
Private Multiparty Sampling and
Approximation of Vector Combinations

Yuval Ishai1, Tal Malkin2, Martin J. Strauss3, and Rebecca N. Wright4

1 Computer Science Dept., Technion, Haifa 32000 Israel.
2 Dept. of Computer Science, Columbia University, New York, NY 10025 USA.

3 Depts. of Math and EECS, University of Michigan, Ann Arbor, MI 48109 USA.
4 Computer Science Dept., Stevens Institute of Technology, Hoboken, NJ 07030 USA.

Abstract. We consider the problem of private efficient data mining of
vertically-partitioned databases. Each of several parties holds a column
of a data matrix (a vector) and the parties want to investigate the com-
ponentwise combination of their vectors. The parties want to minimize
communication and local computation while guaranteeing privacy in the
sense that no party learns more than necessary. Sublinear-communication
private protocols have been primarily been studied only in the two-party
case. We give efficient multiparty protocols for sampling a row of the
data matrix and for computing arbitrary functions of a row, where the
row index is additively shared among two or more parties. We also give
protocols for approximating the componentwise sum, minimum, or max-
imum of the columns in which the communication and the number of
public-key operations are at most polynomial in the size of the small
approximation and polylogarithmic in the number of rows.

1 Introduction

There are many real-life scenarios in which several mutually distrusting entities
(e.g., credit agencies, hospitals, or network carriers) have a common interest in
obtaining useful summaries of their combined data. For instance, the parties
may want to learn basic statistics on the combined data, measure the amount
of similarity between their inputs, or detect irregularities or fraud by means of
identifying major discrepancies in common entries.

In our setting, each of M parties P1, . . . , PM has a length-N (column) vector,
denoted xm for Pm as a private input. For some M -ary function f , the parties
want to compute a length-N vector y whose n’th component yn is given by
f(x1

n, x2
n, . . . , xM

n ). We write this as y = f(x) and call y a combination of the
parties’ inputs. Examples of combination functions are the identity function
(where an M -ary identity function simply returns its M inputs as outputs), or
the sum function (that returns the sum of its M inputs).

If N is small, general secure multiparty computation [17, 18] can be used
efficiently. We provide solutions that are efficient even when N (and therefore y)
is very large. We aim for solutions with local computation at most polynomial
in N and M and communication at most polynomial in M and log(N). Towards

In Proceedings of the 34th International Colloquium on Automata, Languages
and Programming (ICALP 2007), July 9–13, 2007.



this end, we provide solutions in which the parties do not compute y, but rather
some moderately sized “approximation” or “summary” of it. In the non-private
setting, there is a rich body of work demonstrating that communication com-
plexity can be dramatically improved by using an approximate solution that
allows a small error probability (e.g., [1, 22, 16, 4, 8]). Generally, however, these
existing approximations are not private, meaning that some of the parties may
learn more than what follows from their inputs and outputs.

Useful approximations that the parties may wish to compute include a sample
of components in y or a known transform of y such as the Fourier transform; sta-
tistical summaries of y, such as a norm of y; an approximate reconstruction of y,
such as a piecewise-constant approximation with error nearly optimal according
to some norm; and a succinct data structure to which one can pose queries about
y. As a concrete class of examples, we focus on the quantity ‖y‖a = (

∑
n ya

n)1/a,
which we call a norm of y and denote by `a. (Technically, it is only a norm for
certain values of a.) One can regard a norm of y as an approximation to the
vector y. A useful special case is the problem of multiparty set intersection size.
The parties have subsets A1, A2, . . . , AM of a known universe of size N and we
want to compute |

⋂
m Am|. (In this case the vector combination function f is the

bitwise-AND, namely y = f(x1, . . . , xM ) =
∧

m xm, and the output the parties
seek is ‖y‖1 =

∑
n yn.) Even in the two-party case and without any privacy

requirements, it is impossible to achieve a constant multiplicative approxima-
tion with a sublinear amount of communication. We thus settle for an additive
approximation, up to an error of ±εN .

Our Results. We present communication-efficient solutions to a large class of
useful special cases of efficient private distributed computation. Our results also
have useful consequences for the general theory of secure multiparty computa-
tion with sublinear communication and highlight some qualitatively interesting
differences between the two-party and the multiparty case.

Specifically, we show solutions to two multiparty problems: private multi-
party sampling (Section 3) and private approximation of vector combinations
(Section 4). Our private multiparty sampling solution uses two-party private
information retrieval (PIR) as a building block. Private multiparty sampling it-
self is a useful tool in a wide range of private approximation scenarios, such
as communication-efficient multiparty approximations of set intersection and of
the `2-norm of the sum of M input vectors. For private approximation of vector
combinations, we consider approximations to the componentwise sum, minimum,
or maximum over M vectors of integers. In a private computation setting, this
problem is usually not interesting in the two-party case, as the input vector of
one party together with the output vector allows her to determine most (if not
all) of the other party’s input. However, when there is a larger number of parties,
this problem becomes natural.

In the full version of the paper, we also discuss some interesting consequences
of our results to the general problem of reducing sublinear-communication secure
multiparty computation to two-party PIR.

2



Related Work. The approach of constructing secure sublinear-communication
protocols was initiated in the context of private information retrieval [6] and
further studied both in other specific contexts (e.g., [24]) and in more general
settings [27]. Freedman et al. [13] give an efficient two-party protocol for approx-
imating the size of an intersection of sets from a universe of size N with additive
error small compared with N . That is, they compute the AND of x1

n and x2
n at

some random position n unknown to the parties. Our results in Section 3 can
be regarded as a generalization of this result to more than two parties and to
functions other than the AND of bits. Indyk and Woodruff [20] give a two-party,
polylog-communication private protocol for approximating the `2-norm of the
difference (or sum) of vector inputs. Our results of Section 3 can be used to
extend their result to more than two parties.

Naor and Nissim [27] present a general compiler of any two-party protocol
into a private protocol which preserves the communication, up to polynomial
factors. This compiler, however, generally requires an exponential amount of lo-
cal computation and thus it is not directly useful for the approximation problems
we consider. Nevertheless, for the classes of functions for which their compilation
technique efficiently applies, our results of Section 3 can be used to efficiently
generalize their protocols from two parties to more than two parties providing
security against any subset of the parties.

2 Background

2.1 Privacy

When mutually suspicious parties conduct a computation on their joint data,
they want to guarantee that the privacy of their inputs is protected, in the sense
that the protocol leaks nothing more than necessary about their inputs. In our
context, where the computed output of the parties is an approximation g(y) of
a combination vector y = f(x), we consider two types of privacy guarantee.

Privacy with respect to the output. This is the traditional privacy guar-
antee for secure multiparty computation [5, 17] of output g(f(x)) from inputs
x. Given a functionality mapping the parties’ inputs to (possibly randomized)
outputs, the requirement is that no set of parties can learn anything about the
inputs of other parties from protocol messages beyond their own inputs and
outputs. In our setting, this privacy guarantee is the desired one in applications
where the parties are willing to disclose the result g(f(x)) but do not want to
reveal any other information.

Privacy with respect to the combination vector. This kind of guaran-
tee, introduced in [12], is “privacy of approximations.” A protocol is a private
approximation protocol for f if its output is (with high probability) a good ap-
proximation1 for the exact output of f , and moreover each set of parties learn
1 In this paper, we do not insist on a specific notion of approximation, such as additive

or multiplicative one. Instead, we accept whatever function g the parties want to

3



nothing additional from protocol messages (including the actual output of the
protocol) beyond their own inputs and the ideal output, f(x). Stated in our
context, while the output of the protocol is g(f(x)), the privacy guarantee is
that nothing is leaked that doesn’t follow from f(x). This is a weaker privacy
guarantee (which admits much more efficient results in some cases). This is ap-
propriate in applications where the parties do not mind disclosing f(x), but do
not want any further information leaked.

Adversary model. All of our protocols are computationally private against a
non-adaptive, semi-honest (passive) adversary corrupting an arbitrary subset of
the M parties. Naor and Nissim [27] showed how to upgrade security in the semi-
honest model into security in the malicious model with a low communication
overhead. Thus, from a theoretical point of view, our solutions can be modified to
provide security in the malicious model while remaining communication-efficient.
From a more practical point of view, most of our protocols provide reasonable
security guarantees against malicious adversaries even without modification. In
particular, the highly efficient protocols in Section 4 are fully private against a
malicious adversary in the sense that it cannot learn more about the inputs of
uncorrupted parties than is allowed in an ideal function evaluation.

2.2 PIR and oblivious transfer

We make use of private information retrieval (PIR) and oblivious transfer (OT).
A PIR protocol allows a receiver to retrieve an item from a large database held by
a sender without revealing which item she is after, and while using only a small
amount of communication [6, 23]. A symmetric PIR (SPIR) protocol [15, 28], or
sublinear-communication oblivious transfer [30, 11], further guarantees that the
receiver cannot learn more than a single entry of the database. Any PIR pro-
tocol can be used (in a black-box way) to obtain an OT protocol with similar
communication complexity [28, 9]. The communication complexity of PIR and
OT on a database containing N short entries (say, bits) can made as small as
O(N ε) for an arbitrary constant ε > 0, assuming that a homomorphic encryp-
tion scheme exists [23, 31, 26], or even polylogarithmic in N under more specific
assumptions [3, 25, 14]. In the following, when referring to OT (and its variants)
we always assume the communication to be sublinear in N .

3 Private Multiparty Sampling

In this section, we consider the challenge of extending a private sampling tech-
nique that lies in the core of previous two-party private approximation proto-
cols [12, 13, 20], to the multiparty setting. Private multiparty sampling allows M
parties, each holding a database xm, to privately obtain f(x1

r, . . . , x
M
r ) where f

compute as a useful approximation of f , and focus on guaranteeing privacy of the
protocol. For example, statistical summaries such as the norm of the vector are often
used as an approximation of a vector.

4



is some fixed M -argument functionality (say, exclusive-or) and r is an index of
a random entry that should remain secret.

When there is no restriction on communication complexity, a private mul-
tiparty sampling protocol can be constructed by making a black-box use of an
arbitrary OT protocol, as follows from general techniques for secure multiparty
computation [18, 19, 21]. Interestingly, such a construction becomes more chal-
lenging to obtain in the domain of sublinear-communication protocols. Further,
this difficulty does not arise in the two-party setting and only seems to crop up
when there are three or more parties. Indeed, a simple black-box construction of
two-party private sampling from an arbitrary OT protocol (alternatively, PIR)
is given in [12]. This construction maintains the communication complexity of
the underlying OT protocol.2 Thus, sublinear-communication OT (alternatively,
PIR) can be used as a black box to realize sublinear-communication two-party
private sampling. We do not know whether the same is true in the multiparty
setting; this is an interesting question left open by our work.

Instead, we present a private multiparty sampling protocol that makes black-
box use of PIR but it relies on the assumption that the underlying PIR protocol
has only a single round of interaction (which is the case for almost all PIR
protocols from the literature). The round complexity of our protocol is linear
in the number of parties. In the full version of this paper, we also show how to
implement private multiparty sampling with non-black-box use of an underlying
PIR primitive. Although this is less efficient, it can be based on an arbitrary
PIR protocol (even one using multiple rounds) and can yield a constant-round
protocol (assuming that the PIR protocol is).

Private multiparty sampling can be used as a building block in a wide range
of private approximation scenarios. For instance, it can be used in a straightfor-
ward way to obtain communication-efficient approximations for multiparty set
intersection. Generalizing a two-party protocol of [13], if we let f be the bitwise
AND function, the intersection size can be efficiently approximated (up to a small
additive error) by making multiple invocations of the sampling primitive and
outputting the fraction of 1’s in the outputs. Private sampling can also be used,
following the two-party techniques of [20], to obtain polylog-communication pri-
vate approximation of the `2-norm of the sum of the M inputs.

3.1 Oblivious Transfer with Distributed Receiver

Towards implementing private multiparty sampling, we introduce and study a
distributed variant of oblivious transfer which is of independent interest. (This
primitive can be used as a basic building block for sublinear-communication mul-
tiparty protocols, generalizing the protocol compiler from [27] to the multiparty
case. Details are omitted due to space.)

2 The protocol from [12] is described for the special case where f is the exclusive-or
function but can be generalized (as was done in [13, 20]) to arbitrary functions f .
Our discussion is quite insensitive to the particular choice of f and in fact applies
also to the simpler “distributed OT” primitive defined in Section 3.1.

5



In distributed OT, the role of the receiver is distributed between M parties.
(A very different variant of distributed OT was considered in [29].) Specifically,
a large database x of N entries is held by a distinguished party, say P1, who
functions as a sender. The entries of the database are indexed by some finite
group of size N , which is taken to be ZN by default. The index n of the entry
to be retrieved is distributed between the M parties in an additive way. That
is, n =

∑M
m=1 nm, where each nm is a local input of Pm and addition is taken

over the underlying group. At the end of the protocol, some distinguished party,
say PM , should learn the selected entry xn. More formally, we define distributed-
receiver oblivious transfer (or distributed OT for short) as an (M − 1)-private
protocol for the following M -party functionality.

Definition 1 (Functionality DistOTG). Let G be a finite group of size N . The
functionality DistOTG is defined as follows:

– Inputs: Each party m, 1 ≤ m ≤ M , holds a group element nm ∈ G. The first
party P1 additionally holds a database x = (xn)n∈G.

– The last party PM outputs xn1+...+nM
. Other parties have no output.

3.2 Private Multiparty Sampling from Distributed OT

We now present efficient black-box construction of private multiparty sampling
protocols from distributed OT. We start by formally defining the sampling func-
tionality induced by f .

Definition 2 (Functionality Sample-f). Let f be an M -party functionality.
(The functionality f is a deterministic or randomized mapping from M inputs
to M outputs.) The randomized functionality Sample-f is defined as follows:

– Inputs: Each party m, 1 ≤ m ≤ M , holds a database xm = (xm
n )n∈[N ].

– The functionality picks a secret, uniformly random index r ∈ [N ] and outputs
f(x1

r, x
2
r, . . . , x

M
r ).

We start by handling the easier case where f is the identity function, out-
putting the concatenation of its M inputs. We denote the resulting sampling
functionality by Sample-ID. In this case, we can use the following reduction to
DistOTG where G is an arbitrary group of size N . In the following, we arbitrarily
identify elements of G with indices in [N ].

Reducing Sample-ID to DistOT

1. Each party Pm picks a random group element rm ∈R G.
2. In parallel, the parties make M calls to DistOT, where in call i party Pi acts

as sender with database xi and every party Pm (including Pi) lets nm = rm.
As a result, party PM obtains the values xm

r1+...+rM
for 1 ≤ m ≤ M and

sends them to all parties.
3. Each party outputs the M values received from PM .

6



The correctness and privacy of the above reduction are straightforward to verify.
We now turn to the question of obtaining Sample-f from DistOT, for a general

functionality f . We start by observing that Sample-f can be efficiently reduced to
a simpler (randomized) functionality Sample-AS, where AS (for “additive shar-
ing”) outputs an M -tuple of strings that are random subject to the restriction
that their exclusive-or is the concatenation of the M inputs.

Proposition 1. For any polynomial-time computable M -argument function f
there is a constant-round black-box (M − 1)-private reduction of Sample-f to
Sample-AS and 1-out-of-2 OT.

Proof (sketch): The reduction proceeds by first invoking Sample-AS to ob-
tain an additively shared representation of the inputs to f , and then running
a general-purpose constant-round protocol (based on OT) to compute f from
these shares. For the latter one can use the protocol of Beaver et al. [2].

In the above reduction, the OT primitive could be dispensed with, as it can be
implemented from Sample-AS (using [9]).

Given the above, it suffices to reduce Sample-AS to Sample-ID. For simplicity,
we restrict the attention to the case where each entry of a database xm is a single
bit. (The general case of `-bit entries can be handled analogously.) A natural
approach that comes to mind is to let each party Pm mask every bit of xm

with a random bit bm, invoke Sample-ID on the resulting masked databases, and
then use a private computation of a (randomized) linear function to convert the
masked entries xm

r ⊕ bm together with the masks bm into the required additive
sharing. This approach fails for the following reason: an adversary corrupting
Pm can learn both xm

r ⊕ bm (from the output of Sample-ID) and the mask bm,
which together reveal xm

r and thus (together with xm) give partial information
about r. This is not allowed by the ideal functionality Sample-AS. Other variants
of this approach fail for similar reasons.

To avoid the above problem, we must generate the masks in a completely
distributed way. We achieve this by using DistOT over the group G′ = G× Z2:

Reducing Sample-AS to DistOT

1. Each party Pm prepares an extended database (x′)m of size 2N such that
for each n′ = (n, b) ∈ G′ we have (x′)m

n′ = xm
n ⊕ b. In addition, each Pm picks

a random group element rm ∈R G and M random bits bm,m′ , 1 ≤ m′ ≤ M .
2. In parallel, the parties make M calls to DistOTG′ . In call i party Pi acts

as sender with database (x′)i and every party Pm (including Pi) lets n′m =
(rm, bm,i). As a result, party PM obtains the values (x′)m

(r1,b1,m)+...+(rM ,bM,m) =
xm

r1+...+rM
⊕ (b1,m ⊕ b2,m ⊕ · · · ⊕ bM,m) for 1 ≤ m ≤ M .

3. Each party Pm, m < M , outputs the M -tuple (bm,1, bm,2, . . . , bm,M ). For
m = M , party PM outputs the exclusive-or of this M -tuple with the M -
tuple obtained in Step 2 above.

Proposition 2. The reduction described above is an (M − 1)-private black-box
reduction from Sample-AS to DistOT. Moreover, the reduction is totally non-
interactive.

7



Combining Propositions 1 and 2 yields an efficient black-box reduction from
Sample-f to DistOT.

3.3 Implementing Distributed OT

It remains to implement DistOT. We mainly focus on general constructions based
on 1-out-of-n OT (equivalently, PIR [28, 9]). For n ∈ G, we use x <<G n to denote
the database x′ obtained from x by applying the permutation induced by adding
n to each index. That is, x′n′ = xn′+n, where addition is in the group G. Note
that in the default case where G = ZN , the notation “<<” corresponds to the
usual notation of a cyclic shift to the left. When there is no ambiguity or when
the choice of the group does not matter, we omit the group subscript.

A black-box construction of DistOT using one-round OT

A one-round OT can be specified by a randomized query algorithm Q(n, ρ)
(where ρ is the receiver’s secret randomness), an answering algorithm A(x, q)
and a reconstruction algorithm R(a, ρ). (The security parameter k is implicit in
this notation.) The reduction proceeds as follows. Each party Pm sends an OT
query pointing to its input nm to the sender P1. Each such query can be used to
“obliviously shift” the database x by the amount nm; more precisely, the n-th
entry of a shifted database y is simply the answer to the OT query on y << n. The
result of each such oblivious shift may be viewed as being encrypted using the
key owned by the originator of the OT query. At the end of the M − 1 oblivious
shifts, the sender holds an (M−1)-iterated encryption of x << (

∑M
m=1 nm)−n1.

The (n1)-th entry xn1+...+nM
can be recovered by passing its iterated encryption

between the parties, letting each peel off its own layer of encryption using the
OT reconstruction function. (See Figure 1.)

1. Each party Pm, m > 1, picks an OT query qm = Q(nm, ρm), and sends it
to P1.

2. P1 initializes aM+1 := x.
3. For i = M downto 2, party P1 lets ai be a database of N entries defined

by ai
n = A(ai+1 <<G ni, qi). It then sends b1 = a2

n1 to P2.
4. For i = 2 to M − 1, party Pi lets bi = R(bi−1, ρi) and sends bi to Pi+1.
5. Party PM outputs bM = R(bM−1, ρM ).

Fig. 1. A black-box reduction of DistOT to one-round OT.

Proposition 3. The reduction described in Figure 1 is (M − 1)-private.

Proof (sketch): Correctness is easy to verify. For privacy, we briefly sketch a
formal construction of a simulator. The simulator is given the inputs of corrupted
parties and, possibly, the output xn1+...+nM

. It simulates the message sequence bi

8



by iteratively applying the OT simulator starting from either the actual output
(if PM is corrupted) or a default output otherwise. The output of each iteration
is used for the next iteration, along with either an actual input ni (if Pi is
corrupted) or a default input (if Pi is uncorrupted). This simulation process
produces all messages bi along with the local inputs ρi, qi in reverse order.

The complexity of the above reduction depends on the number of parties
M and the relation between the size `′ of the answers of the OT protocol to
the length of the database entries `. Ideally, we have `′ = ` + k · polylog(N),
where k is the security parameter. (Such an OT protocol can be based on the
Damg̊ard-Jurik encryption scheme [10, 25].) In this case, the complexity of the
resulting DistOT protocol (on top of the length of the OT queries) is ` + Mk ·
polylog(N). Thus, the protocol can be applied also for non-constant M . When
the number of parties M is viewed as constant, the DistOT protocol can be made
communication-efficient even if, say, `′ = poly(`, k) ·N0.9. (By “communication-
efficient,” we mean that the dependence on N can be reduced to poly(`, k) ·N ε

for an arbitrary ε > 0.) Such an OT protocol can be based on an arbitrary
homomorphic encryption scheme [23, 31].

4 Private Approximation of Vector Combinations

In this section, towards further reducing the communication complexity, we con-
sider as approximation functions any of a wide array of natural “summary”
functions of the combined data vector y (e.g., the `2-norm or an approximate
t-term Fourier representation). Specifically, we consider M ≥ 3 parties holding
length-N vectors x1, . . . , xm who, ideally, want to compute (and are willing to
disclose to the other parties) the componentwise sum y =

∑
m xm of their vec-

tors or the componentwise minimum y =
∧

m xm of their vectors. The actual
output computed is an approximate size-t summary Y for y (e.g., the `2-norm,
or an approximate t-term Fourier representation).

We exploit the fact that the entire (long) vector y may be leaked in order
to obtain simple private protocols for the above problems, in which the com-
munication and the number of public-key operations are at most polynomial in
the size of the small approximation and polylogarithmic in N . In contrast, most
previous protocols for sublinear-communication secure approximation (including
the results of Section 3) require roughly as many public-key operations as the
size of the entire database (given the current state of the art of PIR).

4.1 Vector Sums

Proposition 4. Suppose parties P1, P2, . . . , PM hold length-N vectors x1, x2,
. . . , xM . Let y =

∑
m xm be the componentwise sum. There is a protocol for

generating a Gaussian random variable with mean zero and variance
∑

n y2
n that

leaks (to any subset of the parties) no more than y, requires local computation
NMO(1), communication MO(1), and O(1) rounds of interaction.

9



Proof: If each component rn of a vector r is a unit normal random variable,
then

∑
n rnyn is a Gaussian random variable Y with mean zero and variance

equal to our desired value,
∑

n y2
n. In particular, Y together with r leak nothing

else about the inputs xm beyond what is implied by their sum y. The sum∑
n rnyn can in turn be computed by first letting each party compute a local

sum sm =
∑

n rnxm
n and then using a standard (M − 1)-private protocol for

adding up the M (short) integers sm. The protocol is described in Figure 2.
The communication of the protocol in Figure 2 is as claimed, because the

secure-sum protocol is applied to M numbers sm, and not length-N vectors.

Sketch Sum

1. The parties agree on pseudorandom Gaussian random vector r in the clear.
2. Party m receives vector xm as input.
3. The parties individually compute sketches sm =

P
n rnxm

n .
4. The parties use a secure-sum sub-protocol to compute

P
m sm =P

m

P
n rnxm

n =
P

n rn

P
m xm

n =
P

n rnyn, where y =
P

m xm is the
componentwise sum of the parties’ input vectors.

Fig. 2. A protocol for computing an additive sketch.

Sketch Min

1. The parties agree on pseudorandom exponential random vector r in the
clear.

2. Party m receives vector xm as input.
3. The parties individually compute sketches sm =

V
n rnxm

n .
4. The parties use a secure sub-protocol to compute

V
m sm =V

m

V
n rnxm

n =
V

n rn

V
m xm

n =
V

n rnyn, where y =
V

m xm is the com-
ponentwise minimum of the parties’ input vectors.

Fig. 3. A protocol for computing a minimum sketch.

4.2 Vector Minima

We generalize the above protocol to the componentwise minimum instead of
sum. Also, instead of approximating the quantity

∑
n y2

n, we approximate the
harmonic mean, or its inverse,

∑
n y−1

n . See, e.g., [7] for example uses in algo-
rithms of estimating the parameter of an exponential random variable.

Proposition 5. Suppose parties P1, P2, . . . , PM hold length-N positive-valued
vectors x1, x2, . . . , xM . Let y =

∧
m xm be the componentwise minimum. There is

10



a protocol for generating an exponential random variable with parameter
(∑

n y−1
n

)
that leaks (to any subset of the parties) no more than y, requires local computa-
tion NMO(1), communication MO(1), and O(1) rounds of interaction.

Proof: It is known that, if each component rn of a vector r is a unit expo-
nential random variable, then

∑
n rnyn is an exponential random variable Y

with parameter equal to our desired value of
∑

n y−1
n . In particular, Y together

with r leak no more than y. The parties use the protocol of Figure 3. The sub-
problem for which a secure protocol is needed is computing the minimum of M
short integers, for which efficient (M − 1)-private protocols exist (e.g., using the
general-purpose constant-round protocol of [2]).

Acknowledgments

Yuval Ishai was supported by grants 36/03 and 1310/06 from the Israel Science
Foundation; Tal Malkin by NSF grant CCF-0347839; Martin Strauss by NSF
grants DMS-0510203 and DMS-0354600; and Rebecca Wright by NSF grant
CCR-0331584. We thank Stillian Stoev for helpful discussions.

References

1. N. Alon, P. Gibbons, Y. Matias, and M. Szegedy. Tracking join and self-join
sizes in limited storage. In Proc. Eighteenth ACM SIGACT-SIGMOD-SIGART
Symposium on Principles of Database Systems, pages 10–20, 1999.

2. D. Beaver, S. Micali, and P. Rogaway. The round complexity of secure protocols.
In Proc. 22th ACM STOC, pages 503–513, 1990.

3. C. Cachin, S. Micali, and M. Stadler. Computationally private information retrieval
with polylogarithmic communication. In Advances in Cryptology — EUROCRYPT
’99, LNCS 1592, pages 404–414. Springer-Verlag, 1999.

4. E. Candès, J. Romberg, and T. Tao. Robust uncertainty principles: Exact signal
reconstruction from highly incomplete frequency information. IEEE Transactions
on Information Theory, 52(2):489–509, 2006.

5. R. Canetti. Security and composition of multiparty cryptographic protocols. J.
Cryptology, 13(1):143–202, 2000.

6. B. Chor, O. Goldreich, E. Kushilevitz, and M. Sudan. Private information retrieval.
In Proc. 36th IEEE FOCS, pages 41–50, 1995.

7. E. Cohen. Size-estimation framework with applications to transitive closure and
reachability. J. Computer and System Sciences, 55(3):441–453, 1997.

8. G. Cormode and S. Muthukrishnan. Estimating dominance norms of multiple data
streams. In Proc. 11’th European Symposium on Algorithms, pages 148–160, 2003.

9. G. Di Crescenzo, T. Malkin, and R. Ostrovsky. Single database private information
retrieval implies oblivious transfer. In Advances in Cryptology — EUROCRYPT
’00, pages 122–138, 2000.

10. I. Damgard and M. Jurik. A generalisation, a simplification and some applications
of paillier’s probabilistic public-key system. Public Key Cryptography, pages 119–
136, 2001.

11. S. Even, O. Goldreich, and A. Lempel. A randomized protocol for signing contracts.
Communications of the ACM, 28:637–647, 1985.

11



12. J. Feigenbaum, Y. Ishai, T. Malkin, K. Nissim, M. Strauss, and R. Wright. Secure
multiparty computation of approximations. ACM Transactions on Algorithms,
2(3):435–472, 2005. An earlier version of this paper appeared in ICALP 2001.

13. M. Freedman, K. Nissim, and B. Pinkas. Efficient private matching and set inter-
section. In Advances in Cryptology — EUROCRYPT ’04, LNCS 3027, pages 1–19.
Springer-Verlag, 2004.

14. C. Gentry and Z. Ramzan. Single-database private information retrieval with
constant communication rate. In Proc. 32nd ICALP, pages 803–815, 2005.

15. Y. Gertner, Y. Ishai, E. Kushilevitz, and T. Malkin. Protecting data privacy in pri-
vate information retrieval schemes. J. Computer and System Sciences, 60(3):592–
692, 2000. A preliminary version appeared in 30th STOC, 1998.

16. A. Gilbert, S. Guha, P. Indyk, Y. Kotidis, S. Muthukrishnan, and M. Strauss.
Fast, small-space algorithms for approximate histogram maintenance. In Proc.
34th ACM STOC, pages 389–398, 2002.

17. O. Goldreich. Secure multi-party computation (working draft, version 1.1). avail-
able at http://philby.ucsd.edu/cryptolib/BOOKS/oded-sc.html, 1998.

18. O. Goldreich, S. Micali, and A. Wigderson. How to play ANY mental game. In
Proc. 19th ACM STOC, pages 218–229. ACM Press, 1987.

19. O. Goldreich and R. Vainish. How to solve any protocol problem—an efficiency
improvement. In Advances in Cryptology — CRYPTO ’87, pages 73–86, 1987.

20. P. Indyk and D. Woodruff. Private polylogarithmic approximations and efficient
matching. In Proc. 3rd Theory of Cryptography Conference, LNCS 3876, pages
245–264, 2006.

21. Joe Killian. Founding cryptography on oblivious transfer. In Proc. 20th ACM
STOC, pages 20–31, 1988.

22. E. Kushilevitz and Y. Mansour. Learning decision trees using the fourier sprectrum.
In Proc. 23th ACM STOC, pages 455–464, 1991.

23. E. Kushilevitz and R. Ostrovsky. Replication is NOT needed: SINGLE database,
computationally-private information retrieval. In Proc. 38th IEEE FOCS, pages
364–373, 1997.

24. Y. Lindell and B. Pinkas. Privacy preserving data mining. J. Cryptology, 15(3):177–
206, 2002. An earlier version appeared in Proc. Crypto 2000.

25. H. Lipmaa. An oblivious transfer protocol with log-squared communication. In
the 8th Information Security Conference (ISC’05), volume 3650 of LNCS, pages
314–328. Springer-Verlag, 2005.

26. E. Mann. Private access to distributed information. Master’s thesis, Technion -
Israel Institute of Technology, Haifa,, 1998.

27. M. Naor and K. Nissim. Communication preserving protocols for secure function
evaluation. In Proc. 33th ACM STOC, pages 590–599, 2001.

28. M. Naor and B. Pinkas. Oblivious transfer and polynomial evaluation. In Proc.
31st ACM STOC, pages 245–254. ACM Press, 1999.

29. M. Naor and B. Pinkas. Distributed oblivious transfer. In Proc. ASIACRYPT,
2000.

30. M. O. Rabin. How to exchange secrets by oblivious transfer. Technical Report
TR-81, Aiken Computation Laboratory, Harvard University, 1981.

31. J. P. Stern. A new and efficient all-or-nothing disclosure of secrets protocol. In
Advances in Cryptology — ASIACRYPT ’98, LNCS 1514, pages 357–371. Springer-
Verlag, 1998.

12


