
The Impact of Communication Models on Routing-Algorithm Convergence

Aaron D. Jaggard
Rutgers University

adj@dimacs.rutgers.edu

Vijay Ramachandran
Colgate University

vijayr@cs.colgate.edu

Rebecca N. Wright
Rutgers University

rebecca.wright@rutgers.edu

Abstract

Autonomous routing algorithms, such as BGP, are in-
tended to reach a globally consistent set of routes after nodes
iteratively and independently collect, process, and share
network information. Generally, the important role of the
mechanism used to share information has been overlooked
in previous analyses of these algorithms. In this paper,
we explicitly study how the network-communication model
affects algorithm convergence. To do this, we consider a
variety of factors, including channel reliability, how much
information is processed from channels, and how many
channels are processed simultaneously. Using these factors,
we define a taxonomy of communication models and iden-
tify particular models of interest, including those used in
previous theoretical work, those that most closely model
real-world implementations of BGP, and those of potential
interest for the design of future routing algorithms. We
characterize an extensive set of relationships among models
in our taxonomy and show that convergence depends on
the communication model in nontrivial ways. These results
highlight that certain models are best for proving conditions
that guarantee convergence, while other models are best for
characterizing conditions that might permit nonconvergence.

1. Introduction

Autonomous routing protocols (epitomized by BGP [14]
but also including, e.g., SPVP [9] and protocols in the
Metarouting framework [10]) are distributed algorithms that
establish network connectivity when coordination among
network entities is low. Much work has been done to analyze
the behavior of such protocols, including giving examples
of possible protocol divergence and proving sufficient con-
ditions for protocol convergence. This work has used a
variety of models for the communication between protocol
participants; however, the possible impact of the communi-
cation model on the theoretical results has generally been
neglected, so it was previously unknown whether this might

Partially supported by the DIMACS Special Focus on Algorithmic Foun-
dations of the Internet, by NSF awards CNS–0753061, CNS–0753492, and
DMS–0239996, and by ONR award N00014–05–10818.

be a significant factor. We address this issue comprehen-
sively by defining a taxonomy of communication models for
routing protocols and showing that theoretical convergence
results depend on the choice of communication model. We
then consider the possible pairs of communication models
from our taxonomy and prove an extensive set of results
showing when protocol convergence or divergence results
proved in one of the models necessarily hold in the other.
Our work thoroughly explores the design space defined by
our taxonomy; different points in this space correspond
to different models used in previous research and also to
different configuration settings in real-world networks. Here
we identify previously unstudied models that we believe are
important because they both better capture the flexibility
of actual protocols and have a strong ability to simulate
algorithm behavior in other models.

Distributed autonomous routing algorithms iteratively
compute path assignments. They promote a consistent view
of the network without overwhelming it with unnecessary
information. The essential steps in such an algorithm can
be abstractly captured as the following actions, repeatedly
performed by each node:

Action (1): Collect updates of path information describing
feasible paths to a destination node d.

Action (2): Choose the most preferred path (according to
local policy) from the paths known at the node.

Action (3): Announce any changes in path choice to neigh-
boring nodes.

However, as we investigate, these descriptions of actions do
not specify some aspects of the communication model that
can have an impact on an algorithm’s outcome.

Protocol designers and network operators hope that when
a distributed autonomous routing protocol is run, it will
eventually converge to a stable and consistent path assign-
ment. However, previous work ([16], followed by a line of
work analyzing BGP convergence, including [4], [6], [8],
[9], [15]) has shown that divergence, caused by routing
oscillations, is possible. Different work in this area has made
different assumptions about how nodes execute Actions (1)–
(3) above. Furthermore, these differences can be realized in
practice (e.g., the BGP specification [14] allows flexibility
in how actions (1) and (3) are carried out); as we discuss
below, we may view these differences as assuming different

Appears in Proceedings of the 29th International Conference on Distributed Computing Systems (ICDCS), 2009.

properties of the communication channels between nodes.
Another important consideration is that routing algorithms

may be run on networks that do not guarantee reliable
message delivery (e.g., in many wireless networks, or if
TCP is not used). In such cases, communications between
nodes running a protocol can be arbitrarily delayed or even
lost. Thus, we consider here both differences in how Actions
(1)–(3) are carried out as well as the reliability of message
delivery.

More specifically, in this paper we define and explore the
space of communication models using three dimensions that
correspond to answers to the following questions:

• Are updates reliably delivered?
• From how many neighbors are updates collected in

Action (1) above?
• How many updates from each neighbor are collected in

Action (1) above?

The space defined by these dimensions provides a tax-
onomy that systematically captures various combinations
of assumptions about synchrony, atomicity, and network
delays. Several points in the taxonomy map to realistic
differences in current and future network infrastructure
(e.g., underlying transport-level protocols, next-generation
physical-layer properties, and protocol timer settings). The
space also includes both reliable and unreliable channels.
To our knowledge, this is the first work to consider the
algorithmic properties of interdomain routing over unreliable
channels.

Considering the various communication models in our
taxonomy, we are particularly interested in whether a routing
algorithm that is guaranteed to converge in a network (per-
haps satisfying certain conditions) using one model is also
guaranteed to converge if that network uses a different com-
munication model. To this end, we formally define different
notions of realizing an execution of one model in another and
prove an extensive set of realization relationships between
different pairs of models. We show that for many pairs of
the models in our taxonomy, all executions (in particular, all
divergent executions) in one model can be realized in some
form in the other; however, we also show that there are some
pairs of models for which this is not true. This work enriches
the important line of work understanding the convergence
behavior of BGP and other networking protocols, e.g., [3]–
[6], [8]–[10], [15].

Our results imply that there are “weak” models that
are useful for exhibiting oscillations (so that divergence
is then possible in all other models as well) and “strong”
models that are useful for proving guarantees of convergence
(because guarantees in those models carry over to other
models as well). We demonstrate that previous analyses
of BGP in particular, while not explicitly considering the
effects of communication models, satisfy our guidelines to
ensure applicability across communication models.

By demonstrating which models are appropriate for which
types of analysis results, our work can guide the future
analysis of routing protocols. Our results here also contribute
to protocol analysis by demonstrating that some types of
divergence are not possible in some models and by identify-
ing important models in our taxonomy that are realistic and
powerful but that have not been considered before. Finally,
our results imply that, in this framework, reliable channels
offer little benefit over unreliable channels for the purpose of
guaranteeing convergence. However, always having access to
the current network state (instead of sequentially processing
update messages from a queue) can help guarantee conver-
gence.

To summarize, our main contributions are as follows:
• We define a taxonomy of communication models

(Sec. 2.2).
• We identify particular points of interest in our tax-

onomy, including “polling,” “message-passing,” and
“queueing” models (Sec. 2.3).

• We prove an extensive set of relationships between the
different models in our taxonomy (Sec. 3).

• Our results demonstrate that convergence, including for
well-known examples from the existing literature, does
depend on the choice of communication model.

We begin with some background and technical preliminaries
in Sec. 2.1. We discuss related work, including the relation-
ship of our work to classical results about modeling in the
distributed computing literature, in Sec. 4.

2. Communication Models

2.1. Problem basics and algorithm

We focus on using distributed autonomous routing algo-
rithms to solve the Stable Paths Problem (SPP) [9], an ab-
stract representation of the interdomain-routing problem. An
instance of SPP contains an undirected graph G = (V,E)
with a distinguished destination node d and, for each node
v ∈ V , a set of permitted paths Pv , which is a subset
of all simple paths from v to d, and a ranking function
λv : Pv → N indicating v’s preference for each permitted
path. Paths with lower rank are more preferred. Ties in
ranking are not permitted except when two paths go through
the same neighbor. The problem is to find a path assignment
π = {πv}v∈V that, for each v 6= d, is (1) consistent—
assuming that the next hop along πv is u, we have that
πv = vπu (if v extends a path from u to d, then that
path from u to d is assigned to u)—and (2) stable—for
all neighbors w 6= u of v, λv(vπu) < λv(vπw), i.e., πv is
more preferred than any other vπw. We assume that πd = d.

Let C be the set of communication channels that might be
used; for each edge {u, v} in the undirected instance graph,
C contains directed channels (u, v) and (v, u). We assume

that each channel is FIFO, so that messages that are written
by u (and no other party) to the channel (u, v) and are not
dropped by the channel are processed by v in the same order
in which they were written. We also assume that a single
communication model is used throughout the network.

Definition 2.1 (Components of network state). We keep
track of various components of the network state, although
for relationships between models we focus on the path
assignments in particular. Each aspect of state depends on
the step t of the algorithm’s execution. The components we
consider are:
Path assignments. πv(t) is the path to the destination that
v chooses at the end of step t; we let π(t) = {πv(t)}v∈V be
the collection of all path assignments. Note that πv(t+1) =
πv(t) unless v runs the update algorithm in step t+ 1. We
let πv(0) = ε for v 6= d and πd(0) = d.
Known routes. After the execution of the first part of the
algorithm in step t, ρv(c; t) contains the contents of the last
update that v successfully processed from the channel c.
ρv(c; t + 1) = ρv(c; t) unless v updates from channel c in
step t+ 1. We let ρv(c; 0) = ε for every v ∈ V and c ∈ C.
Channel contents. For a channel c = (u, v), we let c(t) be
the contents of c at the beginning of step t; let mc(t) be the
number of messages in c at the beginning of step t. We will
use ci(t) to denote the ith message in c at the beginning of
step t, where the first message is the oldest. We let c(0) = ∅
for every c ∈ C.

In each iterative step of the algorithm, nodes (1) collect
information from channels, (2) choose route objects based
on their ranking function and permitted paths, and (3)
share information by writing route objects to channels. The
communication models we study here affect only the first of
these three actions. Note that our definition of autonomous
routing algorithm and our results are broad enough to cover
any protocol that can be abstractly modeled by the Simple
Path-Vector Protocol (SPVP) [9], including BGP.

We use an activation sequence to specify the nodes
involved in each round and how the first action is executed;
an activation sequence determines the algorithm’s execution.
We now define the most general notion of activation se-
quence; the different models we consider can be viewed as
different restricted classes of activation sequences.

Definition 2.2. An activation sequence α is a function on
the non-negative integers that assigns to each t ∈ Z≥0 a
quadruple (U,X, f, g) such that:
• U ⊆ V is the set of nodes that will update in step t;
• X ⊆ C is the set of channels that will be updated in

step t. For each c = (u, v) ∈ C, we require that v ∈ U ,
i.e., the receiving end of each channel is one of the
nodes that is updating in step t;

• f : X → Z≥0 ∪ {∞} indicates how many mes-
sages from each channel should be processed. For

c = (u, v) ∈ X , v will process f(c) messages from
c (if f(c) =∞, then v will process all messages in the
channel); and

• g : X → P(Z>0) indicates which, if any, messages will
be dropped from each channel; the elements of g(c) are
the indices of the messages that will be dropped so if,
e.g., 2 ∈ g(c), then the second message in c will be
dropped. We require that if f(c) = 0, then g(c) = ∅,
and if 0 < f(c) <∞, then g(c) ⊆ {1, 2, . . . , f(c)}.

Definition 2.3 (Algorithm execution using a general activa-
tion sequence). Given a network instance and an activation
sequence α, the iterative routing algorithm executes as
follows, starting with t = 0.

1) Let (U,X, f, g) = α(t).
2) For each v ∈ U and u ∈ N (v) such that (u, v) ∈ X

a) Let c = (u, v)
b) If f(c) = ∞, let i = mc(t); if f(c) < ∞, let i =

max{f(c),mc(t)}.
c) If {1, 2, . . . , i}\g(c) 6= ∅, let j be the largest element

of this set, and let ρv(c; t) be the route in the jth

message in c. If {1, 2, . . . , i}\g(c) = ∅, let ρv(c; t) =
ρv(c; t− 1).

d) Delete the first i messages from c, and set mc(t +
1) = mc(t)− i.

3) For each v ∈ U , set πv(t) to be the most preferred path
from the set {ρv((u, v); t) ∩ Pv | u ∈ N (v)} if v 6= d,
and let πv(t) = d otherwise.

4) For each v ∈ U and u ∈ N (v), if πv(t) 6= πv(t − 1)
and if prescribed by export policy, write the path πv(t)
to the channel (v, u) and increase m(v,u)(t+1) by one.

5) Increment t and repeat from Step 1.

Definition 2.4 (Fair activation sequence). We say that an
activation sequence α is fair if every node tries to read each
of its channels infinitely often and, if a message is dropped
from channel c (a possibility when unreliable channels are
used), then there is a later message on c that is not dropped.

We will restrict our attention to fair activation sequences.

Definition 2.5 (Convergence of an activation sequence). An
activation sequence α converges to the path assignment π
if, for the induced sequence of path assignments π(t), there
exists some t∗ such that for any t′ > t∗, π(t′) = π. We
write limt→∞ π(t) = π, and say α converges if the limit
exists.

2.2. Dimensions of the model space

The quadruples that appear in a general activation se-
quence suggest four dimensions that might be considered
in studying different models of communication: channel re-
liability, the number of neighbors processed at each step, the

number of messages processed per channel, and the number
of nodes updating per step. We present these dimensions
and points along those dimensions in order to describe a
complete space. Our results focus on relationships among a
natural subset of points in this space.

Definition 2.6 (Dimensions of the model space). The four
dimensions we study are:
Channel reliability: In general, channels may have some

probability at which messages are lost and may deliver
messages out-of-order, e.g., if the underlying transport
mechanism cannot be TCP. In this paper, we assume
FIFO channels and we consider channels that are either
reliable or unreliable in the following sense:
R (Reliable) Every message placed in a channel (u, v)

by u is always read by v, i.e., the functions gv in the
fourth component of an activation sequence entry are
always identically equal to ∅.

U (Unreliable) Some messages placed in channels are
not read, i.e., the functions gv need not be identically
equal to ∅.

Number of neighbors processed: Each model specifies
how many channels a node should process when it
updates. Practically, this dimension affects whether or
not announcement import and export should be treated
as an atomic action. The possible values are:
E (Every) Whenever a node updates, it processes mes-

sages from every one of its neighbors, i.e., Xv =
N (v) for every v ∈ U .

M (Multiple) Whenever a node updates, it processes
messages from some subset of its neighbors (poten-
tially multiple neighbors), including the possibility
of processing no channels and that of processing all
channels; this imposes no additional restriction on
Xv .

1 Whenever a node updates, it processes messages
from exactly one of its neighbors, i.e., |Xv| = 1 for
every v ∈ U .

Number of messages processed per channel: Each
model specifies how many messages a node should
read from a channel when it processes that channel.
Practically, this dimension covers variation on link
delay (which may cause different schedules for arrival
of messages) and protocol-timer settings, e.g., the BGP
MRAI timer [14], which sets the amount of time a
router must wait before sending out a current-route
update.
A (All) Whenever a node v updates and is assigned to

process messages from a neighbor u, v processes all
of the messages in this channel, i.e., fv ≡ ∞.

S (Some) There are no restrictions on the number of
messages that a node processes from each of its
neighbors when it updates.

F (Forced) Each node is forced to process at least one
message from each of the neighbors from which it
updates (although this set may omit some neighbors),
but it may process multiple messages from each
neighbor.

O (One) Whenever a node v updates and is assigned
to process messages from a neighbor u, it processes
exactly one message from this channel, i.e., fv ≡ 1.
If unreliable channels are used, this message may be
lost.

Number of nodes updating: An activation sequence must
specify the set of nodes that update at each step (the
activated nodes). Various possible values are:
Every Every node updates at every step, i.e., U = V ;
Unrestricted There are no restrictions on which nodes

do or do not update, although to avoid trivial steps
we assume U 6= ∅; and

One Exactly one node updates at each step, i.e., |U | =
1.

In the remainder of this paper, we require exactly one
node to update at each step. That is, we do not consider
variations in this dimension.

The symbols for each option in the first three dimensions
(R, E, A, etc.) are used to abbreviate the combinations; thus
RMO is the model that uses reliable channels in which the
node that updates in a given step processes an arbitrary set
of its incoming channels and processes exactly one message
from each of these channels.

2.3. Specific models

We now highlight some models that are of particular in-
terest because of their previous use in research, their fidelity
to the current BGP specification [14], or their potential for
guiding the design of new routing protocols. (We note that
although the BGP specification [14] assumes that BGP runs
on TCP, thus ensuring reliable delivery, protocols like BGP
are being designed for various purposes [10]. Our work
permits analysis of convergence even when only unreliable
channels are available.) As noted above, we restrict our
attention to models in which exactly one node updates
in every step, i.e., |U | = 1 in every activation sequence
quadruple.

2.3.1. Polling models. Informally, in “polling” models,
nodes learn the current state of (some or all of) their
neighbors in the first algorithm action when activated. The
REA polling model was used in [3], [4]; as we show, this
allows the hardness results in that work to apply regardless
of model used. The REA polling model has also been
used in the application of mechanism design to routing
(e.g., [7], [12]), although the primary focus of that work
is not algorithm convergence.

Because all messages in a channel are processed before
the active node chooses its best route, the active node
essentially ignores any intermediate messages and only uses
each neighbor’s most recent announcement. (We note that
in settings in which nodes can misbehave, nodes might
use the additional information from intermediate messages
to modify their actions; otherwise, only the most recent
information is useful in route choice.)

Because of the constraints on activation sequences that
define polling models, we may simply abbreviate the ele-
ments of the activation sequence as the updating node and
the neighbors from which it updates. If REA is being used,
we may further abbreviate this to just the node itself (writing,
e.g., α(t) = v), because all channels are read.

Informally, we call R1A “poll one,” RMA “poll some,”
and REA “poll all.”

2.3.2. Message-passing models. “Message-passing” mod-
els were used in the original definition and proof of NP-
completeness of SPP [9]. In these models, when a node is
assigned to update, it reads (or possibly drops if unreliable
channels are used) one message from each channel being
read. As we show in Sec. 3, any nonconvergent algorithm
execution in any of the other models we consider can
also occur in the message-passing models R1O and RMO
(but not necessarily in the model REO, in which a node
essentially acts on the first message in every nonempty
channel simultaneously). The message-passing model R1O
can be thought of as an “event-driven” model, in which
nodes respond individually to each incoming update, or in
which node activation is triggered by an announcement.

2.3.3. Queueing models. The “queueing” models RMS and
UMS have not, to our knowledge, been used in earlier work
on path-vector protocols. We believe these are of particular
interest because the flexibility of configuration parameters
in the BGP specification [14] suggests that these models
most naturally correspond to correct operation of BGP on
the Internet. Furthermore, we show that they are very strong
in their ability to realize the other models in our taxonomy.

There is one queueing model for each option of channel
reliability; each model then allows any number of channels
to be processed in a single step, and any number of messages
to be processed from each channel (so that X and f are
unrestricted and either g ≡ ∅ or g is also unrestricted).

3. Realization Relationships between Commu-
nication Models

In this section, we analyze the algorithm executions that
can occur in the various models generated by the dimension
values outlined in the previous section. We begin by defining
types of relationships between models and then go on to

wxS
wMF
w1F

wMO
w1O

(Including "queueing" and most
"message−passing" models)

Strong Models

RxA
("Polling" models)

Weak Models

REO
REF

Figure 1. Highlights of the major results separating
different classes of communication models. Arrows de-
note preservation of the oscillations of one collection
of models by another; the models on the right capture
all the oscillations of the other models shown. The
crossed-out arrows indicate that the models on the right
can oscillate in ways the models in the middle and
on the left cannot; similarly, the models in the middle
can oscillate in ways those on the left cannot. Taken
together, these show that the models in the left and
middle sections are strictly weaker than the models on
the right.

prove how an algorithm execution in one model can be seen
as an “equivalent” execution in another.

Figure 1 gives a high-level overview of our main results.
Arrows extend from one collection of models to another if
the second collection preserves the oscillations of the first
collection of models (in the sense of Def. 3.1); crossed-
out arrows indicate that such preservation does not hold.
In particular, the models on the right, which include the
queueing models and most of the message-passing models,
can exhibit all of the oscillations seen in the models on the
left and in the middle. In fact, one of the main results of this
section is that these models capture the protocol executions
of every other model in the space (including those not
depicted here). The models on the right can oscillate in ways
that the models in the middle cannot, and the models on the
right and in the middle can oscillate in ways that the polling
models on the left cannot. As a result, the models on the
right are strictly stronger than all the other models depicted.
Our full results, including some not depicted in Fig. 1,
are described below; additionally, the exact relationships
between some of the models in the collections shown is
still open. (Here, w ranges over {R,U} and x ranges over
{1,M,E}).)

3.1. Notions of realization

In studying the effects of communication models, we are
interested in the following relationship between models.

Definition 3.1 (Oscillation preservation). We say that model
B preserves the oscillations of model A if the existence of a
nonconvergent activation sequence α in A for some network
instance I implies that there exists an activation sequence
α′ in B for network instance I that does not converge.

Note that this definition does not insist that the set of
nodes involved in an oscillation in A be identical to the set
of nodes in an oscillation in B, but just that whenever A
has some oscillation, B does as well.

While the oscillation-preserving relationship is weaker
than most of the relationships that we actually prove, it
captures the essential impact of model choice on conver-
gence. Most of our results involve the following realization
relations, which imply oscillation preservation.

Definition 3.2 (Execution realization). We say that model
B realizes the executions of model A (exactly, exactly with
repetition, or as subsequences) if, for every network instance
using B and activation sequence α (in B), there exists an
activation sequence α′ in the A such that, if {π(t)}t and
{π′(t)}t are the path-assignment sequences induces by α
and α′, one of the following holds:
Exact realization: ∀t, π′(t) = π(t), i.e., the sequences are

the same.
Exact realization with repetition: ∃f : N → N such that

∀i, j, i < j ⇒ f(i) < f(j) and f(t) ≤ k < f(t+1)⇒
π′(k) = π(t), i.e., {π′(t)}t is obtained from {π(t)}t by
replacing each π(t) with one or more occurrences of
π(t).

Realization as a subsequence: ∃f : N → N such that
∀i, j, i < j ⇒ f(i) < f(j) and ∀t, π′(f(t)) = π(t),
i.e., {π(t)}t is a subsequence of {π′(t)}t.

Saying that model A realizes model B (in one of these
senses) could also be thought of as asserting that for every
execution of a system under model B, there is an execution
of the system under model A such that a specific type of
simulation relation (as in, e.g., [13]) can be defined from the
first execution to the second.

It is straightforward from these definitions that exact
realization implies exact realization with repetition, which
in turn implies realization as a subsequence. If one model
realizes the executions of another, in any of these senses,
it immediately follows that the first model preserves the
oscillations of the second model.

3.2. Foundational positive results

Here we present our positive results, which show that
certain models may be realized in various senses by other
models. We build on these results by combining them with
each other, our negative results in Sec. 3.3, and additional
arguments to obtain a broad range of relationships as de-
scribed in Sec. 3.5. We have omitted some proofs; these are
available in the longer version of the paper [11]. We start
with some general exact realizations.

Proposition 3.3. For every w ∈ {R,U}, x ∈ {1,M,E}, and
y ∈ {O,S,F,A}:

1) Uxy exactly realizes Rxy;

2) wxS exactly realizes wxF;
3) wxF exactly realizes wxO and wxA; and
4) wMy exactly realizes w1y and wEy.

Proposition 3.4. For every w, wES exactly realizes wMS.

The following general result involves realization with
repetition. In light of Prop. 3.8, it cannot be strengthened,
at this level of generality, to use exact realization.

Theorem 3.5. For every w ∈ {R,U}, y ∈ {O,S,F,A}, w1y
realizes wMy with repetition.

Proof: For fixed w ∈ {R,U} and y ∈ {O,S,F,A},
let α be a fair activation sequence in wMy. For each
element ({v}, X, f, g) in {α(t)} we produce a sequence
of quadruples that are legal entries in activation sequences
(for this network) in w1y; replacing each element of {α(t)}
by its corresponding sequence produces a complete, valid
activation sequence in w1y that meets the claimed condi-
tions. We assume that all channels in the w1y system contain
exactly the messages, and in the same order, that appear in
the wMy system; this is true before the system starts, and
each sequence of steps in the w1y system (corresponding to
a single step in the wMy system) preserves this.

Let c be the channel from which v learns the path it selects
after step t (in the wMy system) and let d be the channel
from which it learns the path it selects after step t − 1 (if
t > 0). Order the channels in X as c1, . . . , ck so that, if
c 6= d, c1 = c (if c ∈ X) and ck = d (if d ∈ X); if
c = d ∈ X , then let c1 = c if the path chosen after step t
is higher-ranked than the path chosen after step t − 1, and
let ck = d if the opposite is true. The requisite sequence
of quadruples is ({v}, {c1}, f ′1, g′1), . . . , ({v}, {ck}, f ′k, g′k)
where f ′i(ci) = f(ci) and g′i(ci) = g(ci). Before proceeding
through any of these steps, the w1y system (by induction)
uses the path P = πv(t−1). After proceeding through these
steps, the w1y system uses the path Q = πv(t) because it
knows the same set of routes that the wMy system does after
step t. We claim that, if P 6= Q, then at some point in this
sequence of steps, the new system switches from P to Q and
that this is the only change in path assignment that it makes.
If v did not already know Q before it starts this sequence
of steps, it learns Q in the first step unless it prefers P to
Q and it learns both P and Q from the same channel c. (In
that case, all paths that v learns in the intermediate steps
are less preferred than Q, and thus P , which it knows about
until the final step, when it learns—and switches to—P ; this
case thus satisfies the claim.) Any new paths that v learns
in intermediate steps must be less preferred than Q; if there
are old paths that are more preferred than Q, these are less
preferred than P and are thus never chosen (because P is
then chosen until the last step). Thus the claim holds.

We also have the following positive results. In view of
Cor. 3.14, the one for reliable channels cannot be strength-

ened to realization with repetition.

Proposition 3.6. R1O realizes R1S as a subsequence, and
U1O realizes U1S with repetition.

Proof: For the reliable channel case, we let α be a fair
activation sequence in R1S. For each element ({v}, {c}, f, g)
in {α(t)} we define a sequence of quadruples that are
legal entries in activation sequences (for this network) in
R1O; replacing each element of {α(t)} by its corresponding
sequence produces a valid activation sequence in R1O that
meets the claimed conditions. In the R1O system, we
informally “flag” some messages to indicate the ends of
sequences of messages that are processed in a single update
in the R1S system.

If f(c) > 0, let k ≥ 1 be the number of messages in c,
after the steps in the R1O system that correspond to steps
0, . . . , t−1 in the R1S system, up to and including the f(c)th

“flagged” message. Replace ({v}, {c}, f, g) with k copies of
({v}, {c}, f ′, g′), where f ′(c) = 1 and g′(c) = ∅ as required
by R1O. Finally, flag the update messages that v sends after
processing the kth of these updates. If f(c) = 0, then we
delete ({v}, {c}, f, g) and do not replace it with anything.
The resulting sequence is a legal activation sequence in R1O.
The R1O system may have various path assignments while
processing the k update commands, but after processing the
final one, the set of known paths at v (and at all other nodes,
none of which have updated during this time) is the same as
at v in the R1S system after step t, so the path assignments
are the same. As a result, we see that R1O realizes R1S as
a subsequence.

For unreliable channels, given a fair activation sequence
α in U1S, we replace ({v}, {c}, f, g) in {α(t)} with
nothing if f(c) = 0 and, if f(c) = k > 0, with
({v}, {c}, f ′1, g′1), . . . , ({v}, {c}, f ′k, g′k), where f ′i(c) = 1
for every i and g′i(c) = ∅ if i is the largest element of
{1, . . . , k} that is not in g(c) and g′i(c) = {1} otherwise
(including if no such integer exists). This means that the only
messages not dropped in the U1O system are exactly the
ones that the U1S system actually uses (i.e., that contribute
known paths at the end of a step); thus the U1O system may
repeat path assignments, but it does not transition through
other path assignments. This shows that U1O realizes U1S
with repetition.

The following property is important because it demon-
strates realization of the unreliable case by the reliable case;
this leads to the fact that dropping reliability from the strong
models does not, by itself, introduce new oscillations. The
proof of this theorem relies on the fact that every dropped
message is followed (eventually) by a non-dropped message
in the definition of a fair activation sequence. Without this
assumption, however, R1S would not even preserve the
oscillations of U1O.

Theorem 3.7. R1S exactly realizes U1O.

Proof: Let α be a fair activation sequence in U1O; each
element is of the form ({v}, {c}, f, g), where f(c) = 1
and g(c) is either ∅ or {1}. Construct α′ by: replac-
ing all elements ({v}, {c}, f, g) for which g(c) = {1}
with ({v}, {c}, f ′, g′), where f ′(c) = 0 and g′(c) = ∅,
and replacing those elements for which g(c) = ∅ with
({v}, {c}, f ′, g′), where: f ′(c) ≥ 1 equals the number
of elements ({v}, {c}, f, g) in α (including the current
one) since the previous such element with g(c) = ∅; and
g′(c) = ∅. This is then a fair activation sequence in R1S,
and the sequence of path assignments it induces is the same
one induced by α, because in any channel there is always a
non-dropped message after every dropped message.

3.3. Negative results

Our negative results show that certain models cannot
be realized, in various senses, by other models. These are
proved by exhibiting a network and an activation sequence
from the first model that produces behavior that provably
cannot be seen in the second model (either at all, to show that
oscillations cannot be preserved, or without the addition of
repeated or other states, to show that certain other realization
relations do not hold). Due to space considerations, we omit
these examples and the associated proofs; these can be found
in the longer version of the paper [11].

Proposition 3.8. REO cannot be exactly realized in R1O.

Theorem 3.9. The oscillations of R1O are not preserved by
REO, REF, R1A, RMA, and REA.

Theorem 3.10. The oscillations of REO and REF are not
preserved by R1A, RMA, and REA.

Proposition 3.11. REA cannot be realized with repetition
in R1O.

Proposition 3.12. REA cannot be exactly realized by R1S.

Proposition 3.13. REO cannot be exactly realized by R1S.

3.4. Transitivity

As noted in Sec. 3.1, exact realization is stronger than
realization with repetition, which in turn is stronger than
realization as a subsequence, which in turn is stronger than
the preservation of oscillations. If a model M2 realizes a
model M1 in sense R1, and M3 realizes model M2 in sense
R2, then we have that M3 must also realize M1 in the
weaker of the senses R1 and R2 (although it might also
realize M1 in a stronger sense).

Conversely, if M2 realizes M1 in sense R1 but M3 cannot
realize M1 in sense R2, and if R1 is at least as strong as R2,
then M3 also cannot realize M2 in sense R2. (Otherwise,

the composition of the realization of M1 in M2 and the
realization of M2 in M3 would produce a realization of M1

in M3 in sense R2.) Similarly, if M3 realizes M1 in sense
R1 but M3 cannot realize M2 in sense R2, and if R1 is at
least as strong as R2, then M1 also cannot realize M2 in
sense R2. (Again, transitivity would lead to a realization of
M2 in M3 in sense R2.)

Cor. 3.14 is a detailed example of application of these
arguments to Prop. 3.11. Section 3.5 presents all such
corollaries in a condensed form.

Corollary 3.14. For every y, y′, z with z 6= O, Ryz cannot
be realized with repetition in Ry′O.

Proof: By Thm. 3.5, R1O realizes RMO (and thus,
by Prop. 3.3, REO) with repetition. As this is at least as
strong as the sense of non-realization in Prop. 3.11, for every
y′ ∈ {1,M,E}, Ry′O cannot realize REA with repetition.
Repeated applications of Prop. 3.3 show that for y ∈ {M,E}
and z ∈ {S,F,A}, Ryz realizes REA exactly; by Thm. 3.5,
we then have that R1z realizes REA with repetition for
z ∈ {S,F,A}. The arguments above and the first observation
imply that for every y, y′ ∈ {1,M,E} and z ∈ {S,F,A},
Ry′O cannot realize Ryz with repetition.

3.5. Discussion

Table 1 summarizes the results stated in Sec. 3.2–3.3
along with various corollaries obtained from these by the
transitivity arguments above. The entry whose row is labeled
with model A and whose column is labeled with model B
indicates what is known about B’s ability to realize A. If the
entry is 4, then B exactly realizes A; if the entry is 3, then B
realizes A with repetition; if the entry is 2, then B realizes
A as a subsequence. A ≥ symbol indicates that the value is a
lower bound and the relationship could be stronger, while a
≤ symbol indicates an upper bound, so the relationship could
be weaker. In cases where both upper and lower bounds are
known, we list all of the possible relationships. If the entry
is −1, then B does not preserve the oscillations of A. We
note that the because Ryz is exactly realized by Uyz, the
entry in row Uyz and column xy′z′ is at most the entry in
row Ryz and column xy′z′. Blank entries indicate pairs for
which the relationship is unknown.

It is important to note how strong our results show the
queueing models to be. RMS is able to realize all reliable
channel models exactly and all unreliable channel models
either with repetition or exactly. UMS is able to exactly
realize all models, reliable and unreliable. Furthermore,
among the reliable channel models, R1O, RMO, R1S, RMS,
RES, R1F, and RMF are all able to capture all of the
oscillations of all other models in our taxonomy. In contrast,
REO, REF, R1A, RMA, and REA are provably unable to
capture some oscillations that may occur when using other

models, so conditions that guarantee convergence in these
models may not do so in general.

The BGP specification [14] outlines technical details of
interdomain route computation, but leaves some room for
interpretation. As an example, the amount of time nodes
wait before sending route announcements can vary. In some
cases, longer wait times may slow BGP convergence because
nodes’ discovery of potential routes is delayed; in other
cases, longer wait times may hasten convergence because
nodes do not waste resources on spurious or transient
announcements. Our work studies these types of effects, and
some of the identified models represent various interpreta-
tions of the BGP specification.

The Route Refresh Capability [2], which is an optional
extension to BGP, can be used to learn, immediately and on-
demand, a node’s current route choice. Although intended to
prevent information loss after a policy change, nodes can use
this capability to poll nodes for the most current update. This
permits implementation of the polling models, and the BGP
specification alludes to this possibility. Our results imply that
certain types of nonconvergence cannot be realized in these
polling models.

4. Related Work

Nodes’ ranking functions and permitted paths are inde-
pendently configured inputs, and previous work showed that
BGP may not converge on certain inputs [16]. Attempt-
ing to characterize these inputs has given some necessary
conditions [4] and some sufficient conditions [6], [8], [9],
[15] on the inputs for convergence, but not a complete
characterization. These results were proved in differing
communication models. For example, Feamster, Johari, and
Balakrishnan [4] used a polling model. In contrast, other
work [6], [8], [9], [15] assumed a queueing or message-
passing model. In addition to these results about policy
constraints, some hardness results are also known. Using a
queueing model, Griffin, Shepherd, and Wilfong [9] showed
the decision problem of whether an SPP instance has a
stable, consistent path assignment is NP-complete. Using
a polling model, Fabrikant and Papadimitriou [3] showed
that determining whether BGP converges on a succinctly-
represented problem instance is PSPACE-complete. Finally,
previous work on game-theoretic models of BGP (e.g., [7],
[12]) have assumed polling models. Our results relating
various models, including those used in previous work,
suggest which models are best used for continuing this line
of work. For example, our results imply that although the
sufficient condition in [9] was shown in a queueing model,
the condition also guarantees convergence in a polling
model.

Many general results in distributed computing [13] con-
sider assumptions about network communication, including
atomicity and synchrony. In contrast to those general results,

R1O RMO REO R1S RMS RES R1F RMF REF R1A RMA REA

R1O – 4 -1 4 4 4 4 4 -1 -1 -1 -1
RMO 3 – -1 3 4 4 3 4 -1 -1 -1 -1
REO 3 4 – 3 4 4 3 4 4 -1 -1 -1
R1S 2 2 -1 – 4 4 ≥2 ≥2 -1 -1 -1 -1
RMS 2 2 -1 3 – 4 2,3 ≥2 -1 -1 -1 -1
RES 2 2 -1 3 4 – 2,3 ≥2 -1 -1 -1 -1
R1F 2 2 -1 4 4 4 – 4 -1 -1 -1 -1
RMF 2 2 -1 3 4 4 3 – -1 -1 -1 -1
REF 2 2 ≤2 3 4 4 3 4 – -1 -1 -1
R1A 2 2 ≤2 4 4 4 4 4 – 4
RMA 2 2 ≤2 3 4 4 3 4 3 –
REA 2 2 ≤2 3 4 4 3 4 4 3 4 –
U1O ≥2 ≥2 -1 4 4 4 ≥2 ≥2 -1 -1 -1 -1
UMO 2,3 ≥2 -1 3 ≥3 ≥3 2,3 ≥2 -1 -1 -1 -1
UEO 2,3 ≥2 3 ≥3 ≥3 2,3 ≥2 -1 -1 -1
U1S 2 2 -1 ≥3 ≥3 ≥3 ≥2 ≥2 -1 -1 -1 -1
UMS 2 2 -1 3 ≥3 ≥3 2,3 ≥2 -1 -1 -1 -1
UES 2 2 -1 3 ≥3 ≥3 2,3 ≥2 -1 -1 -1 -1
U1F 2 2 -1 ≥3 ≥3 ≥3 ≥2 ≥2 -1 -1 -1 -1
UMF 2 2 -1 3 ≥3 ≥3 2,3 ≥2 -1 -1 -1 -1
UEF 2 2 ≤2 3 ≥3 ≥3 2,3 ≥2 -1 -1 -1
U1A 2 2 ≤2 ≥3 ≥3 ≥3 ≥2 ≥2
UMA 2 2 ≤2 3 ≥3 ≥3 2,3 ≥2 ≤3
UEA 2 2 ≤2 3 ≥3 ≥3 2,3 ≥2 ≤3

U1O UMO UEO U1S UMS UES U1F UMF UEF U1A UMA UEA

R1O 4 4 4 4 4 4 4
RMO 3 4 ≥3 4 4 ≥3 4
REO 3 4 4 ≥3 4 4 ≥3 4 4
R1S ≥3 ≥3 4 4 4 ≥3 ≥3
RMS 3 ≥3 ≥3 4 4 ≥3 ≥3
RES 3 ≥3 ≥3 4 4 ≥3 ≥3
R1F ≥3 ≥3 4 4 4 4 4
RMF 3 ≥3 ≥3 4 4 ≥3 4
REF 3 ≥3 ≥3 4 4 ≥3 4 4
R1A ≥3 ≥3 4 4 4 4 4 4 4
RMA 3 ≥3 ≥3 4 4 ≥3 4 ≥3 4
REA 3 ≥3 ≥3 4 4 ≥3 4 4 ≥3 4 4
U1O – 4 4 4 4 4 4
UMO 3 – ≥3 4 4 ≥3 4
UEO 3 4 – ≥3 4 4 ≥3 4 4
U1S ≥3 ≥3 – 4 4 ≥3 ≥3
UMS 3 ≥3 ≥3 – 4 ≥3 ≥3
UES 3 ≥3 ≥3 4 – ≥3 ≥3
U1F ≥3 ≥3 4 4 4 – 4
UMF 3 ≥3 ≥3 4 4 ≥3 –
UEF 3 ≥3 ≥3 4 4 ≥3 4 –
U1A ≥3 ≥3 4 4 4 4 4 – 4
UMA 3 ≥3 ≥3 4 4 ≥3 4 ≥3 –
UEA 3 ≥3 ≥3 4 4 ≥3 4 4 ≥3 4 –

Table 1. Summary of realization results. Section 2.2 describes the meaning of the models (i.e., the row and
column headings). Section 3.5 describes the meaning of the entries.

we do not attempt to simulate an algorithm in one model by
a modified algorithm in another. Instead, we are interested
in properties of the executions of the same algorithm in a
variety of models. Rather than general simulation, we define
the more specialized notion of a realization relationship
(Sec. 3) and apply it to routing-algorithm convergence.
Recently, Chambart and Schnoebelen [1] studied the impact
of channel reliability on the ability of an algorithm execution
to transition between two states; their results do not directly
apply to our context because state transitions do not preclude
the possibility of nonconvergence.

5. Conclusions and Future Work

In this paper, we have systematically defined a taxon-
omy of communication models that play an important, but
generally overlooked, role in the convergence behavior of
distributed autonomous routing algorithms. We have defined
new realization relationships and given an extensive char-
acterization of the relationship between different pairs of
these models. We have shown that queueing models are very
strong, in that they can capture the algorithm behavior seen
in all the other models. As such, they are useful for proving
guarantees of convergence that transcend model differences.
In contrast, polling models are strictly weaker than other
models in that they do not capture all the algorithm behavior
that may be seen using other models (and in the real
world). These models are useful for providing examples of
divergence, but not for proving generalizable convergence
guarantees.

There are important questions remaining in this line of
work. We have not extensively studied models in which
multiple nodes are activated simultaneously. Polling in that
case is strictly stronger than the polling models we consider
here; we do not expect this to be true of the other models.
The question of algorithm behavior in the context of mixed
channels may also be interesting. Although unreliable chan-
nels can model reliable channels—so our results for unreli-
able channels apply to a mixture of reliable and unreliable
channels—we do not have results when, for example, some
nodes poll and others act on messages. Unreliable delivery
in the case of out-of-order message also remains open.
Our current work also does not comprehensively consider
expected convergence when there is a probability distribution
on message loss, rather concentrating on worst-case analysis.
Finally, the question of behavior in the presence of misbe-
having nodes is important. We assume that nodes use the
most recent information they have to execute the algorithm
when activated; however, in adversarial settings, nodes may
use the other messages read to act in different ways that
may affect algorithm convergence.

References

[1] P. Chambart and P. Schnoebelen. Mixing Lossy and Perfect
FIFO Channels. In Proc. CONCUR, pp. 340–355, 2008.

[2] E. Chen. Route Refresh Capability for BGP–4. RFC 2918,
Sep. 2000.

[3] A. Fabrikant and C. H. Papadimitriou. The Complexity
of Game Dynamics: BGP Oscillations, Sink Equilibria, and
Beyond. In Proc. SODA, pp. 844–853, Jan. 2008.

[4] N. Feamster, R. Johari, and H. Balakrishnan. Implications
of Autonomy for the Expressiveness of Policy Routing.
IEEE/ACM Trans. Net., 15(6):1266–1279, Dec. 2007.

[5] L. Gao, T. Griffin, and J. Rexford. Inherently Safe Backup
Routing with BGP. In INFOCOM, pp. 547–556, Aug. 2001.

[6] L. Gao and J. Rexford. Stable Internet Routing Without
Global Coordination. IEEE/ACM Trans. Net., 9(6):681–692,
December 2001.

[7] S. Goldberg, S. Halevi, A. D. Jaggard, V. Ramachandran, and
R. N. Wright. Rationality and Traffic Attraction: Incentives
for Honest Path Announcements in BGP. In Proc. ACM
SIGCOMM, pp. 267–278, Aug. 2008.

[8] T. G. Griffin, A. D. Jaggard, and V. Ramachandran. Design
Principles of Policy Languages for Path Vector Protocols. In
Proc. ACM SIGCOMM, pp. 61–72, Aug. 2003.

[9] T. G. Griffin, F. B. Shepherd, and G. Wilfong. The Stable
Paths Problem and Interdomain Routing. IEEE/ACM Trans.
Net., 10(2):232–243, Apr. 2002.

[10] T. G. Griffin and J. L. Sobrinho. Metarouting. In Proc. ACM
SIGCOMM’05, pp. 1–12, Aug. 2005.

[11] A. D. Jaggard, V. Ramachandran, and R. N. Wright. The
Impact of Communication Models on Routing-Algorithm
Convergence. DIMACS Tech. Rep. 2008–06, Nov. 2008.

[12] H. Levin, M. Schapira, and A. Zohar. Interdomain Routing
and Games. In Proc. STOC, pp. 57–66, May 2008.

[13] N. A. Lynch. Distributed Algorithms. Morgan Kaufmann
Publishers, 1996.

[14] Y. Rekhter, T. Li, and S. Hares. A Border Gateway Protocol
4 (BGP–4). RFC 4271, Jan. 2006.

[15] J. L. Sobrinho. An Algebraic Theory of Dynamic Network
Routing. IEEE/ACM Trans. Net., 13(5):1160–1173, Oct.
2005.

[16] K. Varadhan, R. Govindan, and D. Estrin. Persistent route os-
cillations in inter-domain routing. Comp. Networks, 32(1):1–
16, Jan. 2000.

