
Privacy-Preserving Queries on Encrypted Data⋆

Zhiqiang Yang1, Sheng Zhong2, and Rebecca N. Wright1

1 Computer Science Department, Stevens Institute of Technology, Hoboken, NJ
07030 USA

2 Computer Science and Engineering Department, SUNY Buffalo, Amherst, NY
14260 USA

Abstract. Data confidentiality is a major concern in database systems.
Encryption is a useful tool for protecting the confidentiality of sensitive
data. However, when data is encrypted, performing queries becomes more
challenging. In this paper, we study efficient and provably secure methods
for queries on encrypted data stored in an outsourced database that
may be susceptible to compromise. Specifically, we show that, in our
system, even if an intruder breaks into the database and observes some
interactions between the database and its users, he only learns very little
about the data stored in the database and the queries performed on the
data.
Our work consists of several components. First, we consider databases
in which each attribute has a finite domain and give a basic solution
for certain kinds of queries on such databases. Then, we present two en-
hanced solutions, one with a stronger security guarantee and the other
with accelerated queries. In addition to providing proofs of our security
guarantees, we provide empirical performance evaluations. Our experi-
ments demonstrate that our solutions are fast on large-sized real data.

1 Introduction

As anyone who reads newspapers is aware, there have been a staggering number
of data breaches reported in the last two years. Some of the largest of these re-
vealed sensitive information of millions of individuals. For example, in June 2005,
names and credit card numbers of more than 40 million MasterCard cardhold-
ers were exposed [12]. In May 2006, disks containing the names, social security
numbers, and dates of birth of more than 26 million United States veterans were
stolen from the home of an employee of the Department of Veterans Affairs [29].
In the wrong hands, this kind of sensitive information can be to carry out iden-
tity theft and other fraudulent activities that harm the individuals involved and
have a large cost to society.

Techniques such as access control, intrusion detection, and policies about
how data is to be used attempt to prevent such thefts and intrusion. However,
existing techniques cannot ensure that a database is fully immune to intrusion
and unauthorized access.
⋆ This work was supported by the National Science Foundation under Grant No. CCR-

0331584.

In Proceedings of the 11th European Symposium On Research In Computer
Security (Esorics), 2006.

Encryption is a well-studied technique to protect sensitive data [13] so that
even if a database is compromised by an intruder, data remains protected even
in the event that a database is successfully attacked or stolen. Provided that the
encryption is done properly and the decryption keys are not also accessible to
the attacker, encryption can provide protection to the individuals whose sensitive
data is stored in the databases, reduce the legal liability of the data owners, and
reduce the cost to society of fraud and identity theft.

While encrypting the data provides important protection, encrypted data is
much less convenient to use encrypted data than to use cleartext data. Specif-
ically, in a database that stores encrypted data, how can queries be processed?
If a database user fully trusts the database server, she can simply send the en-
cryption key to the database server together with her query. However, because
the database may be compromised at some point during such an interaction,
revealing the key to the database server is at the risk of leaking all sensitive
data to an intruder. Theoretically, if efficiency was not a concern, a user could
retrieve all encrypted tables from the database, decrypt the tables, and then per-
form queries on the cleartext tables. However, this is clearly impractical when
we take efficiency into consideration.

In this paper, we investigate efficient methods for processing queries on en-
crypted data in such a way that the data remains secure even if the database
server may be compromised at some point by an intruder. Such methods are
very useful in strengthening the protection of sensitive data in databases.

1.1 Related Work

Various methods have been proposed recently for securing databases in various
settings [7, 27, 30, 22, 25, 21]. In particular, encryption is an important technique
to protect sensitive data [13]. An analysis of how to encrypt and securely store
data in relational database management systems has been given in [24]. Rec-
ognizing the importance of encryption techniques, some database vendors have
included encryption functionality in their products [1, 2]. By considering different
privacy policies for different data records, Hippocratic databases, which combine
privacy policies with sensitive data, are very useful in preventing unauthorized
users from accessing sensitive data [3].

With data stored in an encrypted form, a crucial question is how to per-
form queries. Hacigumus et al. [19] studied querying encrypted data in the
database-as-service (DAS) model where sensitive data is outsourced to an un-
trusted server [20]. Their solution divides attribute domains into partitions and
maps partitions ids to random numbers to achieve privacy. This idea is simple,
practical, and elegant. However, it relies on an implicit tradeoff between privacy
and efficiency. Specifically, if the partitions are larger, then less information is
leaked, but the database server needs to send more false positives (i.e., data that
should not have been in the results of queries) to the user. If the partitions are
smaller, then the database server needs to send fewer false positives, but more
information is leaked. (This issue is further explored in [23].) Furthermore, no
precise quantifications are given of either of the information leak relative to the

2

size of partitions or of the amount of communication overhead. In comparison,
the solutions we provide in this paper do not have such a tradeoff; our solutions
enjoy strong privacy without wasting communication resources on false positives;
our security guarantee is precisely quantified using a cryptographic measure. An-
other issue is that, although the partition ids in [19] can be used for indexing
to speed up queries, such an index can incur inference and linking attacks as is
pointed out in [11]. In comparison, our solution in Section 5 speeds up queries
using metadata without introducing any additional information leakage.

Agrawal et al. [4] propose a solution for range queries on numerical data that
allows convenient indexing. Their solution is built on an encoding that preserves
the order of the numerical data in each column. Consequently, if a database
intruder observes the encrypted data, he learns the order of all cells in every
column, which is a significant amount of information. They give no rigorous
analysis quantifying the information leak of their solution. In comparison, in
this paper we show that our solutions reveal only a small amount (as quantified
in later sections) of information to a potential intruder.

In the scenario considered in [4, 24], the adversary is modeled to have access
to the data storage and has no access to the transmitted messages between the
users and the database. In the setting of DAS model [19], since the database
server is untrusted, the server itself is a potential adversary who tries to breach
the data privacy. The server has access to all encrypted data and all the trans-
mitted messages between the users and the server. In this sense, the server has
the strongest power to breach data privacy. In comparison, we model that the
adversary can have access to all encrypted data in the server, and he also can
monitor some transmitted messages (up to t queries) between the server and the
users. We give the details of the attack (or adversary) model in Section 2.1, and
we also prove the security properties of our solutions under the adversary model.

The study of “search on encrypted data” is closely related to our work.
Specifically, Song, Wagner, and Perrig [28] propose practical techniques for find-
ing keywords in encrypted files, which allow a user, when given a trapdoor for
a keyword, to check the existence of the key word in a file. But their solution
needs to scan the entire file sequentially and no provably secure index tech-
nique is provided. A follow-up by Chang and Mitzenmacher [9] has interesting
analysis but their solution is restricted to searching for a keyword chosen from
a pre-determined set. Boneh et al. present a searchable public key scheme [6];
the scenario they considered is analogous to that of [28] but uses public-key
encryption rather than symmetric-key encryption. In the same scenario, Goh
demonstrates a method for secure indexes using Bloom filters [15]. These solu-
tions are possibly useful in searching for keywords in a file; however, it is unclear
how to apply them to the problem of efficiently querying encrypted relational
databases. Yet another piece of related work is by Feigenbaum et al. [14], in
which an encryption scheme was proposed to efficiently retrieve tuples from a
look-up dictionary by using hash functions. The basic idea is that a tuple can
only be retrieved if a valid key is provided.

3

In contrast to the goals of our work, private information retrieval [10, 8, 26]
is designed to hide entirely from the database which queries a user is making.
As we discuss later, we take a more pragmatic view that allows more efficient
solutions.

1.2 Our Contributions

In this paper, we address the problem of performing queries on an encrypted
database. We consider a pragmatic notion of privacy that trades off a small
amount of privacy for a gain in efficiency. Specifically, in our solutions all data is
stored and processed in its encrypted form. We note that given any solution that
returns a response to a query to the user consisting of precisely the encryptions
in the database of the items that match the query, this solution leaks the location
of the returned cells to an attacker with access to the database. Similarly, even
if a solution were to return different encryptions of the matching items, if the
database is able to access only those cells, then the location of those cells is
revealed. In order to admit the most efficient solutions, we therefore consider
this information to be the “minimum information revelation,” as described in
more detail in Section 2. We allow solutions that leak this minimum information
revelation, while we seek to prevent leakage of any additional information.

The contributions of this paper can be summarized as follows.

– We present a basic solution for simple queries (Section 3). We give a rigorous
security analysis to show that, beyond the minimum information revelation,
our solution only reveals very little information, namely which attributes are
tested in the “where” condition. Our security guarantee is quantitative and
cryptographically strong.

– We present a solution with enhanced security (Section 4). We show that, for
a broad class of tables, this solution reveals nothing beyond the minimum
information revelation.

– We present a solution that adds metadata to further speed up queries (Sec-
tion 5).

– Compared with previous solutions, an advantage of our schemes is that a
database user does not need to maintain a large amount of confidential in-
formation (like the partitioning ids in [19] or the large keys in [4]). In our
schemes, a user only needs to store several secret keys that amount to at
most tens of bytes. Thus the storage overhead on the user side is negligible.

2 Technical Preliminaries

We consider a system as illustrated in Figure 1. In this system, data is encrypted
and stored in tables. In the front end, when the user has a query, the query is
translated to one or more messages that are sent to the database. Upon receiving
the message(s), the database finds the appropriate encrypted cells and returns
them to the front end. Finally, the front end decrypts the received cells. For

4

ease of presentation, we do not distinguish the human user from the front end
program; when we say “user,” we mean the human user plus the front end
program.

Encrypted tables and

metadata

Front end
Database server

Query

translator

Secret keys

 Result

 decryptor

Translated queries

Plain queries

User
Encrypted results Results

Fig. 1. Overall architecture

2.1 Trust and Attack Model

In this paper, we focus on the possibility that an intruder might successfully
attack the database server. The goal of our work is that an intruder who has
complete access to the database server for some time should learn very little
about the data stored in the database and the queries performed on the data.
Our trust and attack model is as follows:

1. We do not fully trust the database server because it may be vulnerable to
intrusion. Furthermore, we assume that, once a database intruder breaks into
the database, he can observe not only the encrypted data in the database,
but can also control the whole database system for a time interval. During
the time interval, a number of query messages sent by the user, as well as the
database’s processing of these queries, can be observed by the intruder. We
note that assumption that an intruder can only control the whole database
system for only a bounded time period is reasonable, for example, in the
setting that a database administrator can physically reset the database server
from time to time or when intrusions are detected.

2. We assume the communication channel between the user and the database
is secure, as there exist standard protocols to secure it—e.g., SSL and IPsec.
We also trust the user’s front-end program; protecting the front-end program
against intrusion is outside of the scope of this paper.

3. We require all data and metadata, including user logs and scheme metadata,
to be stored encrypted. (Otherwise, these may open the door for intruders.)

2.2 Table and queries

We consider a database represented by a table T and we discuss queries per-
formed on T . Suppose that T has n rows (i.e., n records) and m columns (i.e.,

5

m attributes). We denote by Ti,j the cell at the intersection of the ith row and
the jth column; we also refer to (i, j) as the coordinates of the cell. We denote
the ith row by Ti. Each attribute of the table has a finite domain. For the jth
attribute Aj , we denote the domain by Dj .

As we have mentioned, we store our tables in an encrypted form. More pre-
cisely, for a table T , we store an encrypted table T ′ in the database, where each
T ′

i,j is an encryption of Ti,j . Without loss of generality, we assume that each cell
Ti,j of the plaintext table is a bitstring of exactly k1 bits—that is, ∀j ∈ [1, m],
Dj ⊆ {0, 1}k1. (We can always encode any value of an attribute as a sufficiently
long bitstring.) When we encrypt a cell, the encryption algorithm appends a
random string of k2 bits to the plaintext.3 Hence, the input to the encryption
algorithm is a k0-bit string, where k0 = k1 + k2. For simplicity (and following
the practice of most symmetric encryption schemes), we assume the output of
the encryption algorithm and the encryption key are k0-bit strings as well. We
therefore note that k0 should be chosen to be long enough to resist brute-force
key search attacks.

Suppose that a user intends to perform a query Q on the table T . As discussed
earlier, in this paper, in order to allow solutions that are as efficient as possible,
we consider query protocols that return to the user precisely the set of encrypted
cells stored in the database that satisfy the condition of the query, with the same
encryptions as in T ′. We call such query protocols precise query protocols. Denote
by R(Q) the set of coordinates of the cells satisfying the condition of query Q—
i.e., the cells satisfying the condition of query Q are {T ′

i,j : (i, j) ∈ R(Q)}.
Clearly, in any precise query protocol, if there is a database intrusion of the
type discussed in Section 2.1, then R(Q) is always revealed to the intruder. This
is because the intruder can simply check T ′ to see which encrypted cells are in the
returned result. Therefore, we say R(Q) is the minimum information revelation
of query Q. We allow solutions that reveal this minimum information revelation;
we seek solutions that do not yield any additional information.

2.3 Privacy-Preserving Queries

We give a cryptographic definition of privacy-preserving query protocols. In par-
ticular, we consider that an intruder may observe up to t queries Q1, . . . , Qt,
where t is a polynomially bounded function of k0. We quantify the information
leaked by the protocol using a random variable α. Specifically, we say the protocol
only reveals α beyond the minimum information revelation if, after these queries
are processed, what the database intruder has observed can be simulated by a
probabilistic polynomial-time algorithm using only α, R(Q), and the encrypted
table. For simplicity, we only provide here a definition of a privacy-preserving
one-round query protocol. It is straightforward to extend this definition to multi-
round query protocols.

3 As explained in more detail in Section 3, the purpose of using a random string is
that multiple occurrences of a plaintext should lead to different ciphertexts.

6

Definition 1. (Privacy-Preserving Query) A one-round query protocol reveals
only α beyond the minimum information revelation if for any polynomial poly()
and all sufficiently large k0, there exists a probabilistic polynomial-time algorithm
S (called a simulator) such that for any t < poly(k0), any polynomial-size circuit
family {Ak0

}, any polynomial p(), and any Q1, . . . , Qt,

|Pr[Ak0
(Q1, . . . , Qt, q1, . . . , qt, T

′) = 1]−

Pr[Ak0
(Q1, . . . , Qt,S(α, R(Q1), . . . , R(Qt), T

′)) = 1]| < 1/p(k0).

A query protocol is ideally private if it reveals nothing beyond the minimum
information revelation.

The above definition can be viewed as an adaptation of the definition of
secure protocol in the semi-honest model (i.e., assuming the intruder does not
modify the database software but attempts to violate data privacy by analyzing
what he observes) [17]. However, note that a secure one-round query protocol as
defined here remains secure even in the case the intruder is fully malicious (i.e.,
even when the intruder modifies the database software such that the database
deviates from the protocol). The reason is that the the database’s behavior does
not affect the user’s behavior in this case.

3 Basic Solution

In this section, we give a basic solution for queries of the format “select . . . from
T where Aj = v,” where v ∈ Dj is a constant. We provide rigorous cryptographic
specifications and proofs.

3.1 Solution Overview

Our basic idea is to encode each cell in a special redundant form. Specifically,
for each cell Ti,j , the encrypted cell T ′

i,j = (T ′
i,j〈1〉, T

′
i,j〈2〉) has two parts. The

first part T ′
i,j〈1〉, is a simple encryption of Ti,j using a block cipher E(); the

second part, T ′
i,j〈2〉, is a “checksum” that, together with the first part, enables

the database to check whether this cell satisfies the condition of the query or
not. T ′

i,j〈1〉 and T ′
i,j〈2〉 satisfy a secret equation determined by the value of Ti,j .

When the database is given the equation corresponding to value v, it can easily
check whether a cell satisfies the condition or not by substituting the two parts
of the encrypted cell into the equation.

The remaining question is what equation to use as the secret equation. We
use the following simple equation:

Ef(Ti,j)(T
′
i,j〈1〉) = T ′

i,j〈2〉,

where f is a function. When the user has a query with condition Aj = v, she
only needs to send f(v) to the database so that the database can check, for each
i, whether

Ef(v)(T
′
i,j〈1〉) = T ′

i,j〈2〉

7

holds. It should be infeasible to derive v from f(v) because otherwise an intruder
learns v when observing f(v). To achieve this goal, we define f(·) to be an en-
cryption of v using the block cipher E(·). Additional care needs to be taken when
we use the block cipher E. As previously mentioned, we append a random string
to Ti,j before applying E to obtain T ′

i,j〈1〉; this is done in order to prevent the
database from being able to determine whether two cells have the same contents.
Additionally, in order to avoid having the same f(v) for different attributes, we
append j to f(v) before applying E.

3.2 Solution Details

Data Format. Let E(·) be a symmetric encryption algorithm whose key space,
plaintext space, and ciphertext space are all {0, 1}k0. We often use the notation
ES(M1, M2) to denote a message (M1, M2) encrypted using secret key S, where
M1 (resp., M2) is either a k1-bit (resp., k2-bit) string. We denote the corre-
sponding decryption algorithm by D, and we assume that the key generation
algorithm simply picks a uniformly random key from the key space {0, 1}k0.

To create the table T in the database, the user first picks two secret keys
s1, s2 from {0, 1}k0 independently and uniformly. The user keeps s1, s2 secret.
For each cell Ti,j , the user picks ri,j from {0, 1}k2 uniformly at random and
stores

T ′(i, j)
△
= (T ′(i, j)〈1〉, T ′(i, j)〈2〉)

= (Es1
(Ti,j , ri,j), EEs2

(Ti,j ,j)(Es1
(Ti,j , ri,j)))

Query Protocol. Denote by Aj the jth attribute of T . Suppose there is a query
select Aj1 ,. . . , Ajℓ

from T where Aj0 = v. To carry out this query, the user
computes q = Es2

(v, j0) and sends j0, q, and (j1, . . . , jℓ) to the database.
For i = 1, . . . , n, the database tests whether T ′

i,j0
〈2〉 = Eq(T

′
i,j0

〈1〉) holds. For
any i such that the above equation holds, the database returns T ′

i,j1
〈1〉, . . . , T ′

i,jℓ
〈1〉

to the user. The user decrypts each received cell using secret key s1 and discards
the k2-bit tail of the cleartext.

In our scheme, note that each encrypted cell with the same plaintext value
has a different encryption. Thus if an intruder breaks into the database and sees
the encrypted table, he cannot tell whether two cells have the same plaintext
value or not.

3.3 Security Analysis

We can prove the security of our scheme by using standard cryptographic tech-
niques. Recall that for security we need to consider t queries. Suppose the
uth query (1 ≤ u ≤ t) is of the format “select Aju,1

,. . . , Aju,ℓ
from T where

Aju,0
= vu.” We show that our basic solution only reveals j1,0, . . . , jt,0 beyond

the minimum information revelation. That is, the only extra information leakage
by the basic solution is which attributes are tested in the “where” conditions.

8

The security of our scheme derives from the security of the block cipher
we use. In cryptography, secure block ciphers are modeled as pseudorandom
permutations [18]. Here, encryption key of the block cipher is the random seed
for the pseudorandom permutation. For each value of the key, the mapping from
the cleartext blocks to the ciphertext blocks is the permutation indexed by the
value of the seed. In the following theorem, we assume the block cipher we use
satisfies this security requirement.

Theorem 1. If the block cipher E is a pseudorandom permutation (with the
encryption key as the random seed), the basic protocol reveals only j1,0, . . . , jt,0

beyond the minimum information revelation.

Proof. We construct a simulator S as follows. First, let R1(Qu) = {i : (i, j) ∈
R(Qu)} and R2(Qu) = {j : (i, j) ∈ R(Qu)}. Then, for any u ∈ {1, · · · , t}, if
there exists u′ < u such that ju,0 = ju′,0 and that R1(Qu) = R1(Qu′), S sets
qu = qu′ . otherwise, S chooses qu from {0, 1}k0 − {qu′ : u′ < u ∧ ju,0 = ju′,0}
uniformly at random. Next, for i = 1 through n and j = 1 through m, S chooses
T ′

i,j〈1〉 uniformly and independently from {0, 1}k0. For u = 1 through t, for
each i ∈ R1(Qu), S computes

T ′
i,ju,0

〈2〉 = Equ
(T ′

i,ju,0
〈1〉).

For any pair (i, j) for which T ′
i,j〈2〉 has not been defined, S chooses T ′

i,j〈2〉
from {0, 1}k0 uniformly and independently. Finally, S outputs q1, . . . , qt, T ′.
The indistinguishability by polynomial-size algorithms follows from the pseudo-
randomness of E.

In this setting, even if the intruder has access to the whole database, the
intruder can learn nothing about the encrypted data. By combining j1,0, · · · , jt,o

with the minimum information revelation, an intruder can derive some statistical
information about the underlying data or the queries (Theorem 1 does catch this
case). In Section 4, we present a solution that leaks less information to make such
attacks more difficult.

3.4 Performance Evaluations

To evaluate the efficiency of our basic solution in practice, we implemented the
basic solution. Our experiments use the Nursery dataset from the UCI machine
learning repository [5]. The Nursery dataset is a table with eight categorical
attributes and one class attribute. There are 12,960 records in total. The total
number of data cells is about 100, 000. The only change we made to the Nursery
dataset is that we added an ID attribute to the Nursery dataset so that the table
would have a primary key.

Because the time spent on communication is highly dependent on the network
bandwidth, we focus on the computational overhead and ignore the communica-
tion overhead. The experimental environment is the NetBSD operating system
running on an AMD Athlon 2GHz processors with 512M memory. For the block

9

0

4

8

12

16

20

Query 1 Query 2 Query 3 Query 4

Q
u

e
ry

 t
im

e
 (

s
e
c
o

n
d

s
)

Server time Client time

Fig. 2. Query time in the basic solution

cipher, we use the Blowfish symmetric encryption algorithm with a 64-bit block
size (i.e., k0 = 64).

Clearly, the overhead to encrypt a database is linear in the size of the
database. Specifically, in our experiments it took only 25 seconds to encrypt
the entire Nursery dataset. On average, encrypting a single record requires only
0.25 milliseconds. Figure 2 shows the time consumed by four SELECT queries.
Those queries are SELECT ∗ FROM Nursery WHERE Parent=usual, WHERE
Class=recommend, WHERE Class=very recom and WHERE Class=priority.

For each query, the database server needs almost the same amount of time for
computation (about 16 seconds). The user’s computational time depends on the
number of returned records from the database. In the first query, only 2 records
are returned, and so the computational time by the user is extremely small.
In contrast, the last two queries return 4320 and 3266 records, respectively.
Therefore, the computational time of the user in each of these two queries is
about 4 seconds.

4 Solution with Enhanced Security

In this section, we enhance the security of the basic solution so that the query
protocol reveals less information. For a broad class of tables, we can show our
solution with enhanced security is ideally private.

4.1 Solution Overview

Recall that the basic solution reveals which attributes are tested in the “where”
conditions. Our goal is to hide this information (or at least part of this informa-
tion). A straightforward way for doing this is to randomly permute the attributes
in the encrypted table, in order to make it difficult for a database intruder to
determine which attributes are tested.

10

There remains the question of which distribution to use for the random per-
mutation. If the distribution has a large probability mass on some specific per-
mutations, then the intruder can guess the permutation with a good probability.
So the ideal distribution is the uniform distribution. However, if the permutation
is chosen uniformly from all permutations of the attributes, the user needs to
“memorize” where each attribute is after the permutation. When the number of
attributes is large, this is a heavy burden for the user. To eliminate this problem,
we use a pseudorandom permutation, which is by definition indistinguishable
from a uniformly random permutation [16]. The advantage of this approach is
that it requires the user to memorize the random seed.

In fact, we note that we do not need to permute all the attributes in the
encrypted table. For each (i, j), we can keep T ′

i,j〈1〉 as defined in the basic
solution; we only need to permute the equations satisfied by T ′

i,j〈1〉 and T ′
i,j〈2〉

because only these equations are tested when there is a query. Specifically, the
equation satisfied by T ′

i,j〈1〉 and T ′
i,j〈2〉 is no longer decided by the value Ti,j ;

instead, it is decided by Ti,πS(j), where πS() is a pseudorandom permutation.
Consequently, when there is a query whose condition involves attribute Aj , the
database actually tests an equation on attribute Aπ

−1

S
(j).

4.2 Solution Details

Data Format. Let πS() be a pseudorandom permutation on {1, · · · , m} for a
uniformly random seed S ∈ {0, 1}k0. To store the table T in the database, the
user first picks secret keys s1, s2, s

′
2 from {0, 1}k0 independently and uniformly.

The user keeps s1, s2, and s′2 secret. For each cell Ti,j , the user picks ri,j from
{0, 1}k2 uniformly at random, computes ̂ = πs′

2
(j) and stores

T ′(i, j)
△
= (T ′(i, j)〈1〉, T ′(i, j)〈2〉)

= (Es1
(Ti,j , ri,j), EEs2

(Ti,̂,j)(Es1
(Ti,j , ri,j))),

Query Protocol. Suppose there is a query select Aj1 ,. . . ,Ajℓ
from T where Aj0 =

v. To carry out this query, the user computes j′0 = π−1
s′

2

(j0) and q = Es2
(v, j′0),

then sends j′0, q, (j1, . . . , jℓ) to the database.
For i = 1, . . . , n, the database tests whether T ′

i,j′
0

〈2〉 = Eq(T
′
i,j′

0

〈1〉) holds. For

any i such that the above equation holds, the database returns T ′
i,j1

〈1〉, . . . , T ′
i,jℓ

〈1〉
to the user. The user decrypts each received cell using secret key s1 and discards
the k2-bit tail of the cleartext.

4.3 Security Analysis

Again, recall that for security we need to consider t queries, where the uth query
(1 ≤ u ≤ t) is of the format “select Aju,1

,. . . , Aju,ℓ
from T where Aju,0

= vu.”
We introduce a new variable that represents whether two queries involve testing
the same attribute: for u, u′ ∈ [1, t], we define

ǫu,u′ =

{

1 if ju,0 = ju′,0

0 otherwise.

11

Using this new variable, we can quantify the security guarantee of our solution
with enhanced security. Furthermore, we are able to show that our solution with
enhanced security becomes ideally private if the table belongs to a broad class,
which we call the non-coinciding tables. Intuitively, a table is non-coinciding if
any two queries that test different attributes do not have exactly the same result.
More formally, we have the following.

Definition 2. A table T is non-coinciding if for any j 6= j′, any v ∈ Aj, v′ ∈
Aj′ ,

{i : Ti,j = v} 6= {i : Ti,j′ = v′}.

Theorem 2. Suppose that the block cipher E() is a pseudorandom permutation
(with the encryption key as the random seed). Then the query protocol with
enhanced security reveals only ǫu,u′ for u, u′ ∈ [1, j]. When the table T is non-
coinciding, the query protocol with enhanced security is ideally private.

Proof. We construct a simulator S as follows. First, recall that R1(Qu) = {i :
(i, j) ∈ R(Qu)} and R2(Qu) = {j : (i, j) ∈ R(Qu)}. For u = 1 through t, if
there exists u′ < u such that ǫu,u′ = 1 and that R1(Qu) = R1(Qu′), S sets
qu = qu′ and j′u,0 = j′u′,0; if there exists u′ < u such that ǫu,u′ = 1 and that

R1(Qu) 6= R1(Qu′), S chooses qu from {0, 1}k0 − {qu′ : u′ < u ∧ ǫu,u′ = 1}
uniformly at random and sets j′u,0 = j′u′,0; otherwise, S chooses qu from {0, 1}k0

uniformly at random, and j′u,0 from [1, m]−{j′u′,0 : u′ < u} uniformly at random.

Next, for i = 1 through n and j = 1 through m, S chooses T ′
i,j〈1〉 uniformly

and independently from {0, 1}k0. For u = 1 through t, for each i ∈ R1(Qu), S
computes

T ′
i,j′

u,0
〈2〉 = Equ

(T ′
i,j′

u,0
〈1〉).

For each pair (i, j) such that T ′
i,j〈2〉 has not been defined, S chooses T ′

i,j〈2〉
from {0, 1}k0 uniformly and independently. Finally, S outputs q1, . . . , qt, T ′. The
indistinguishability by polynomial-size circuits follows from the pseudorandom-
ness of E().

When T is non-coinciding, in the above proof we can replace ǫu,u′ = 1 with
R1(Qu) = R1(Qu′). Because these two conditions are equivalent, this replace-
ment does not change the output of the simulator. On the other hand, because
ǫu,u′ is no longer needed by the simulator, we have shown the protocol is ideally
private.

5 Query Speedup Using Metadata

In the two solutions we have presented, performing a query on the encrypted
table requires testing each row of the table. Clearly, this is very inefficient in
large-size databases. In this section, we consider a modification to the basic so-
lution that drastically speeds up queries. It is easy to make a similar modification
to the solution with enhanced security.

12

5.1 Solution Overview

We can significantly improve the efficiency if we are able to replace the sequential
search in the basic solution with a binary search. However, our basic solution
finds the appropriate rows by testing an equation, while a binary search cannot
be used to find the items that satisfy an equation.

To sidestep this difficulty, we add some metadata to eliminate the need for
testing an equation4. Specifically, for each cell in the column, we add a tag and
a link. The tag is decided by the value of the cell; the link points to the cell.
We sort the metadata according to the order of the tags. When there is a query
on the attribute, the user sends the appropriate tag to the database so that the
database can perform a binary search on the tags.

We illustrate the concept with a simple example, shown in Figure 3. Consider
a column of four cells with values 977, 204, 403, 155. We compute four tag values
based on the corresponding cell values. Suppose that the tags we get are 3, 7, 4,
8. We sort the tags to get a list: 3, 4, 7, 8. After we add links to the corresponding
cells, we finally get: (3, link to cell “977”), (4, link to cell “403”), (7, link to cell

“204”), (8, link to cell “155”).

Metadata Table

977

204

403

155

3

4

7

8

Fig. 3. Example of metadata

Nevertheless, there is a question of multiple occurrences of a single value: if
multiple cells in the column have the same value, how do we choose the tags
for these cells? Clearly, we cannot use the same tag for these cells; otherwise,
when the database intruder looks at the tags, he can recognize cells with the
same value. In fact, it should be hard for the intruder to find out which tags
correspond to the same cell value. On the other hand, it should be easy for the
user to derive the entire set of tags corresponding to a single value.

We resolve this dilemma using a two-step mapping. In the first step, we
map a cell value Ti,j to an intermediate value Hi,j whose range is much larger.
Then the Hi,j ’s are sparse in their range, which means around each value of
Hi,j there is typically a large “blank” space. Consequently, to represent multiple

4 The functionality of these metadata is analogous to indices in traditional database
systems—to help speed up queries. However, since the structure and usage of these
metadata are different from that of traditional indices (e.g., B+-trees), we do not
call them indices. Note that indices like B+-trees cannot be used in our scenario.

13

occurrences of the same cell value Ti,j , we can use multiple points starting from
Hi,j . In the second step, we map these intermediate points to tags such that
the continuous intermediate points become random-looking tags. See Figure 4
for an illustration. In our design, the first step of mapping (from the cell value

Cell

values
1

st
, 2

nd
 and 3

rd

occurrences of the

same cell value

Intermediate

points

Tags

Fig. 4. Two-step mapping from cell values to tags

to the intermediate value) is implemented using an encryption of the cell value
(appended with a k2-bit 0 so that the input to the cipher is k0 bits), where
the encryption key is kept by the user. The second step of mapping (from the
intermediate value to the tag) is implemented using another encryption, where
the key is again kept by the user. Since the database intruder does not know the
two encryption keys, he cannot figure out which cell value corresponds to which
tag, or which of the tags correspond to the same cell value. On the other hand,
when there is a query, the user can simply send the database the tags for the
cell value in the query; then the database can easily locate the rows satisfying
the condition of this query.

Note that, for the convenience of queries, we should keep a counter of the
occurrences of each cell value; otherwise, when the user has a query, he can-
not know how many intermediate values (and thus how many tags) he should
compute. Clearly such counters should be encrypted and stored in the database,
where the encryption key is kept by the user. Each encrypted counter should be
kept together with the corresponding intermediate value (of the first occurrence
of the cell value), so that it can be identified by the user. When the database
intruder observes encrypted metadata, he does not know which cell value cor-
responds to which intermediate value and therefore does not know which cell
value corresponds to the encrypted counter.

5.2 Solution Details

Metadata Format. To speed up queries on attribute Aj , the user picks keys
s3, s4, s5 ∈ {0, 1}k0 independently and uniformly. For i = 1, . . . , n, the user
computes

Hi,j = Es3
(Ti,j , 0).

14

For each value of each attribute, the user keeps a counter of the number of
occurrences. If this is the ci,jth occurrence of the value Ti,j in the attribute Aj ,
the user computes

Ii,j = Es4
((Hi,j + ci,j) mod 2k0).

When Ii,j ’s have been computed for all i’s, suppose the final value of the counter
is cj(v) for each value v. Then the user encrypts cj(v) using secret key k5:

Cj(v) = Ek5
(cj(v), 0).

The user stores L = {(Ii,j , link to row T ′
i)}i∈[1,n] and

B
△
= {(Bx〈1〉, Bx〈2〉)}x∈[1, |{Ti,j :i∈[1,n]}|]

= {(Es3
(v, 0), Cj(v))}v∈{Ti,j :i∈[1,n]}

in the database as metadata for queries on attribute Aj . Note that L should be
sorted in an increasing order of Ii,j . The user keeps s3, s4, and s5 secret.

Query Protocol. Now suppose there is a query select Aj1 ,. . . , Ajℓ
from T where

Aj = v. To carry out this query, the user first computes h = Es3
(v, 0) and

sends h to the database. The database finds x such that Bx〈1〉 = h and sends
the corresponding C = Bx〈2〉 back to the user. The user then decrypts C (and
discards the k2-bit tail) to get cj(v), the overall number of occurrences of v. For
c = 1, . . . , cj(v), the user computes

Ic = Es4
((h + c) mod 2k0),

and sends Ic to the database. Since L is sorted in the increasing order of Ic,
the database can easily locate Ic and find the link corresponding to Ic. For
each row T ′

i pointed by these links, the database sends the encrypted cells
T ′

i,j1
〈1〉, . . . , T ′

i,jℓ
〈1〉 to the user. Finally, the user decrypts each received cell

using secret key s1 and discards the k2-bit tail of the cleartext.

5.3 Performance Evaluation

To evaluate the speedup of our solution, we measured the query time on the
same dataset used for testing the basic solution. Figure 5 compares the metadata
generation time for four different attributes: ClassLabel, Finance, Parents, and
ID. The metadata generation time depends on not only the number of rows in
the table, but also the domain size of the attribute (more precisely, the number
of the different values that actually appear in the attribute). In the attributes we
experimented with, ClassLabel, Finance, and Parents have small domain sizes;
the metadata generation time for each of them is about 6 seconds. In contrast,
generating metadata on ID attribute needs about twice as much time because is
the ID attribute has a large domain.

Figure 6 compares the query time of the basic solution and that of the solution
with metadata. with the following four queries that are to select all records

15

0

4

8

12

Class Label Finance Parents ID

T
im

e
 (

s
e
c
o

n
d

s
)

Fig. 5. Computational time to generate metadata

where Class=recommend, where Class=very recom, where Parent=usual, and
where ID=1000. The results of the first and the fourth queries have only 2 and 1
record, respectively. For such queries, the solution with metadata is so fast that
the query time can hardly be seen in the figure. The other two queries have more
records in their results: the second query has 328 records in its result and our
solution with metadata saves about 94% of the query time; the third query has
4320 records in its result and our solution with metadata saves about 79% of
the query time. Clearly, the trend is that the solution with metadata gains more
in efficiency if there are fewer records in the query result. However, even for a
query with a large number of records in the result, the solution with metadata
is much faster than the basic solution.

0

4

8

12

16

20

Query 1 Query 2 Query 3 Query 4

Q
u

e
ry

 t
im

e
 (

s
e
c
o

n
d

s
)

With metadata Without metadata

Fig. 6. Query time: solution with metadata vs. basic solution

16

6 Conclusions

In this paper, we have investigated privacy-preserving queries on encrypted data.
In particular, we present privacy-preserving protocols for certain types of queries.
Although the supported queries are limited, our main goal in this paper is to
provide rigorous, quantitative (and cryptographically strong) security.

We note that, in general, it is difficult to evaluate the correctness and security
of a new design if no quantitative analysis of information leakage is given. It is
therefore beneficial to introduce quantitative measures of privacy such as those
we have introduced. It is our hope that these measures may be useful elsewhere.

For many practical database applications, more complex queries than those
considered in this paper must be supported. A future research topic is to extend
the work in this paper to allow more complex queries. Ideally, the extension
should maintain strong, quantifiable security while achieving efficiency for com-
plex queries.

References

1. Oracle Corporation. Database Encryption in Oracle9i, 2001.
2. IBM Data Encryption for IMS and DB2 Databases, Version 1.1, 2003.
3. R. Agrawal, J. Kiernan, R. Srikant, and Y. Xu. Hippocratic databases. In VLDB,

2002.
4. Rakesh Agrawal, Jerry Kiernan, Ramakrishnan Srikant, and Yirong Xu. Order

preserving encryption for numeric data. In SIGMOD, 2004.
5. C. Blake and C. Merz. UCI repository, 1998.
6. D. Boneh, G. Di Crescenzo, R. Ostrovsky, and G. Persiano. Public key encryption

with keyword search. In EUROCRYPT, 2004.
7. L. Bouganim and P. Pucheral. Chip-secured data access: Confidential data on

untrusted servers. In VLDB, 2002.
8. C. Cachin, S. Micali, and M. Stadler. Computationally private information retrieval

with polylogarithmic communication. In EUROCRYPT, 1999.
9. Yan-Cheng Chang and Michael Mitzenmacher. Privacy preserving keyword

searches on remote encrypted data. Cryptology ePrint Archive:2004/051, avail-
able at http://eprint.iacr.org/2004/051.pdf.

10. Benny Chor, Oded Goldreich, Eyal Kushilevitz, and Madhu Sudan. Private infor-
mation retrieval. In FOCS, 1995.

11. Ernesto Damiani, S. De Capitani Vimercati, Sushil Jajodia, Stefano Paraboschi,
and Pierangela Samarati. Balancing confidentiality and efficiency in untrusted
relational dbmss. In CCS, 2003.

12. Eric Dash. Lost credit data improperly kept, company admits. New York Times,
June 20 2005.

13. G. I. Davida, D. L. Wells, and J. B. Kam. A database encryption system with
subkeys. ACM TODS, 6(2):312–328, 1981.

14. J. Feigenbaum, M. Y. Liberman, and R. N. Wright. Cryptographic protection of
databases and software. In DIMACS Workshop on Distributed Computing and

Cryptography, 1990.
15. E. Goh. Secure indexes. Cryptology ePrint Archive, Report 2003/216. http:

//eprint.iacr.org/2003/216/.

17

16. O. Goldreich. Foundations of Cryptography, volume 1. Cambridge University Press,
2001.

17. O. Goldreich. Foundations of Cryptography, volume 2. Cambridge University Press,
2004.

18. S. Goldwasser and M. Bellare. Lecture notes on cryptography. Summer Course
Lecture Notes at MIT, 1999.

19. Hakan Hacigumus, Balakrishna R. Iyer, Chen Li, and Sharad Mehrotra. Executing
SQL over encrypted data in the database-service-provider model. In SIGMOD,
2002.

20. Hakan Hacigumus, Balakrishna R. Iyer, and Sharad Mehrotra. Providing database
as a service. In ICDE, 2002.

21. Hakan Hacigumus, Balakrishna R. Iyer, and Sharad Mehrotra. Efficient execution
of aggregation queries over encrypted relational databases. In DASFAA, 2004.

22. J. He and J. Wang. Cryptography and relational database management systems.
In Int. Database Engineering and Application Symposium, 2001.

23. Bijit Hore, Sharad Mehrotra, and Gene Tsudik. A privacy-preserving index for
range queries. In VLDB, 2004.

24. Bala Iyer, S. Mehrotra, E. Mykletun, G. Tsudik, and Y. Wu. A framework for
efficient storage security in RDBMS. In EDBT, 2004.

25. J. Karlsson. Using encryption for secure data storage in mobile database systems.
Friedrich-Schiller-Universitat Jena, 2002.

26. E. Kushilevitz and R. Ostrovsky. Replication is not needed: Single database
computationally-private information retrieval. In FOCS, 1997.

27. Gultekin Ozsoyoglu, David Singer, and Sun Chung. Anti-tamper databases: Query-
ing encrypted databases. In Proc. of the 17th Annual IFIP WG 11.3 Working

Conference on Database and Applications Security, 2003.
28. Dawn Xiaodong Song, David Wagner, and Adrian Perrig. Practical techniques for

searches on encrypted data. In IEEE Symposium on Security and Privacy, 2000.
29. David Stout. Veterans chief voices anger on data theft. New York Times, May 25

2006.
30. R. Vingralek. A small-footprint, secure database system. In VLDB, 2002.

18

