
Privacy-Preserving Publish/Subscribe: Efficient
Protocols in a Distributed Model

Giovanni Di Crescenzo1(B), Brian Coan1, John Schultz2,
Simon Tsang1, and Rebecca N. Wright3

1 Applied Communication Sciences, Basking Ridge, NJ, USA
{gdicrescenzo,bcoan,stsang}@appcomsci.com

2 Spread Concepts, Bethesda, MD, USA
jschultz@spreadconcepts.com

3 Rutgers University, New Brunswick, NJ, USA
rebecca.wright@rutgers.edu

Abstract. We consider the problem of modeling and designing effi-
cient and privacy-preserving publish/subscribe protocols in a distributed
model where parties can act as publishers or subscribers or both, and
there are no brokers or other types of parties. The problem is particu-
larly challenging as privacy demands on such protocols come with effi-
ciency limitations; most notably, the publisher must send messages as
long as the publications to all parties, and the cryptographic techniques
to perform the publish/subscribe match need to be based on asymmetric
cryptographic operation which are known to be less efficient than their
symmetric counterpart.

Our main result is a distributed publish/subscribe protocol which
addresses and essentially nullifies the impact of both efficiency limita-
tions, without sacrificing the required privacy properties. Our construc-
tion is based on very efficient design of a novel cryptographic tool, of
independent interest, called ‘hybrid conditional oblivious transfer proto-
col’, as it resembles hybrid encryption, where asymmetric encryption is
only used to transfer a short key, which enables (much more efficient)
symmetric encryption of a long message.

1 Introduction

Publish/subscribe protocols address the problem of publishing data items to
interested participants. They come in many different formulations and varia-
tions, as well surveyed in [1]. In this paper’s formulation of the problem, a
publish/subscribe protocol can be considered a distributed protocol between
multiple participants who can, at any given time, act as subscribers (with sub-
scription keywords, called interests) or publishers (with data items and related
publication keywords, called topics). The publisher would like to distribute a
data item to the subscribers if there is a match between the data item’s topics
and a subscriber’s interests, with no help from brokers or other types of par-
ties. These protocols find applications in a large number of areas, and are of

J. Garcia-Alfaro et al. (Eds.): DPM 2013 and SETOP 2013, LNCS 8247, pp. 114–132, 2014.
DOI: 10.1007/978-3-642-54568-9 8, c© Springer-Verlag Berlin Heidelberg 2014

Privacy-Preserving Publish/Subscribe: Efficient Protocols 115

interest in essentially every area where distributed systems are used. In most
applications, however, privacy is a sensitive issue that may even deter from the
implementation or use of a publish/subscribe system. For instance, in finance,
a publish/subscribe system assisting a market maker could allow subscribers
to submit their interest in companies and publishers to issue data relative to
companies; however, by revealing company names and data from either the sub-
scribers or the publishers, it may not only impact participants’ privacy but also
significantly alter the market’s pricing process and overall integrity.

In this paper we investigate the modeling and design of distributed pub-
lish/subscribe protocols which preserve the privacy of subscribers’ interests and
of publishers’ data items and topics. We start by observing that such privacy
demands come with at least two main efficiency limitations. First, while in non-
private publish/subscribe protocols, a publisher can send data items only to
matching subscribers, this cannot happen in protocols with privacy demands,
as this would reveal the subset of matching subscribers (and thus, information
about their interests) to the publisher. In fact, we make the rather discour-
aging observation that the publisher must send a message at least as long as
the data item to each of the subscribers, regardless of whether the publication
matches their interests or not. Second, computing which subscribers are entitled
to data items can be shown, using well-known fundamental results in cryptogra-
phy [2], to require asymmetric cryptographic operations, which are well-known
to be less efficient than their symmetric counterparts, the difference being sig-
nificant in applications with high data arrival rates, which are not uncommon
publish/subscribe scenarios. In particular, general solutions from the area of
secure function evaluation protocols (e.g., [3,4]) suffer from similar inefficiency
drawbacks.

Our Contribution. We design a publish/subscribe protocol that not only
addresses the mentioned efficiency limitations, but achieves desirable privacy and
efficiency properties. Specifically, our protocol satisfies a highly desirable set of
requirements: publication correctness (i.e. subscribers obtain a data item if their
subscription predicate is satisfied by their interests and the data item’s topics),
privacy of interests (i.e., against a malicious adversary corrupting the publisher),
privacy of topics and data items (i.e., against an honest-but-curious adversary
corrupting even all the subscribers), and efficiency (i.e., the publication, which
is the real-time part of the protocol, only requires a small rate of public-key
cryptography operations per item). We overcome the two efficiency limitations
as follows: first, we perform cryptographic processing of data items only once
for all subscribers, by encrypting the data item once and distributing the key
only to matching subscribers; then, we minimize the use of asymmetric crypto-
graphic operations in distributing the encrypting key by using a novel hybrid
cryptographic primitive (i.e., starting with asymmetric cryptographic operations
and then continuing with symmetric ones for the rest of the protocol lifetime).
Specifically, our protocol uses new constructions for conditional oblivious trans-
fer (COT) protocols [5], called hybrid COT protocols, where the first execution
of such a subprotocol requires asymmetric cryptography operations, while all

116 G. Di Crescenzo et al.

remaining ones, when based on the same private inputs, do not. We prove pri-
vacy properties using a natural adaptation of the real/ideal security definition
approach (frequently used in cryptography), and show that our protocol leaks
no information to the publisher or to all subscribers. We also describe mea-
surements of the protocol’s publication latency, which, for large and practical
parameter ranges, is only a small (≤ 8) constant slower than a distributed pub-
lish/subscribe system with no privacy. Our techniques for hybrid COT protocols
can also be extended to more general conditions than equality.

Related Work. Some papers have proposed interesting publish/subscribe pro-
tocols with some security or privacy properties (e.g., [6–11]). All these papers
fall short of meeting our combined functionality and privacy requirements for a
mixture of reasons, including a different set of security and/or privacy require-
ments (i.e., they often require privacy against intermediate routing nodes or
privacy only against one party, or rely on trusted broker parties). None of these
papers proves privacy properties in a formal, cryptographic model for private
publish/subscribe protocols. Our previous paper in the area [12] proposes a solu-
tion with privacy provable in a cryptographic model but in a different participant
model (i.e., using an intermediate broker to achieve even greater efficiency). We
could not find any paper studying hybrid COT protocols; the seemingly closest
paper [13] first studied a related problem about precomputing 1-out-of-2 obliv-
ious transfer protocols, which is however different in at least 2 important ways
(i.e., it is about 1-out-of-2 oblivious transfer instead of equality-based COT, and
it performs several oblivious transfers in the preprocessing phase instead of one).
Equality-based COT protocols were already presented in [5,14–17], which how-
ever did not consider the problem of designing hybrid constructions. The COT
concept is a variant of oblivious transfer, which was first introduced by [18].

2 Models and Definitions

We detail models and definitions of interest during our investigation of private
and distributed publish/subscribe protocols: data, participant, network and pro-
tocol models and correctness, privacy and efficiency requirements.

Data Model. We consider the following data objects or structures. The data
items to be published are digital documents and are represented as binary strings
of length �d. To each data item, we associate d publication keywords, also denoted
as topics, taken from a set, called the dictionary, known to all parties, and
assumed, for simplicity, to be the set of all �t-bit strings. To each party, we
associate c subscription keywords, also denoted as interests, taken from the dic-
tionary. Moreover, each party has a public file to post information accessible
by all other participants (as for a public-key infrastructure in cryptography).
Finally, each party has a list of all other system participants. For simplicity,
length and number variables �d, �t, d, c are defined as system parameters with
value known to all parties; however, smaller values can be accommodated by
simple padding techniques. Data items and associated topics are assumed to be

Privacy-Preserving Publish/Subscribe: Efficient Protocols 117

either generated by or streamed to a publisher, at possibly high rate. Although
we target high data arrival rates, we only deal with scenarios where an execution
of the publish/subscribe protocol ends before the next data item is streamed to
a publisher. Generalizations to other data arrival scenarios are possible, but not
further discussed in this paper.

Participant and Network Model. We consider a distributed model with n+1
participants P1, . . . , Pn+1, all assumed to be efficient (i.e., running in proba-
bilistic polynomial-time in a common security parameter, denoted in unary as
1σ). Two participant roles are possible at any given time; specifically, a par-
ticipant can act as a publisher, also denoted as P , when it publishes a data
item to all other participants; or can act as a subscriber, also denoted as Si, for
i ∈ {1, . . . , n}, when it posts its interests or receives another party’s publication.
Each participant is able to communicate with all others and post on its own
public file (also implicitly defining a communication channel with all other par-
ties) . We consider a confidential and authenticated network (this assumption is
without loss of generality as parties can use a security protocol like TLS) with
no loss of transferred data or of party connectivity.

Protocol Model. A publish/subscribe protocol includes the following
subprotocols:

Init: participants P1, . . . , Pn+1, may interact and/or post messages on their pub-
lic files to initialize their data structures and/or cryptographic keys. Formally,
on input security parameter 1σ, protocol Init returns public and secret outputs
for all parties.

Subscribe: Party Pi, for i ∈ {1, . . . , n + 1}, acting as a subscriber, posts its
updated subscription (based on its latest set of interests) on its public file, with-
out interacting with any other party. Formally, on input security parameter 1σ,
a party index i ∈ {1, . . . , n + 1}, and a set of interests int1, . . . , intc, algorithm
Subscribe returns a public and a secret output, where the public output is posted
on Pi’s public file.

Publish: Party Pi, for i ∈ {1, . . . , n + 1}, acting as a publisher, distributes the
data item to the subscribers (i.e., all remaining n participants) based on the data
item’s topics and on the other participants’ subscriptions. In terms of distribution
strategy, we consider a protocol that follows the so-called ‘push mode’: as soon
as a new data item arrives, along with its topics, it is processed by the publisher
towards the subscribers. Formally, on input security parameter 1σ to all parties,
and a data item m and a set of topics top1, . . . , topd as private inputs of publisher
P , protocol Publish returns a private output for the i-th subscriber, for i ∈
{1, . . . , n+1}, which is either empty or equal to the data item m. Generalizations
to other distribution strategies, like the so-called ‘pull mode’, are possible but
not further discussed in this paper.

Requirements. We now briefly describe publication correctness, privacy and
efficiency requirements. Let σ be a security parameter. A function over the set
of natural numbers is negligible if for all sufficiently large σ ∈ N , it is smaller

118 G. Di Crescenzo et al.

than 1/p(σ), for any polynomial p. We say that a subscriber Si is entitled to data
item m if at least one of subscriber Si’s interests int1, . . . , intc is equal to any
one of the topics top1, . . . , topd associated with m. We address publish/subscribe
protocols that satisfy the following classes of requirements.

Correctness. The probability of the following two events is negligible in the secu-
rity parameter: (a) after executing Init and Subscribe, Si is entitled to m but does
not receive m as output from Publish; (b) after executing Init and Subscribe, Si

is not entitled to m but Si receives m as output from Publish. Formally, for each
data item m and associated topics top1, . . . , topd, each subscriber Si with inter-
ests int1, . . . , intc, the probability ε that, after an execution of Init on input 1σ,
an execution of Subscribe on input int1, . . . , intc, and an execution of Publish on
input m, top1, . . . , topd, one of the following two events happens, is negligible in
σ: (a) at least one of subscriber Si’s interests int1, . . . , intc is equal to at least
one of the topics top1, . . . , topd but Si’s output at the end of the publication
subprotocol is �= m; (b) at least one of subscriber Si’s interests int1, . . . , intc is
equal to at least one of the topics top1, . . . , topd but Si’s output at the end of
the publication subprotocol is = m.

Privacy: We consider two privacy requirements: against a potentially malicious
publisher, and against a coalition of honest-but-curious subscribers (i.e., sub-
scribers who follow the protocol but can perform arbitrary computation at the
end in their attempt to violate privacy properties). First, consider an efficient
and potentially malicious publisher; we require that after an execution of proto-
cols Init,Subscribe and Publish, any such participant learns no additional infor-
mation about the subscribers’ interests. Second, consider a coalition of efficient
and honest-but-curious subscribers who did not subscribe to a data item m; we
require that after an execution of protocols Init,Subscribe and Publish, any such
coalition learns no additional information about the data item or its associated
topics.

Towards a formal definition, we recall the notions of computational indistin-
guishability and participant’s view. Two distribution ensembles {D0

σ : σ ∈ N}
and {D1

σ : σ ∈ N} are computationally indistinguishable if for any efficient algo-
rithm A, the quantity |Prob[x ← D0

σ : A(x) = 1] − Prob[x ← D1
σ : A(x) = 1]|

is negligible in σ (i.e., no efficient algorithm can distinguish if a random sample
came from one distribution or the other). A participant’s view in a protocol (or
a set of protocols) is the distribution of the sequence of messages, inputs and
internal random coins seen by the participant while running the protocol (or the
set of protocols).

We use a natural adaptation of the real/ideal privacy definition framework,
which is commonly used in the cryptography literature. A formal definition for
the privacy requirement according to this framework goes, briefly speaking, as
follows. For any efficient (i.e., probabilistic polynomial time) adversary Adv cor-
rupting one of the two party types (i.e., either a publisher P or some subset
of all subscribers S1, . . . , Sn), there exists an efficient algorithm Sim (called
the simulator), such that Adv’s view in the “real world” and Sim’s output in
the “ideal world” are computationally indistinguishable, where these two worlds

Privacy-Preserving Publish/Subscribe: Efficient Protocols 119

are defined as follows. In the real world, runs of the Init subprotocol, Subscribe
algorithm and Publish subprotocol are executed, while Adv acts as the corrupted
participant(s). In the ideal world, each run of the Init subprotocol, Subscribe algo-
rithm and Publish subprotocol is replaced with an ‘ideal execution’ that does not
reveal any additional information, in addition to system parameters, inputs and
outputs intended by the publish/subscribe functionality. Thus, we define these
ideal executions of Init, Subscribe and Publish as follows:

1. Ideal-Init, on input security parameter 1σ, returns all system parameters and
a done string to all participants.

2. Ideal-Subscribe, on input a sequence of c interests int1, . . . , intc from a sub-
scriber Si, returns a done string to Si.

3. Ideal-Publish, on input a data item m and a sequence of d topics top1, . . . , topd

of known length from a publisher P , returns the data item m to each sub-
scriber Si for which at least one of Si’s interests is equal to at least one of
the topics top1, . . . , topd, and a done string to all remaining subscribers and
publisher P .

Efficiency: The protocol’s latency is measured as the time taken by a sequential
execution of subprotocol Init, algorithm Subscribe, and subprotocol Publish (as
a function of σ and other system parameters). The protocol’s communication
complexity (resp., round complexity) is defined as the length (resp., number)
of the messages, as a function of σ and other system parameters, exchanged
by publisher and subscribers during subprotocols Init,Publish. Even if we will
mainly focus our efficiency analysis on publication latency, our design targets
minimization of all the mentioned efficiency metrics.

We observe that in any protocol satisfying privacy against the publisher, the
latter cannot tell if a subscriber receives the data item or not. Because this
holds regardless of the distribution of the data item’s content, it also holds for
random data items, which cannot be compressed. We thus obtain the following

Proposition 1. In any publish/subscribe protocol in our model, satisfying pri-
vacy against the publisher, in the Publish protocol, the publisher needs to send
at least �d bits to each subscriber.

Although we have focused our formalization on the correctness, privacy and
efficiency properties, we note that our design has targeted a number of addi-
tional security properties, which are however obtained using well-known tech-
niques. Specifically, properties like confidentiality of the communication between
all participants, message sender authentication, message receiver authentication,
and communication integrity protection, can be immediately obtained by using
a security protocol like TLS.

3 Hybrid Conditional Oblivious Transfer

In this section we formally define the notion of hybrid COT protocols, and then
design one such protocol for the equality condition, under the intractability of
the Decisional Diffie-Hellman problem.

120 G. Di Crescenzo et al.

Equality Conditional Oblivious Transfer (eq-COT): Definition. Infor-
mally, an eq-COT protocol is a 2-party protocol where a sender wants to privately
transfer a message to a receiver in a way that the only leaked information is the
sender’s message when the equality predicate evaluates to 1 with private inputs
from sender and receiver. Here, we slightly adapt the formal definition from [5]
to consider the equality predicate and to more easily express the hybrid COT
definition later. Then an eq-COT protocol is a pair (Alice,Bob) of probabilis-
tic polynomial algorithms where Alice’s (respectively, Bob’s) private input is a
string xa (resp., xb); ma denotes Alice’s message, mb denotes Bob’s output at the
end of the protocol, and the following requirements hold: (Transfer Correctness)
if xa = xb then the probability that mb �= ma is negligible; if xa �= xb and ma is
uniformly distributed, then the distribution of mb is uniform and independent
from ma; (Privacy against Bob) if xa �= xb then for any efficient adversary Adv
corrupting Bob, the protocol’s communication transcript reveals no information
to Adv about ma; (Privacy against Alice) for any efficient adversary Adv cor-
rupting Alice, the protocol’s communication transcript reveals no information
to Adv about whether xa = xb or not.

Hybrid Equality Conditional Oblivious Transfer (h-eq-COT). Infor-
mally, an h-eq-COT protocol is a 2-party, 2-phase, protocol that allows Alice
to perform an eq-COT of an arbitrary number of messages to Bob, as follows. In
a first phase, called h-eq-COT protocol, asymmetric phase, Alice and Bob exe-
cute a single preliminary eq-COT of a κ-bit random symmetric key ka, based
on asymmetric cryptography techniques, where ka denotes Alice’s input and kb

denotes the key received by Bob at the end of this phase. In a second phase,
called h-eq-COT protocol, symmetric phase, Alice and Bob execute an eq-COT of
a message ma, based on symmetric cryptography techniques, where Alice takes
as input ka,ma and Bob takes as input kb and receives mb at the end of this
phase. That is, in all symmetric phase executions of the eq-COT protocol Alice
and Bob take as input the symmetric key returned at the end of the prelimi-
nary eq-COT protocol (i.e., the same key if xa = xb or random and independent
keys otherwise.) The formal definition of an h-eq-COT protocol is derived by
extending the one for an eq-COT protocol and is omitted here.

Our h-eq-COT Protocol. Similarly to almost all known efficient 1-out-of-2 oblivi-
ous transfer (OT) protocols (e.g., [16,17,19]), we base our hybrid COT protocol
on an encryption scheme with suitable malleability and/or homomorphism prop-
erties. In particular, we use the Decisional Diffie-Hellman problem [20] and its
properties, as done in El-Gamal encryption [21] and in the 1-out-of-2 OT pro-
tocol from [19], the latter is well known to have especially the latter having
desirable security and performance properties.

Informally speaking, the h-eq-COT protocol can be described as follows.
First, in the preliminary eq-COT protocol, Bob posts an asymmetric encryption
of string xb, where the encryption scheme used allows Alice to later manipulate
this encryption and transform it, without knowing xb, into an encryption of
kb = ka(xb/xa)rmod p, for some random value r, where ka is Alice’s input secret
key. In this way, if xb = xa, Bob receives an encryption of kb = ka, which he

Privacy-Preserving Publish/Subscribe: Efficient Protocols 121

can decrypt; while if xb �= xa, Bob receives an encryption of a random key
kb independently distributed from ka. More formally, this preliminary eq-COT
protocol goes as follows:

1. Using a public random source, Alice and Bob uniformly and independently
choose σ-bit primes p, q such that p − 1 is a multiple of q, a generator g for
the q-order subgroup Gq of Zp, and a random key kh ∈ {0, 1}κ that defines
an efficiently invertible map Mκ,p from {0, 1}κ to Gq

2. Bob computes x′
b = Mκ,p(kh, xb), where x′

b ∈ Gq

3. Bob randomly chooses r0, r1 ∈ Zq, computes h = gr0mod p, u = gr1mod p
and v = hr1(x′

b)mod p and sends (h, u, v) to Alice
4. Alice computes x′

a = Mκ,p(kh, xa), where x′
a ∈ Gq; randomly chooses ka ∈

{0, 1}κ and computes k′
a = Mκ,p(kh, ka), where k′

a ∈ Gq; and randomly
chooses s0, s1 ∈ Zq

5. Alice computes w = gs0us1mod p and z = hs0(v/x′
a)s1 · k′

amod p and sends
w, z to Bob

6. Bob computes k′
b = zw−r0mod p, and kb = M−1

κ,p(kh, k′
b), for kb ∈ {0, 1}κ

7. Bob returns: kb.

At any later time, to perform an eq-COT transfer of any message m, Alice
uses key ka and Bob uses key kb, and both use an arbitrary symmetric encryp-
tion scheme, denoted as (KG,E,D), where E (resp., D) is the encryption (resp.,
decryption) algorithm. Alice can just perform a symmetric encryption of data
item m based on ka and Bob would be able to decrypt the right item whenever
kb = ka, which holds whenever Alice’s private input xa is equal to Bob’s private
input xb. For efficiency purposes, we use another session key so that Bob does
not need to decrypt the (potentially long) message when the decryption is not
successful. More formally, this preliminary eq-COT protocol goes as follows:

1. Alice randomly chooses a session key skeya ∈ {0, 1}κ

2. Alice computes an encryption of message m as M = E(skeya,ma), and values
c = E(ka, skeya) and tag = E(skeya, 0κ), and sends (M, c, tag) to Bob

3. Bob computes skeyb = D(kb, c) and checks if tag = E(skeyb, 0κ);
if not, Bob returns: ⊥.
if yes, Bob computes mb = D(skeyb,M) and returns: mb.

We also designed variants of the above constructions based on [16,17], but we
omit them here, as they seemed slightly less efficient.

Properties. Building on results from [5,19,21], we obtain the following properties
for the above h-eq-COT protocol:

1. If Alice and Bob are honest, and xa = xb, then at the end of the protocol the
value mb obtained by Bob is equal to the value ma transferred by Alice.

2. If Alice is honest, and xa �= xb, then for any polynomial-time adversary
Adv corrupting Bob, at the end of the protocol, Adv learns no additional
information about Alice’s input xa or the message ma.

122 G. Di Crescenzo et al.

3. The message (h, u, v) from Bob to Alice can be efficiently simulated by return-
ing a random triple from (Gq)3, and the simulated triple is computationally
indistinguishable from the same triple in the real execution assuming the
intractability of the Decisional Diffie-Hellman problem. This implies that any
polynomial-time adversary corrupting Alice does not learn anything about
xb.

4. When xa = xb, the messages (w, z) and (M, c, tag) sent by Alice to Bob can
be efficiently simulated against an adversary corrupting Bob and having xb as
input and obtaining mb as output, and the simulation’s output is distributed
exactly as in the real execution;

5. When xa �= xb, the messages (w, z) and (M, c, tag) sent by Alice to Bob can
be efficiently simulated against an adversary corrupting Bob and having xb as
input, and the simulation’s output is computationally indistinguishable from
the same messages in the real execution, assuming the security of the used
encryption scheme (KG,E,D).

Proof of properties. We now sketch a proof of properties 1-5 of our h-eq-COT
protocol.

Proof of property 1. To see that property 1 is satisfied, we prove two facts: (a) if
Alice and Bob are honest and xa = xb then at the end of h-eq-COT, asymmetric
phase, it holds that kb = ka; (b) if Alice and Bob are honest and ka = kb then
at the end of h-eq-COT, symmetric phase, it holds that mb = ma.

To prove (a), observe that xa = xb implies x′
a = x′

b and thus

z = hs0(v/x′
a)s1 ·k′

a = hs0(hr1x′
b/x′

a)s1 ·k′
a = hs0+r1s1 ·k′

a = gr0s0+r0r1s1 ·k′
amod p.

Then we have that

w−r0 = (gs0us1)−r0mod p = g−r0s0−r0r1s1mod p,

from which we see that k′
b = zw−r0mod p = k′

a, which implies that

kb = M−1
κ,p(kh, k′

b) = M−1
κ,p(kh, k′

a) = ka.

To prove (b), observe that ka = kb implies that

skeyb = D(kb, c) = D(ka, c) = D(ka, E(ka, skeya)) = skeya

and therefore E(skeyb, 0κ) = E(skeya, 0κ) and

mb = D(skeyb,M) = D(skeya,M) = D(skeya, E(skeya,ma)) = ma.

Proof of Property 2 (Sketch). Similarly as for property 1, we can show that
when xa �= xb, for any h, u, v sent by an adversary playing as Bob, we have that
k′

b = k′
a ·(x′

b/x′
a)s1mod p, for some x′

b = vh−r1mod p. Since si is random, we have
that k′

b is random and independent from k′
a, and thus cannot be used by Adv

to obtain any information about ma or xa from the message (M, c, tag) sent by
Alice.

Privacy-Preserving Publish/Subscribe: Efficient Protocols 123

Proof of Property 3 (Sketch). This property follows by the observation that the
(u, v) is an El-Gamal encryption of x′

b and thus the well-known fact that the
tuple (g, h, u, v) is computationally indistinguishable from a random tuple from
(Gq)4.

Proof of Property 4 (Sketch). To prove this property, we now show a simulator
Sim that, when xa = xb, efficiently simulates the messages (w, z) and (M, c, tag)
sent by Alice to Bob, and using xb and mb as input, and show that the simula-
tion’s output is distributed exactly as in the real execution.

Sim generates (w, z) exactly as Alice does, with the only apparent difference
that it uses xb instead of xa. Sim can do that since it has the exact same
inputs ka and xa as Alice, and we are considering the case xa = xb. Specifically,
Sim randomly chooses s0, s1 ∈ Zq, and ka ∈ {0, 1}κ, and generates w, z as
w = gs0us1mod p and z = hs0(v/x′

b)
s1 · k′

amod p, where x′
b = Mκ,p(kh, xb) and

k′
a = Mκ,p(kh, ka).

Analogously, Sim generates (M, c, tag) exactly as Alice does, with the only
apparent difference that it uses mb instead of ma. Sim can do that since it
has the exact same inputs ka and ma as Alice, and we are considering the case
xa = xb, which implies that ma = mb.

Proof of Property 5 (Sketch). To prove this property, we now show a simulator
Sim that, when xa �= xb, efficiently simulates the messages (w, z) and (M, c, tag)
sent by Alice to Bob, using xb as input, and show that the simulation’s output is
computationally indistinguishable from the same messages in the real execution,
assuming the security of the used encryption scheme (KG,E,D).

Sim generates w, z as two random and independent values in Zp. By using
an analogue property of the oblivious transfer protocol from [19], we obtain that
the output of this simulation is equally distributed to the same pair in the real
execution.

Moreover, Sim generates (M, c, tag) as encryptions of random messages of
the same length of the messages encrypted in the real execution. By a standard
hybrid argument, this triple is computationally indistinguishable from the triple
generated in the real execution, assuming the security of the used encryption
scheme (KG,E,D).

4 A Distributed Publish/Subscribe Protocol

In this section we describe our distributed publish/subscribe protocol. We start
with a formal statement of the properties of our protocol, then discuss the known
and new cryptographic primitives used in the protocol, and give an informal
description, a detailed description, and a proof of the properties of our protocol.

Theorem 1. In the model of Sect. 2, there exists (constructively) a distributed
publish/subscribe protocol satisfying the following properties: (1) publication
correctness with error negligible in security parameter σ; (2) privacy against any
efficient adversary corrupting a publisher P , under the hardness of the Decisional

124 G. Di Crescenzo et al.

Diffie-Hellman problem; (3) privacy against any efficient and honest-but-curious
adversary corrupting an arbitrary subset of subscribers, under the security of the
symmetric encryption scheme (KG,E,D) used; (4) non-interactive subscription;
(5) one-message publication.

An important claim of our paper is that our protocol, in addition to satisfying
Theorem 1, has highly desirable publication latency. In our testing experiments
we verified that for a large domain of practical parameter values, the publication
latency of our protocol remains within a small constant factor (i.e., 8) worse
than the publication latency of a protocol performing the same functionality but
offering no privacy guarantee. An example chart for these results is described at
the end of this section.

4.1 Informal Description

Our goal is to design a distributed publish/subscribe protocol where the sub-
scription phase is non-interactive (i.e., each subscriber simply posts a message
on its public file), the publication protocol requires a single message from pub-
lisher to subscribers, and where the publisher is allowed to be malicious and
the subscribers are allowed to collude in their attempt to violate the privacy
requirements, as specified in Sect. 2.

A high-level view of our protocol can be given as follows. During the ini-
tialization subprotocol, the parties agree on common cryptographic parameters
using publicly available randomness. During the subscription phase, a subscriber
simply runs an asymmetric encryption algorithm to compute an encryption of
each one to its interests, and posts such encryptions on its public file. During
the publication phase, a publisher sends a single message to all subscribers so
that this message, combined with the instructions run by a subscriber, form a
conditional oblivious transfer of the data item to be published. Here, the condi-
tion is the subscription predicate (i.e., at least one of the subscriber’s interests
is equal to at least one of the data item’s topics). This is reduced to running,
for each (data item topic, subscriber interest) pair, an equality-COT where the
condition is equality between the data item topic and the subscriber’s interest
in this pair.

Now, a main goal in the design of our protocol is to minimize the use of asym-
metric cryptographic primitives, which are well known to be less efficient than
their symmetric counterpart. Specifically, to minimize this efficiency degradation,
we use them in a way that is reminiscent of the very practical ‘hybrid encryption’
approach, where an asymmetric encryption scheme is only used once per commu-
nication session to establish the key for a symmetric encryption scheme, and the
latter is used for all message encryptions required in the future. Then, we realize
a ‘hybrid’ equality-COT protocol where for each publisher and subscriber, the
first of such transfers for a given (data item topic, subscriber interest) pair is
performed using asymmetric primitives and all following ones for the same pair
re-use the symmetric key established during the first one, using memoization.
Then we use an hybrid equality-COT, as described in Sect. 3, which uses: (1) for

Privacy-Preserving Publish/Subscribe: Efficient Protocols 125

Publisher
(any party can be a publisher)

Subscriber
(any party can be a subscriber)

Item, topics

Send subscriber-specific hybrid (x=y)-COT answers to each subscriber

Discrete logarithm parameters, generated from
common randomness or by a designated party and send to others

Encrypt all current interests x and post
encryptions on public file. These also act as the
first message of a hybrid (x=‘topic’)-COT protocol

Generate encryption of data item; for each encryption
of interest x and all bits in publication metadata,

generate second message of hybrid (x=y)-COT
protocol if y is a topic or a random value otherwise;

recycle this transfer’s key for later use with block
cipher wrt same (interest encryption, topic) pair

If COT is successful, then decrypt data item

Init

Distributed
Publish

Distributed
Subscribe

Fig. 1. Informal description of our publish/subscribe protocol

the symmetric part, an equality-COT based on symmetric encryption; and (2)
for the asymmetric part, El-Gamal encryption [21] and a novel variant of the
most efficient known oblivious transfer protocol [19]. Using asymmetric encryp-
tion helps, among other things, avoiding low-entropy guessing attacks on the
subscribers’ interests and publisher’s topics.

An informal pictorial description of our protocol can be found in Fig. 1.

4.2 Detailed Description

We proceed with a formal description of our distributed publish/subscribe pro-
tocol (see Fig. 2 for a pictorial description).

Protocol Preliminaries: A point-to-point secure communication protocol such
as TLS is assumed to be used for all exchanged communication.

Init: In the initialization subprotocol, parties P1, . . . , Pn+1 run the following
instructions:

1. Let ρ be a sufficiently long random string available to all parties; if such a
string is not available, P1, . . . , Pn+1 run a multi-party key-agreement protocol
to generate one

2. P1, . . . , Pn+1 use ρ to generate the triple (p, q, g) as defined in the initialization
subprotocol of the h-eq-COT protocol

126 G. Di Crescenzo et al.

Publisher Subscriber

{ w,z,c : for all interests, topics}, M

ElGamal public key parameters pkp = (p, q, g)

Post {(h,u,vx) = el-gamal-encpkp (interest x):
for all interests x} on public site

M = E(k,item), c = E(kpair,k)
(w,z) = h-eq-OT-send(c, vx / (topic y)),
store kpair
reuse it later with symmetric encryption for
same (interest encryption, topic) pair

k = D(ktriple,c), item = D(k,M)

Init

Publish

Subscribe

k = h-eq-OT-receive(w,z,vx)

Item, topics

Fig. 2. Our publish/subscribe protocol

Subscribe: Recall that a subscriber Si’s subscription is formally represented as
a sequence of c interests int1, . . . , intc, for some integer c ≥ 1. To subscribe, Si

runs the following instructions:

1. For j = 1, . . . , c,
let intj denote subscriber Si’s jth interest
Si uses triple (p, q, g) to compute a value hj and an asymmetric encryption

(uj , vj) of intj , as done in h-eq-COT protocol, asymmetric phase, step 1
Si sets ipj = (hj , uj , vj)

2. Si posts (ip1, . . . , ipc) on its public file

Publish: We assume that a participant, acting as a publisher P , somehow
originates a new data item m, associated with a number d of topics. In the
Publish subprotocol, involving P and all remaining participants, acting as sub-
scribers S1, . . . , Sn, the following instructions are repeated for each subscriber
Si, i = 1, . . . , n.

1. P computes a random key kp ∈ {0, 1}κ, and an encryption of data item m as
M = E(kp,m), and sends M to Si

2. P computes tag = E(kp, 0κ), and sends tag to Si

3. For h = 1, . . . , d,
for j = 1, . . . , c,

each current interest pseudonym ipj from Ci, where j = 1, . . . , cp,
if P and Si had not yet executed the key transfer for this
(interest encryption (uj , vj), topic toph) pair,

Privacy-Preserving Publish/Subscribe: Efficient Protocols 127

P randomly chooses kpair,p ∈ {0, 1}κ

P uses the h-eq-COT protocol, asymm. phase, to transfer kpair,p to Si

let kpair,s,i be the key received by Si at the end of this subprotocol
P uses the h-eq-COT protocol, symm. phase, to transfer kp to Si,

where P uses kpair,p and Si uses kpair,s,i as additional input
let kh,j

s,i be the key received by Si at the end of this subprotocol
if P and Si had already executed the key transfer for this
(interest encryption (uj , vj), topic toph) pair,
P uses the h-eq-COT protocol, symm. phase, to transfer kp to Si,

where P uses kpair,p and Si uses kpair,s,i as additional input
let kh,j

s,i be the key received by Si at the end of this subprotocol
4. Si checks if tag = E(kh,j

s,i , 0κ) for some h ∈ {1, . . . , d} and j ∈ {1, . . . , c}
5. if yes, then Si computes m = D(kh,j

s,i ,M) for the found h, j values, and returns:
m; else Si returns: ⊥

In the rest of this section we discuss why our protocol satisfies publication cor-
rectness, privacy and efficiency properties, as defined in Sect. 2.

4.3 Properties: Correctness, Privacy and Efficiency

Publication Correctness: To prove that our protocol satisfies this require-
ment, we need to show the facts (a) and (b) as from the requirement definition.

To see that fact (a) is satisfied, assume that one of subscriber Si’s interests,
denoted as inth, is equal to one of the data item’s topics, denoted as topj . Then,
by Property 1 of the h-eq-COT protocol, when run on input topj as Alice’s input
and inth as Bob’s input, the key kh,j

s,i received by Si, when playing as Bob, is
equal to the key kp sent by P , when playing as Alice, and used to encrypt the
data item m as M . Accordingly, Si can successfully decrypt M and receive the
data item m with probability 1.

To see that fact (b) is satisfied, assume that all of subscriber Si’s interests
are different from all of the data item’s topics. Then, by Property 2 of the h-
eq-COT protocol, when run on input a topic as Alice’s input and an interest
as Bob’s input, all keys kh,j

s,i received by Si, when playing as Bob, are random
and independent from the key kp sent by P , when playing as Alice, and used
to encrypt the data item m as M . Accordingly, Si can successfully decrypt M
and receive the data item m with probability smaller than (cd)δ(σ), for some
negligible function δ, which is negligible in σ.

Privacy. Our protocol achieves privacy against an efficient and potentially mali-
cious adversary that corrupts the publisher and against an efficient and honest-
but-curious adversary that corrupts any subset of the subscribers. Accordingly,
we divide the proof of this property into these two cases. In both cases, the sim-
ulation of the Init protocol directly follows from the simulatability properties of
the key agreement protocol used (if necessary). Thus, we only focus on the sim-
ulation of the output of the Subscribe algorithm and of the Publish subprotocol.

128 G. Di Crescenzo et al.

Here, in both cases, which we now discuss, we show the existence of an efficient
simulator algorithm that simulates Adv’s view.

Adv corrupts P: In this case, the simulation mainly follows from the simulation
specified in Property 3 of our h-eq-COT protocol. Specifically, assume an efficient
adversary, denoted as Adv, corrupts the publisher P . For any such Adv, we
show a simulator Sim that produces a view for Adv in the ideal world (while
posing as P) that is computationally indistinguishable from Adv’s view in the
real world (while posing as P), during the execution of the Init, Subscribe and
Publish protocols.

To simulate Adv’s view from the subscription phase, Sim invokes the ideal
Subscribe functionality, which only returns a done string to P . Then, the mes-
sages posted by the subscribers on their public file are generated by Sim as in
the simulation specified in Property 3 of our h-eq-COT protocol.

To simulate Adv’s view in the Publish subprotocol, on input the data item
m and topics top1, . . . , topd, Sim invokes the ideal Publish functionality, which
returns a done string to P , and then runs Adv on input m, top1, . . . , topd to
obtain P ’s messages to all subscribers. If P does not return such a message,
then Sim simply halts.

The proof that Sim’s simulation in the ideal world is computationally indis-
tinguishable from Adv’s view in the real world, follows from Property 3 of our
h-eq-COT protocol, which holds under the intractability of the Decisional Diffie-
Hellman problem.

Adv Corrupts an Arbitrary Subset of Subscribers: In this case, the simulation
mainly follows from the simulation specified in Properties 4 and 5 of our h-eq-
COT protocol. Specifically, assume an efficient and honest-but-curious adversary,
denoted as Adv, corrupts a subset of subscribers, or even all of them. For any
such Adv, we show a simulator Sim that produces a view for Adv in the ideal
world (while posing as the corrupted subscribers) that is computationally indis-
tinguishable from Adv’s view in the real world. To simulate the output of the
Subscribe algorithm, given as input interests int1, . . . , intc for each corrupted
subscriber, Sim does the following. It invokes the ideal Subscribe functionality,
which only returns a done string to all subscribers. Then it invokes the corrupted
subscribers to directly obtain the message they post on their public file. Finally,
it simulates the messages posted by the uncorrupted subscribers on their public
file, exactly as done in the previous case; that is, again using the simulation
specified in Property 3 of our h-eq-COT protocol.

Finally, to simulate the Publish subprotocol, Sim invokes the ideal Publish
functionality, possibly obtaining (or not) data item m as output for the corrupted
subscribers, depending on whether at least one of the topics top1, . . . , topd is
equal to at least one of the interests int1, . . . , intc or not, for each specific sub-
scriber in the corrupted subset. In the former case, Sim has to simulate the
strings (w, z) and (M, c, tag) sent by P and can use data item m to do that per-
fectly, by running P ’s algorithm. Specifically, Sim runs the simulator as specified
in Property 4 of our h-eq-COT protocol. In both cases, Sim can simulate the
strings sent to the subscribers by P as part of each execution of the h-eq-COT

Privacy-Preserving Publish/Subscribe: Efficient Protocols 129

protocol by running the simulator as specified in Property 4 of our h-eq-COT
protocol, where it is also proved that the simulation from Sim is equally distrib-
uted to Adv’s view in the real world.

In the latter case, Sim has to again simulate the strings (w, z) and (M, c, tag)
sent by P but does not have data item m this time. However, Sim can run the
simulator as specified in Property 5 of our h-eq-COT protocol. Here, the proof
that the simulation from Sim in the ideal world is computationally indistinguish-
able from Adv’s view in the real world, follows from Property 5 of our h-eq-COT
protocol, which holds under the security of the encryption scheme used.

Efficiency. By inspection, we verify that in our publish/subscribe protocol the
subscription is non-interactive, in that each subscriber only posts a message
on its public file (which is from then on readable by any publisher), and the
publication only requires a single message from a publisher to all subscribers.
Our protocol’s efficient communication complexity is also easy to verify.

It remains of interest to evaluate the publication latency metric, under vary-
ing parameter values. We implemented both our protocol, denoted as P3.0, and
another publish/subscribe protocol, called P0, that only addresses communica-
tion privacy and integrity properties using the TLS protocol on all messages
between parties, and does not address any privacy on interests, topics or data
items between publisher and subscribers.

We note that in P0 the publisher only communicates to the matching sub-
scribers, while this cannot happen in P3.0 or otherwise its privacy property
would be violated, due to Proposition 1. Thus, it is of interest to ask whether
we can avoid the communication overhead of sending an encryption of the data
item to all subscribers, especially in applications where the data item is large.
Accordingly, we also implemented a protocol, denoted as P3.1, as the following
variant of P3.0:

1. During the Publish subprotocol, the publisher sends the encryption E(k,m)
of the data item to a third party, called repository server, together with a
random value t = E(k, nonce), acting as an access token.

2. The publisher runs the same, previously defined, Publish subprotocol, this
time publishing token t instead of a data item

3. All subscribers that received key k and token t send t to the repository server
4. If the repository server receives a valid access token from a subscriber, he

sends to this subscriber the associated encryption E(k,m) of the data item
5. The subscriber uses k to retrieve the data item.

We performed testing on a collection of 6 Dell PowerEdge 1950 processors
and one Dell PowerEdge 2950 processor. Subscribers were divided in 4 groups
of size 25 each, and each group was run on a PowerEdge 1950 processor. The
publisher was run on a dedicated 1950 processor, the third party was run on
dedicated 1950 processor, and the testing control was run on the 2950 processor.
All initialization, subscription, and publication traffic was run over a dedicated
gigabit Ethernet LAN. Testing control and collection of timing measurement
traffic was isolated on a separate dedicated gigabit Ethernet LAN.

130 G. Di Crescenzo et al.

Fig. 3. Publication latency measurements for P3.0, P3.1, and P0

We compared P3.0. P3.1 and P0 against three sets of parameters, each test
with a publication rate of 1 item per second, with values 1 K, 10 K, 100 K, and
1000 K bytes for data items, with 10 matching subscribers and 10 topics per
item. (see Fig. 3). Tests were run dozens of times over a period of several weeks
and results were consistently the same over all the runs (i.e. there is nothing
stochastic in the experiments). A resulting performance chart can be found in
Fig. 3.

In particular, we observe that the performance of the P3.0 protocol is always
within a small constant (e.g., ≤ 8) of the performance of P0. This is remarkable,
in light of the fact that P3.0 sends information to all participants (to safeguard
privacy against the publisher), while P0 is only sending the data item to the
interested participants. Our protocol P3.1, employing a repository server, has
performance very close to that of P0 (in other words, it achieves high perfor-
mance and moderately satisfactory privacy properties, but at the cost of having
to trust the repository server).

5 Conclusions

We formally defined a distributed model for publish/subscribe protocols where
participants can act as publishers or as subscribers in any given publication
transaction. In this challenging model, we showed that solutions with provable
privacy and efficiency are possible. In particular, two inherent efficiency limi-
tations (the use of asymmetric cryptography operations and the fact that data

Privacy-Preserving Publish/Subscribe: Efficient Protocols 131

items need to be sent to all subscribers) can be mitigated to have only a very
small impact on performance, allowing private solutions with efficiency compa-
rable to non-private solutions. This is achieved without the need of a broker (as
required in our recent solution [12]). Our approach, based on a novel crypto-
graphic primitive (i.e., hybrid conditional oblivious transfer protocols), can also
be generalized to more elaborate publish/subscribe conditions.

Acknowledgements. Many thanks go to Jim Burns and Jonathan Stanton for use-
ful technical conversations. This work was supported by the Intelligence Advanced
Research Projects Activity (IARPA) via Department of Interior National Business
Center (DoI/NBC) contract number D12PC00520. The U.S. Government is authorized
to reproduce and distribute reprints for Governmental purposes notwithstanding any
copyright annotation hereon. Disclaimer: The views and conclusions contained herein
are those of the authors and should not be interpreted as necessarily representing the
official policies or endorsements, either expressed or implied, of IARPA, DoI/NBC, or
the U.S. Government.

References

1. Eugster, PTh, Felber, P., Guerraoui, R., Kermarrec, A.-M.: The many faces of
publish/subscribe. ACM Comput. Surv. 35(2), 114–131 (2003)

2. Impagliazzo, R., Rudich, S.: Limits on the provable consequences of one-way per-
mutations.In: Proceedings of the ACM STOC, pp. 44–61 (1989)

3. Yao, A.C.-C.: Protocols for secure computations. In: Proceedings of the IEEE
FOCS 1982, pp. 160–164 (1982)

4. Goldreich, O., Micali, S., Wigderson, A.: How to play any mental game or a com-
pleteness theorem for protocols with honest majority. In: Proceedings of the ACM
STOC, pp. 218–229 (1987)

5. Di Crescenzo, G., Ostrovsky, R., Rajagopalan, S.: Conditional oblivious transfer
and timed-release encryption. In: Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol.
1592, pp. 74–89. Springer, Heidelberg (1999)

6. Raiciu, C., Rosenblum, D.S.: Enabling confidentiality in content-based pub-
lish/subscribe infrastructures. In: Proceedings of the SecureComm 2006, pp. 1–11
(2006)

7. Minami, K., Lee, A.J., Winslett, M., Borisov, N.: Secure aggregation in a pub-
lish/subscribe system. In: Proceedings of the WPES 2008, pp. 95–104 (2008)

8. Shikfa, A., Onen, M., Molva, R.: Privacy-preserving content-based pub-
lish/subscribe networks. In: Gritzalis, D., Lopez, J. (eds.) SEC 2009. IFIP AICT,
vol. 297, pp. 270–282. Springer, Heidelberg (2009)

9. Tariq, M.A., Koldehofe, B., Altaweel, A., Rothermel, K.: Providing basic security
mechanisms in broker-less publish/subscribe systems. In: Proceedings of the ACM
DEBS, pp. 38–49 (2010)

10. Ion, M., Russello, G., Crispo, B.: Supporting publication and subscription confi-
dentiality in pub/sub networks. In: Jajodia, S., Zhou, J. (eds.) SecureComm 2010.
LNICST, vol. 50, pp. 272–289. Springer, Heidelberg (2010)

11. Choi, S., Ghinita, G., Bertino, E.: A privacy-enhancing content-based pub-
lish/subscribe system using scalar product preserving transformations. In: Bringas,
P.G., Hameurlain, A., Quirchmayr, G. (eds.) DEXA 2010, Part I. LNCS, vol. 6261,
pp. 368–384. Springer, Heidelberg (2010)

132 G. Di Crescenzo et al.

12. Di Crescenzo, G., Burns, J., Coan, B., Schultz, J., Stanton, J., Tsang, S., Wright,
R.N.: Efficient and private three-party publish/subscribe. In: Lopez, J., Huang, X.,
Sandhu, R. (eds.) NSS 2013 LNCS, vol. 7873, pp. 278–292. Springer, Heidelberg
(2013)

13. Beaver, D.: Precomputing oblivious transfer. In: Coppersmith, D. (ed.) CRYPTO
1995. LNCS, vol. 963, pp. 97–109. Springer, Heidelberg (1995)

14. Di Crescenzo, G.: Private selective payment protocols. In: Frankel, Y. (ed.) FC
2000. LNCS, vol. 1962, pp. 72–89. Springer, Heidelberg (2001)

15. Di Crescenzo, G.: Privacy for the stock market. In: Syverson, P.F. (ed.) FC 2001.
LNCS, vol. 2339, pp. 259–278. Springer, Heidelberg (2002)

16. Aiello, W., Ishai, Y., Reingold, O.: Priced oblivious transfer: how to sell digital
goods. In: Pfitzmann, B. (ed.) EUROCRYPT 2001. LNCS, vol. 2045, pp. 119–135.
Springer, Heidelberg (2001)

17. Lipmaa, H.: Verifiable homomorphic oblivious transfer and private equality test.
In: Laih, C.-S. (ed.) ASIACRYPT 2003. LNCS, vol. 2894, pp. 416–433. Springer,
Heidelberg (2003)

18. Michael, O.: Rabin: How to exchange secrets with oblivious transfer. Technical
report TR-81, Aiken Computation Lab, Harvard University (1981)

19. Moni, N., Pinkas, B.: Efficient oblivious transfer protocols. In: Proceedings of the
SODA 2001, pp. 448–457 (2001)

20. Diffie, W., Hellman, M.E.: New directions in cryptography. IEEE Trans. Inf. The-
ory 22(6), 644–654 (1976)

21. El Gamal, T.: A public key cryptosystem and a signature scheme based on discrete
logarithms. IEEE Trans. Inf. Theory 31(4), 469–472 (1985)

	Privacy-Preserving Publish/Subscribe: Efficient Protocols in a Distributed Model
	1 Introduction
	2 Models and Definitions
	3 Hybrid Conditional Oblivious Transfer
	4 A Distributed Publish/Subscribe Protocol
	4.1 Informal Description
	4.2 Detailed Description
	4.3 Properties: Correctness, Privacy and Efficiency

	5 Conclusions
	References

