space complexity for a set based on 3Sat is Θ(ℓ log ℓ). For instance, a system with 128
variables requires 1024 clauses. Altogether, this requires three kilobytes of storage. This space
complexity is independent of the number of set elements. However, if k-Sat is used instead of
3Sat, then the space complexity grows both in the number of bits required to represent a clause
and in the number of clauses required to be above the phase boundary.

Directions for future research include developing a better understanding of the expected hard-
ness of the 3Sat instances generated by our algorithm and extending the distributed set establish-
ment protocol to efficiently handle general malicious behavior.
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