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Abstract

Handling missing data is a critical step to ensuring good results in data mining. Like most data mining algorithms, exist-
ing privacy-preserving data mining algorithms assume data is complete. In order to maintain privacy in the data mining
process while cleaning data, privacy-preserving methods of data cleaning are required. In this paper, we address the prob-
lem of privacy-preserving data imputation of missing data. We present a privacy-preserving protocol for filling in missing
values using a lazy decision-tree imputation algorithm for data that is horizontally partitioned between two parties. The
participants of the protocol learn only the imputed values. The computed decision tree is not learned by either party.
� 2007 Elsevier B.V. All rights reserved.
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1. Introduction

The cost per byte of secondary storage has fallen steeply over the years. Many organizations have taken
advantage of this reduction in cost to create large databases of transactional and other data. These databases
can contain information about retail transactions, customer and client information, geo-spatial information,
web server logs, etc. The resulting data warehouses can be mined for knowledge that can improve the efficiency
and efficacy of organizational processes. Further, the emergence of high speed networking and the ability to
obtain better results by combining multiple sources of data have led to intense interest in distributed data
mining.

However, due to human error and systemic reasons, large real-world data sets, particularly those from mul-
tiple sources, tend to be ‘‘dirty’’—the data is incomplete, noisy, and inconsistent. If unprocessed raw data is
used as input for data mining processes, the extracted knowledge is likely to be of poor quality as well. There-
fore, data cleaning, which seeks to improve the quality of the data and make the data more reliable for mining
purposes, is an important preliminary step in data mining. Data cleaning algorithms attempt to smooth noise
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in the data, identify and eliminate inconsistencies, and remove missing values or replace them with values
imputed from the rest of the data.

Another concern in distributed settings is privacy. Specifically, due to the potential sensitivity of data, pri-
vacy concerns and regulations often prevent the sharing of data between multiple parties. Privacy-preserving
distributed data mining algorithms (e.g., [1,23]) allow cooperative computation of data mining algorithms
without requiring the participating organizations to reveal their individual data items to each other. Existing
privacy-preserving data mining algorithms—like most data mining algorithms—assume data is complete. In
order to make use of those algorithms while maintain privacy in the data mining process, privacy-preserving
methods of data cleaning are also required.

In this paper, we consider privacy-preserving imputation for data that is horizontally partitioned between
two parties. Our main result is a privacy-preserving imputation algorithm based on ID3 decision trees. In the
rest of this introduction, we place our results in the context of related work and describe our results in more
detail.

1.1. Related work

Like data mining itself, pre-processing algorithms perform best when they have access to sufficient data.
Pre-processing of distributed data has been previously investigated in the context of sensor networks [8,15].
However, these existing methods are driven by efficiency concerns and do not protect the privacy of the data.
In our context, we view privacy as a primary concern (while also seeking as much efficiency as possible, as well
as good imputation results).

Several methods for dealing with missing values have been proposed. One general approach to handling
missing values is to create data mining algorithms that ‘‘internally’’ handle missing values and still produce
good results. For example, the CART decision-tree learning algorithm [4] internally handles missing values
essentially using an implicit form of imputation based on regression. However, in this paper, we follow the
more common ‘‘modular’’ approach, where pre-processing is performed first and the resulting data is suitable
for use with a variety of data mining algorithms. This is particularly needed in the setting of privacy-preserving
data mining because, to date, the existing privacy-preserving data mining algorithms do not make any special
internal handling of missing data. A stand-alone approach to privacy-preserving imputation can therefore be
used in combination with any existing privacy-preserving data mining algorithm for the same distributed set-
ting. In particular, our results in this paper are suitable for use with any privacy-preserving data mining algo-
rithm for data that is horizontally partitioned between two parties (e.g., [23,20,18]).

Some of the simpler pre-processing techniques for handling missing data have limited applicability or intro-
duce bias into the data [24]. One of the easiest approaches to dealing with missing values is simply to delete
those rows that have missing values. However, unless the missing values are distributed identically to the non-
missing values, this produces poor quality data [30]. Another common technique for dealing with missing val-
ues is to create a new data value (such as ‘‘missing’’) and use it to represent missing values. However, this has
the unfortunate side effect that data mining algorithms may try to use missing as a legal value, which is likely to
be inappropriate. It also sometimes has the effect of artificially inflating the accuracy of some data mining
algorithms on some data sets [12].

Data imputation replaces missing values with estimated values, typically producing better results in subse-
quent data mining than either of the above methods. Imputation techniques range from fairly simple ideas
(such as using the mean or mode of the attribute as the replacement for a missing value [6,16]) to more sophis-
ticated ones that use regression [3], Bayesian networks [7], and decision-tree induction [21]. Using the mean or
mode is generally considered a poor choice [24], as it distorts other statistical properties of the data (such as
the variance) and does not take dependencies between attributes into account. Hot-deck imputation [11] fills in
a missing value using values from other rows of the database that are similar to the row with the missing value.
Hot-deck imputation has been performed with k-nearest neighbors algorithms [5,2] and clustering algorithms
[22].

Classification is generally considered the best method for imputing missing data [10]. For each attribute
with missing values, the attribute with missing data is used as the dependent attribute (the class attribute),
and the remaining attributes are used as the independent attributes for the data mining algorithm. The row
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with the missing attribute is used as an instance that requires prediction and then the predicted value is used
for the missing value. While any classification or prediction algorithm can be used for imputation, the most
commonly used methods are regression-based imputation and decision-tree-based imputation.

Regression imputation [3] imputes missing values with predicted values derived from a regression equation
based on variables in the data set that contain no missing values. Regression assumes a specific relationship
between attributes that may not hold for all data sets. A privacy-preserving linear regression protocol is pre-
sented in [9]; this would be useful for privacy-preserving imputation in cases where the missing values are lin-
early related with existing data values.

Decision-tree imputation uses a decision-tree based learning algorithm such as ID3 [28] or C4.5 [29] to build
a decision-tree classifier using the rows with no missing values, with the attribute that has the missing value as
the class attribute. The tree is evaluated on the row with the missing value to predict the missing value [21,10].
It has been observed [21,10] that single imputation using decision trees is more accurate than imputation based
on clustering. In some cases, the decision-tree construction can be lazy [12], in that only the needed path or
paths of the tree is constructed. This has an efficiency advantage because it avoids time spent on constructing
the parts of the tree that will not be needed.

Lindell and Pinkas [23] provide a privacy-preserving algorithm for computing the ID3 tree for databases
that are horizontally partitioned between two parties. Although this is the same distributed setting we con-
sider, we are unable to use their solution directly because it allows the parties to learn the computed decision
tree. (Indeed, that is its goal.) In our case, we want one or both of our participants to learn the imputed values
determined by using the computed decision tree for classification, but we do not want the participants to learn
the decision tree itself. Specifically, while our privacy-preserving data imputation solution uses ID3 trees, it
differs from their algorithm in that (for efficiency reasons) we only construct the path that is needed and
(for privacy reasons) we use the path for classification without either party learning the constructed path.
We do, however, make use of some of Lindell and Pinkas’s subprotocols, which we describe in Section 2.3.

1.2. Our contributions

In this paper, we focus on decision-tree imputation because it generally produces superior results. Our main
result is a privacy-preserving data imputation protocol for databases that are horizontally partitioned between
two parties. Our solution uses a lazy decision-tree algorithm based on ID3 trees. As previously mentioned, the
use of a lazy decision tree algorithm provides an efficiency improvement when only a small number of paths of
the tree are needed. Our algorithm allows either party to compute missing values without requiring the parties
to share any information about their data and without revealing the decision tree or the traversed path to
either party. We present two versions of the protocol that represent a privacy/efficiency trade-off. The first ver-
sion is more efficient, but reveals the number of nodes traversed by the protocol in the undisclosed decision
tree. The second version does not leak any information beyond the computed imputed value, but incurs
slightly increased communication and computation costs.

We also briefly describe private protocols for data imputation based on other well-known imputation meth-
ods—namely, mean, mode, linear regression and clustering, noting that the simpler methods generally produce
inferior results unless it is known that the data itself or the data mining methods to be applied on the processed
data are suited to those methods.

We begin in Section 2 by introducing some definitions and existing subprotocols. We describe our privacy-
preserving lazy decision tree imputation protocol in Section 3. In Section 4, we outline private protocols for
data imputation using the mean, the mode, linear regression, and clustering-based prediction.
2. Preliminaries

We describe our solution in the simplified scenario in which there is exactly one missing value to be learned.
In practice, the solutions for multiple missing values could be combined to make use of common subproblems
for efficiency. In our distributed setting, there are two parties, who we call Alice and Bob. We use the notation
a 2 Alice to indicate that Alice holds the value or object a, and analogously, we write b 2 Bob if Bob holds b.
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Alice and Bob have a horizontally partitioned database. That is, Alice holds a database
DA ¼ ðd1; . . . ; d‘Þ 2 Alice and Bob holds a database DB ¼ ðd‘þ1; . . . ; dnÞ 2 Bob, which are defined over a com-
mon set fA1; . . . ;Amg [M of attributes. Because the attribute M will be the one in which there is a missing
value, we also refer to it as the class attribute. Together, DA and DB form a single complete joint database
D ¼ DA [ DB with no missing values.1 Additionally, there is another instance I 2 Bob (not included in
ðd1; . . . ; dnÞ) that has a missing value for the attribute M. Bob wishes to compute the missing value I(M) using
D ¼ DA [ DB via a data imputation algorithm agreed to by both Alice and Bob. Ideally, nothing else about
each other’s data should be revealed to either party.

Throughout this paper, n denotes the number of instances in the joint database, m denotes the number of
attributes, k denotes the maximum number of values any attribute can take, and g denotes the number of val-
ues the class attribute can take. Our solutions also make use of encryption in various places (usually indirectly
through their subprotocols). We use t to denote the maximum number of bits required to represent any public
key encryption and s to denote the maximum number of bits required to represent any symmetric key
encryption.

In the rest of this section, we describe the lazy decision-tree algorithm on which our main distributed pro-
tocol is based, our privacy model, and some cryptographic primitives we use in our solutions.

2.1. Lazy decision-tree algorithm

In using a decision tree to predict a single value in a single instance, the entire decision tree is not needed.
Rather, only a single path is traversed, whose values are determined by the instance containing the missing
value. For efficiency reasons, we therefore use a lazy decision tree. We base our distributed solution on a lazy
decision-tree algorithm that is a straightforward simplification of ID3.

In this section, we describe this solution as it would proceed in a centralized setting with access to all the
joint data. This algorithm lends itself to an efficient privacy-preserving distributed solution. Comparing our
algorithm to the LazyDT lazy decision-tree algorithm of Friedman et al. [12], their algorithm is more complex,
less efficient, and less easily amenable for conversion to a privacy-preserving protocol, but also slightly more
accurate. (Experiments in [12] that indicate that LazyDT, on average, has a small improvement in accuracy
over ID3 (84% for LazyDT vs. 80% for ID3).) As in any lazy learning algorithm, our algorithm does not create
an explicit decision-tree model from the training data. Instead, the test instance to be classified is used to
directly trace the path that would have been taken if an ID3 tree had been built from the training data.

Our algorithm, shown in Fig. 1, starts by using ID3’s information gain criterion to compute the attribute to
be tested at the root of the tree. Those rows of the training data which match the test instance on the root
attribute are filtered into the next iteration of the algorithm. A database is said to be pure if all the instances
in it have the same class label. The algorithm repeats the process of choosing an attribute of high information
gain, and then winnowing the training data to those instances that match the test data on the chosen attribute.
This process is repeated until the set of remaining instances is pure or all attributes have been exhausted. The
algorithm then predicts the class label of the test instance as the most frequently occurring class in the remain-
ing set of instances.

The algorithm does not directly calculate the attribute with the highest information gain. Instead, it calcu-
lates the attribute that results in the current set of instance having the least amount of entropy. Denote the
current set (or subset) of instances by D, the set of values taken by the class attribute by fc1; . . . ; cgg, the
set of values taken by an attribute A as fa1; . . . ; akg, the set of instances of D in which A has value aj by
DðajÞ, and the number of instances of DðajÞ in which the class label is ci for 1 6 i 6 g by pji. Then the condi-
tional entropy after splitting on attribute A is defined as
1 Tec
EntropyðD;AÞ ¼ �
Xk

j¼1

jDðajÞj
jDj

Xg

i¼1

pji

jDðajÞj
log

pji

jDðajÞj

 !
hnically, these databases are a sequences, not sets, but we occasionally abuse notation slightly and treat them as if they were sets.



Fig. 1. Lazy decision tree algorithm.
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The computation of this algorithm in a distributed privacy-preserving manner is the main result of this
paper and is described in Section 3.

2.2. Privacy definition

The paradigm of secure distributed computation provides cryptographic solutions for protecting privacy in
any distributed computation [31]. In that setting, the notion of privacy is defined by comparing the informa-
tion that parties learn in carrying out a distributed protocol to the information that parties would learn if a
trusted third party (TTP) were available to perform the computation for them. We use the same privacy def-
initions, but rather than using the general solutions provided by Yao for secure two-party computation [31],
we provide a less general but more efficient solution for our specific two-party computation. We do, however,
use general two-party computation as a building block for some smaller parts of our computation to design a
tailored, more efficient, solution to privacy-preserving imputation.

As mentioned, our notion of privacy is in relation to the TTP setting in which there is a trusted third party
to whom Alice and Bob send their data. The TTP uses the imputation algorithm chosen by Alice and Bob to
compute a missing value and sends the computed value to Bob. In a private protocol, Alice and Bob compute
the missing value by solely communicating with each other instead of using the trusted third party; in doing so,
they should not learn anything that they would not learn in the TTP setting. In this paper, we assume that
both Alice and Bob are semi-honest. That is, both parties faithfully follow their specified protocols, but they
may record intermediate messages in an attempt to infer information about the other party’s data. The desired
privacy condition in this model is that anything Alice or Bob learns from participating in the protocol could
have been learned by simply giving them each their initial input and final output.

The privacy of our solution relies on composition of privacy-preserving protocols. In our solution, we use
composition of a number of privacy-preserving subprotocols in which all intermediate outputs from one sub-
protocol that are inputs to the next subprotocol are computed as secret shares (see Section 2.3) Using com-
position, it follows that if each subprotocol produces only secret shares and is privacy-preserving, then the
resulting composition is also privacy-preserving [14]. (A fully fleshed out proof of these results would require
demonstrating algorithms called simulators showing that each party can simulate the interaction from their
input and output alone.)

We note that there are advantages and limitations to this privacy definition. The definitions are quite
strong, in that they state that nothing is learned by the parties in the distributed computation that they
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would not learn if using a trusted third party. In particular, not only do parties not learn each other’s data
values unless they are implied by their outputs, they do not even gain a (non-negligible) advantage in guess-
ing each other’s data values correctly. However, these definitions do not address what the output itself
reveals to the parties. It may very well be that in some cases, having parties learn imputed values based on
their joint data might be considered too privacy-invasive even if they do not learn anything else about each
other’s data.

2.3. Cryptographic primitives

We use several existing cryptographic primitives, which we briefly describe in this section. We assume suit-
able hardness assumptions under which the various cryptographic primitives described in this section are
secure.

2.3.1. Random shares

We say that Alice and Bob have random shares (or secret shares) of a value x to mean that x is divided into
two pieces (shares) a and b such that Alice knows a, Bob knows b; x can be recovered from a and b, and x

cannot be recovered without both a and b. We use both additive sharings and XOR sharings. In additive shar-
ing, we choose N to be a large prime, where the field F is isomorphic to ZN . (In particular, N should be at least
n.) Except where otherwise specified, all computations throughout the remainder of the paper take place in F.
Alice and Bob have additive random shares of a value x 2 F if Alice knows a random value a 2 F and Bob
knows a random value b 2 F such that ðaþ bÞmod N ¼ x. By XOR sharing, a bit x is shared as x ¼ a� b for
random bits a and b. An important property of additive shares is that they allow local computation of addi-
tions and subtractions in F. That is, if Alice and Bob share values x and y via random shares ax; ay 2 Alice and
bx; by 2 Bob, then ðax þ ayÞmodN and ðbx þ byÞmodN are random shares of ðxþ yÞmod N . If xþ y 6 N , then
these are random shares of xþ y.

2.3.2. Oblivious transfer

1-out-of-n oblivious transfer (denoted OTn
1) is a two-party protocol where the sender has n inputs

fx1; . . . ; xng and the receiver has an input j 2 f1; . . . ; ng. At the end of the protocol, the receiver learns xj

and no other information and the sender learns nothing. Efficient solutions are given in [26,27]. When multiple
OT operations are to be performed on the same data in sequence, better performance results can be obtained
by using a protocol that carries them out all at once [17].

2.3.3. Yao’s secure circuit-evaluation protocol

Yao’s two-party secure circuit-evaluation protocol [31] allows two parties holding inputs a and b to pri-
vately compute any function f ða; bÞ without revealing a and b to each other. The performance of Yao’s pro-
tocol heavily depends on the size of a Boolean circuit for f and on the performance of OT2

1. In theory, Yao’s
protocol could be applied to any distributed two-party privacy-preserving data mining problem. However, as
a practical matter, the circuits for even simple computations on megabyte-sized databases would be intracta-
bly large. We make use of Yao’s protocol for private computation in several cases, but only on functions
involving a small number of small inputs.

2.3.4. Purity checking protocol

In a purity checking protocol, Alice has a vector of values X ¼ ðx1; . . . ; xnÞ and Bob has a vector of values
Y ¼ ðy1; . . . ; ynÞ. The protocol outputs c if x1 ¼ � � � ¼ xn ¼ y1 ¼ � � � ¼ yn ¼ c (i.e., if the set of values in X [ Y is
pure and includes only the value c), or ? otherwise. The parties learn nothing else. A simple purity checking
protocol based on secure equality testing is described in [23].

2.3.5. Secure x lnðxÞ protocol

When Alice and Bob have random shares of x, denoted as v1 and v2, respectively, a secure x lnðxÞ protocol
(such as the one in [23]), computes the shares of x lnðxÞ as w1 and w2 for Alice and Bob, respectively. The par-
ties learn nothing else.
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2.3.6. Private indirect index protocol

In a private indirect index protocol (PIX), Bob has a vector of values X ¼ ðx1; . . . ; xnÞ and Alice and Bob
have random XOR shares of an index i. That is, i1 2 Alice and i2 2 Bob and i ¼ i1 � i2. As the output of
the protocol, Alice and Bob learn random shares of xi. The parties learn nothing else. A PIX protocol is given
in [25]. However, it outputs an XOR-sharing of xi, while for our purposes we want an additive sharing instead.
Fortunately, it can easily be modified to give an additive sharing instead. This protocol requires one invoca-
tion of OTn

1.

2.3.7. Secure scalar product protocol

In a secure scalar product protocol (SPP), Alice has a vector X ¼ ðx1; . . . ; xnÞ and Bob has a vector
Y ¼ ðy1; . . . ; ynÞ. The protocol privately computes the scalar product as X � Y � sA þ sB modN , where sA and
sB are random shares learned as output by Alice and Bob, respectively, and the parties learn nothing else.
An SPP protocol is given in [13].

3. Privacy-preserving imputation based on lazy decision trees

We now describe our main privacy-preserving data imputation protocol. It is based on the lazy decision-
tree algorithm described in Section 2.1. Recall the definitions of DA;DB and I given in Section 2 and recall that
the class attribute M takes the values fc1; . . . ; cgg. Bob wishes to compute the missing value I(M) by applying
the lazy decision-tree imputation on D ¼ DA [ DB. At the end of the protocol, Bob learns only the missing
value I(M) and Alice learns nothing. Both parties learn nothing else. (For missing values in Alice’s database,
they would reverse roles from what we describe here.) In particular, Alice and Bob should learn nothing about
the path of the decision tree that leads to the missing value including the remaining instances at each node and
the value taken by the attributes along the path.

In Section 3.1, we first describe a basic version of the protocol. Besides the subprotocols already described
in Section 2.3, the protocol requires four additional private subprotocols: a protocol that computes split
entropy (shown in Section 3.3), a split protocol (shown in Section 3.4), a protocol that checks if the split data-
base is pure (shown in Section 3.5), and a majority computation protocol (shown in Section 3.6). These sub-
protocols themselves use two additional subprotocols presented first in Section 3.2. We discuss the efficiency
and privacy of the protocol in Section 3.7. As described, the basic version of our protocol has a small privacy
leak. Specifically, it reveals to the parties the number of nodes traversed by the protocol in the undisclosed
decision tree used for imputation. In Section 3.8, we show how this leak can be removed at a slightly increased
cost of communication and computation.

3.1. Our basic protocol

We rephrase the basic steps of the lazy decision-tree algorithm from Section 2.1 so that it functions more
clearly as a data imputation algorithm. The lazy decision-tree algorithm computes as the root of the tree the
attribute with the highest information gain. This is followed by the repeated execution of two steps until the
remaining instances are pure or all attributes have been exhausted: First, extract the subset of the instances
that match I on the chosen attribute. Second, choose an attribute of high information gain for the next iter-
ation. Once the repetition of those two steps has completed, the algorithm outputs to Bob the missing value
the majority label on the remaining instances. (Again, if Alice started with the missing value, their roles would
be reversed.)

Our privacy-preserving protocol follows the same basic outline. However, the privacy requirements pro-
hibit the protocol from revealing any information other than the final output. In particular, this implies that
none of the attributes that have been chosen along the way may be revealed to either party. Further, the subset
of the instances that match I on the chosen attributes cannot be revealed either. To meet these requirements,
we make extensive use of random sharings. The protocol handles the first condition by storing the index s of
the chosen attribute As in any iteration as a random sharing between the two parties. That is, Alice would have
sA and Bob would have sB such that sA � sB ¼ s. To satisfy the second condition, the protocol uses a randomly
shared bit-vector representation of any D0 � D. That is, Alice and Bob have, respectively, bit vectors
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ðp1; . . . ; pnÞ and ðq1; . . . ; qnÞ such that pi � qi ¼ 1 if di 2 D0 and pi � qi ¼ 0 otherwise, for 1 6 i 6 n. The
entropy computed for each attribute in each iteration is also held as random shares by the two parties.

We now describe our protocol in more detail. The complete protocol is shown in Fig. 2. At the beginning of
the protocol, Alice and Bob jointly check if the database D is pure. If D is pure, Bob learns the unique label.
This is done without revealing either their data or one-sided information about purity to each other using a
purity checking protocol (see Section 2.3).

To compute the root of the lazy decision tree, Alice and Bob compute random shares of the entropy for
every attribute fA1; . . . ;Amg. At the root level, computing the shares of the entropy is straightforward. The
conditional entropy of a database D (as explained in Section 2.1) with respect to the attribute A can be rewrit-
ten as
Fig. 2. Private lazy decision tree imputation protocol.
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EntropyðD;AÞ ¼ �
Xk

j¼1

Xg

‘¼1

pj‘ logðpj‘Þ � jDðajÞj logðjDðajÞjÞ
 !

ð1Þ
where pj‘ and DðajÞ are as explained in Section 2.1. Because the database is horizontally partitioned between
Alice and Bob, they can compute shares of pj‘ and DðajÞ independently. Using a secure x log x protocol (see
Section 2.3) and local additions and subtractions, Alice and Bob can jointly compute a random sharing of
each EntropyðD;AiÞ.

After this computation, Alice has a vector ðEntA
1 ; . . . ;EntA

mÞ of entropy shares and Bob, correspondingly,
has ðEntB

1 ; . . . ;EntB
mÞ such that EntA

i þ EntB
i � EntropyðD;AiÞmod N for 1 6 i 6 m. The index of the attribute

that yields the least entropy is computed as random shares (minA 2 Alice and minB 2 Bob such that
min ¼ minA �minB) between Alice and Bob using Yao’s protocol. Note that either EntA

i þ EntB
i ¼

EntropyðD;AiÞ or EntA
i þ EntB

i ¼ EntropyðD;AiÞ þ N . The circuit first computes EntA
i þ EntB

i and if it is greater
than N � 1 it subtracts N. It then selects the attribute with the minimum entropy. We emphasize that our pri-
vacy criterion requires that the attributes that have been chosen at various stages in the path of the lazy deci-
sion-tree computation not be revealed to either party. To achieve this, we maintain them as random shares
between Alice and Bob.

We write Dj to denote the subset of D that has ‘‘filtered’’ through to level j of the lazy decision tree. To
compute the attribute at level j of the lazy decision tree, Alice and Bob should split the database Dj�1 on
the attribute As chosen at level j � 1. This involves finding IðAsÞ. Here the instance I is known to Bob, but
the attribute index s is randomly shared between Alice and Bob. Alice and Bob compute a random sharing
of IðAsÞ using PIX. Since Dj should be unknown to either party, we store the set in the form of two bits
pi 2 Alice and qi 2 Bob per instance (1 6 i 6 n) such that
pi � qi ¼
1 if diðAsÞ ¼ IðAsÞ and di 2 Dj�1

0 otherwise

�

The protocol for performing this computation privately is described in Section 3.4. Note that the information
about the inclusion of di in Dj�1 is also shared between Alice and Bob. For the root level (which contains all of
D), we set pi ¼ 1 and qi ¼ 0 for all i.

If Dj is pure, then Bob learns the unique label using the secure protocol that checks if Dj is pure and returns
the unique label. It is important to observe that since neither party knows which of their instances are in Dj, we
cannot use here kind of the purity checking protocol described in Section 2.3. Instead, we provide an alternate
variation of a purity checking protocol, described in Section 3.5, that works on a secret-shared representation
of the database as required in our case. If Dj is not pure, Alice and Bob engage in the secure entropy compu-
tation protocol of Section 3.3 for the split Dj for each of the attributes fA1; . . . ;Amg, and compute the random
shares of the split entropy EntropyðD;AiÞ. (i.e., EntA

i þ EntB
i � EntropyðD;AiÞmod N ) The attribute with the

least entropy is computed using Yao’s protocol. To simplify the protocol, the entropy is evaluated for all attri-
butes at all levels of the decision tree. This does not impact the correctness of the protocol, as the information
gain is zero for any attribute that has already been chosen at a previous level.

3.2. Secure computation of the number of instances

In this section, we present two protocols for computing shares of the total number of instances in a subset
of the database that is only identifiable by random shares held by Alice and Bob, respectively.

3.2.1. Secure Hamming distance

A secure Hamming distance protocol, shown in Fig. 3, is useful for us when applied to a subset D0 � D
represented by bit vectors X ¼ ðx1; . . . ; xnÞ and Y ¼ ðy1; . . . ; ynÞ known to Alice and Bob, respectively, where
xi � yi ¼ 1 if instance di 2 D0 and xi � yi ¼ 0 otherwise. At the end of the protocol, Alice and Bob learn ran-
dom shares of this Hamming distance, which is also equal to jD0j. The protocol uses one invocation of SPP.
Because of the linear relationship for binary data between the scalar product and the Hamming distance, the
parties are then able to compute their needed results locally.



Fig. 3. Secure Hamming distance.
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The only communication that happens between the two parties is during the invocation of SPP using two
vectors of size n. The communication complexity of the SPP protocol of [13] is OðtnÞ. (Recall that t denotes the
number of bits needed to represented a public key encryption.) Its computation complexity involves n encryp-
tions and one decryption for Alice and n modular exponentiations and one encryption for Bob. The SPP pro-
tocol is secure and it provides no useful information other than the random shares to the two parties. Hence,
this protocol is secure.

3.2.2. Secure computation of the total number of instances in a subset with a given class label

Let D0c denote the set of instances in D0 in which the attribute M takes the value c. This protocol takes as
input a subset D0 � D and a value c 2 fc1; . . . ; cgg and computes shares of total number of instances in the set
D0c. The input D0 is represented by the bit vectors X ¼ ðx1; . . . ; xnÞ and Y ¼ ðy1; . . . ; ynÞ known to Alice and
Bob, respectively, where xi � yi ¼ 1 if instance di 2 D0 and xi � yi ¼ 0 otherwise.

Alice and Bob first locally determine which of their instances have the right class value c. Specifically, for
1 6 i 6 ‘, Alice computes wi ¼ 1 if diðMÞ ¼ c and wi ¼ 0 otherwise; Bob does the same for ‘þ 1 6 i 6 n. Then
the total number of instances in D0 with class label c is the number of the instances that satisfy the relation
ðxi � yiÞ ^ wi ¼ 1 for 1 6 i 6 n. This relation can be rewritten as ðxiwiÞyi _ ðxiwiÞyi ¼ 1. Since both ðxiwiÞyi

and ðxiwiÞyi cannot hold at the same time, this number is equal to the sum of the number of instances satisfying
ðxiwiÞyi ¼ 1 and the number of instances satisfying ðxiwiÞyi ¼ 1. This is computed as random shares between
Alice and Bob using SPP. The complete protocol is shown in Fig. 4.

The communication and computation complexity are the same as that of SPP. The privacy of this protocol
follows from the privacy of the SPP protocol.

3.3. Secure protocol to compute split entropy

This protocol takes a subset D 0 of the database D, horizontally partitioned between Alice and Bob, and an
attribute A known to both Alice and Bob. The subset D 0 is represented by two bit vectors P and Q known to
Alice and Bob, respectively, such that pi � qi ¼ 1 if di 2 D0 and pi � qi ¼ 0 otherwise, for 1 6 i 6 n.

The protocol computes random shares of the entropy after splitting D 0 on the attribute A, which takes on
values a1; . . . ; ak. In the decision-tree computation, the entropy after splitting the database D 0on attribute A is
as shown in Eq. (1) in Section 3.1. Alice and Bob use Yao’s protocol to privately compute an XOR sharing
representation of DðajÞ � D0 for 1 6 j 6 k. That is, DðajÞ is represented by two bit vectors R ¼ ðR1; . . . ;RnÞ 2
Alice and S ¼ ðS1; . . . ; SnÞ 2 Bob, where for 1 6 i 6 n;Ri � Si ¼ 1 if pi � qi ¼ 1 and diðAÞ ¼ aj; Ri � Si ¼ 0
otherwise. Using the protocols of Section 3.2, Alice and Bob compute random shares of jDðajÞj and pj‘ for



Fig. 4. Secure computation of jD0cj.
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1 6 ‘ 6 g and 1 6 j 6 k. Random shares of the terms pj‘ log pj‘, for 1 6 ‘ 6 g, are computed using a secure
x log x protocol. The complete Secure Split Entropy protocol is shown in Fig. 5.

The size of the circuit in Step 1 is Oðlog NÞ and this circuit evaluation occurs n times. Hence, the commu-
nication complexity is Oðns log NÞ. The computation complexity is Oðn log NÞ invocations of OT2

1. Step 1b
involves two parties jointly computing random shares of jDðajÞj using the protocol described in Section
3.2.1. Step 1c uses g invocations of the Total Instances with Class Label protocol of Section 3.2.2. The
x log x protocol of [23] has a communication complexity of Oðs log NÞ bits and a computation complexity
equal to that of Oðlog NÞ OT2

1 invocations.
Thus, the total communication complexity of the Secure Split Entropy protocol is Oðtkng þ ðg þ nÞks log NÞ.

The total computation complexity is the cost of Oððnþ gÞk log NÞ OT2
1 invocations plus the cost of OðgkÞ SPP

invocations, which in turn involves a total of OðgnkÞ encryptions and OðgkÞ decryptions for Alice and OðngkÞ
modular exponentiations and OðgkÞ encryptions for Bob.

The output of the Secure Split Entropy protocol is a random sharing of the entropy after splitting D 0 on the
attribute A. Yao’s protocol securely computes the subset DðajÞ of the database whose instances take a specific
value for the attribute A. This subset is represented as a random sharing between the two parties. The subpro-
tocols in Section 3.2 used to compute the size of the split as random shares between the two parties are secure
and do not leak any information. Finally, the x log x protocol is also secure. Thus, the Secure Split Entropy
protocol securely computes random shares of the entropy after splitting D 0 on the attribute A.

3.4. Secure split protocol

The Secure Split protocol is used to determine if a given instance is in a subset D0 � D and attribute Ai takes
the value v in that instance. The result of this test (0 or 1) is randomly shared between Alice and Bob. Here,
inputs v and i are shared between Alice and Bob as v � aþ bmodN and i ¼ i1 � i2, where a and i1 are known
to Alice and b and i2 are known to Bob. The inclusion of the given instance in D 0 is represented by two bits p 2
Alice and q 2 Bob such that p � q ¼ 1 if the instance is in D 0 and p � q ¼ 0 otherwise.



Fig. 5. Secure split entropy.
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Assuming that the instance belongs to Alice, Alice’s inputs to the protocol are the instance ðv1; . . . ; vmÞ; a; i1

and p. Bob’s inputs are b; i2 and q. (The case where Bob owns the instance is analogous.) At the end of this
protocol, Alice and Bob learn bits b1 and b2, respectively, such that
b1 � b2 ¼
1 if vi ¼ v and p � q ¼ 1

0 otherwise

�

In other words, the fact that a given attribute has a specific value in a given instance is available to both
Alice and Bob only as random shares.

This protocol has two stages. In the first stage, Alice and Bob use PIX to learn results x and y, respectively,
where ðxþ yÞ � vi modN . In the second stage, Alice has inputs x; a, and p, and Bob has inputs y; b, and q. They
use Yao’s protocol to learn two bits b1 2 Alice and b2 2 Bob such that
b1 � b2 ¼
1 if ðxþ yÞ � ðaþ bÞmodN and p � q ¼ 1

0 otherwise

�

The communication and computation complexity of the first stage is that of one invocation of OTm
1 . The

second stage of the protocol involves one comparison which is done using Yao’s protocol, requiring
Oðs log NÞ bits of communication and Oðlog NÞ invocations of OT2

1.
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The first stage of the protocol uses PIX, which is secure and produces only random shares as its results.
Yao’s protocol is also secure and does not leak any information. Thus, the Secure Split protocol is secure.

3.5. Secure protocol to check if D is pure

The Subset Purity Checking protocol takes as input a subset D 0 of a database D and outputs to Bob the
value c if all the instances in D 0 have the same label c or ? otherwise. In contrast to the purity checking prim-
itive of Section 2.3, in this case, Alice and Bob only have an XOR sharing of D 0—that is, D 0 is represented by
two bit vectors P ¼ ðp1; . . . ; pnÞ 2 Alice and Q ¼ ðq1; . . . ; qnÞ 2 Bob such that pi � qi ¼ 1 if di 2 D0 and
pi � qi ¼ 0 otherwise.

Let jD0cj denote the number of instances in D 0 where the class attribute takes value c. For 1 6 i 6 g, Alice
and Bob compute random shares aA

i and aB
i of jD0ci

j using the Total Instances with Class Label protocol of Sec-
tion 3.2.2. Alice and Bob then use Yao’s protocol to check whether there exists j such that ðaA

j þ aB
j Þ 6¼ 0modN

and ðaA
i þ aB

i Þ � 0modN for every i 6¼ j. If so, Bob’s output from Yao’s protocol is cj; otherwise, it is ?.
Yao’s protocol for the comparison described above requires Oðsg log NÞ bits of communication and

Oðg log NÞ invocations of OT2
1. The communication and the computation complexity is dominated by the g

executions of the Total Instances with Class Label protocol. The Total Instances with Class Label protocol
returns only random shares to Alice and Bob. Yao’s protocol is secure and does not leak any information.
Hence, the Subset Purity Checking protocol is secure, in that it does not leak anything other than its output.
We note however that this protocol breaks our convention that its output is secret shares. We discuss the
resulting privacy implications in Section 3.7.

3.6. Secure protocol for majority label

The Majority Label protocol is similar to the Subset Purity Checking protocol of Section 3.5, except that it
always returns the majority class label even if its input database is not pure. In the first stage, for 1 6 i 6 g,
Alice and Bob use the Total Instances with Class Label protocol of Section 3.2.2 to compute random shares
aA

i 2 Alice and aB
i 2 Bob of jD0ci

j. In the second stage, Alice and Bob use Yao’s protocol with inputs aA
i and

aB
i , respectively, for Bob to learn the index j ¼ argmax16i6gjD0ci

j. Bob computes cj as the majority label. The
complexity of this protocol is the same as the purity protocol. It reveals nothing beyond the majority label
cj to Bob and nothing to Alice.

3.7. Performance and privacy analysis

Having defined all the subprotocols required by the Private Lazy Decision Tree Data Imputation protocol,
we now return to its complexity and privacy.

3.7.1. Complexity

Alice and Bob communicate with each other to compute the attribute with the maximum information gain
at each level of the path. Putting together the cost of all the involved subprotocols, we see that the commu-
nication complexity is dominated by Oðm2nkðtg þ s log NÞÞ. The total computation complexity is that of
Oðm2kðnþ gÞ log NÞ OT2

1 invocations, O(m) OTm
1 invocations, and Oðm2kgÞ SPP invocations. The latter

involves Oðm2kgnÞ encryptions and Oðm2kgÞ decryptions for Alice and Oðm2kgnÞ modular exponentiations
and Oðm2kgÞ encryptions for Bob.

Our solution offers at least a log-factor improvement over using Yao’s generic solution. Using Yao’s pro-
tocol for the entire computation would require starting with a Boolean circuit computing the result of the ID3
decision tree. The Boolean circuit size for this function will be at least Xðm2kn logðnÞ log NÞ. The resulting pri-
vate computation requires a number of invocations of OT2

1 that is equal to the input size in bits—i.e.,
nm logðNÞ. The resulting communication complexity is Xðm2kn logðnÞ log NÞ because of the circuit size. In com-
parison, our solution, including the invocations of Yao’s protocol where we require it, is dominated by
Oðm2nkÞ circuits of input size Oðlog NÞ. The number of invocations of OT2

1 is Oðm2nk log NÞ and the commu-
nication complexity is Oðm2nk log NÞ, for a total savings of a factor of logðnÞ in communication.
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While this is likely not be efficient enough for very large data sets or in every setting, when data privacy is
sufficiently important to the parties involved and they want to use their joint data, it may be preferable to incur
this performance penalty than to avoid engaging in the computation at all.

3.7.2. Privacy

We compare this protocol with the one that uses the trusted third party (TTP). When a TTP is used, the two
parties send their shares of data to the TTP. The TTP computes the missing value and sends it to Bob, and
Alice gets nothing. Both parties receive no other information other than Bob receiving the desired imputed
value.

In the Private Lazy Decision Tree Data Imputation protocol, the attribute and the split of the database at
each level of the path in the decision tree are only available as random shares to Alice and Bob. We have
already shown that all the intermediate outputs of the subprotocols are held only as random shares by Alice
and Bob and that all the subprotocols do not leak any information beyond Bob learning the final imputation
result, with one exception. This exception is that the Subset Purity Checking protocol reveals to Bob (and indi-
rectly to Alice, by whether the computation then terminates or continues) whether the split database at each
node is pure or not. Because the algorithm gradually splits the database until either the database is pure or all
the attributes are exhausted, knowing this information is equivalent to knowing the length of the path. That is,
in executing the Private Lazy Decision Tree Data Imputation protocol, Bob learns the imputed value, but also
both Alice and Bob learn the number of attributes in the path in the decision tree (though not which attributes,
nor the values they take), which would not be learned in the TTP solution. The composition result (see Section
2.2) implies that they do not learn anything else; that is, Private Lazy Decision Tree Data Imputation can be
viewed as a private protocol computing an output to Alice consisting of the length of the path in the decision
tree and to Bob consisting of the length of the path and the learned value for the missing attribute.

In Section 3.8, we describe a modification of the protocol that is completely private, not revealing to Alice
and Bob the length of the path.

3.8. Enhancing privacy

As just discussed, the Private Lazy Decision Tree Data Imputation protocol has a minor leak—it reveals the
number of nodes in the evaluation path of the decision tree used in the imputation process. In this section, we
outline a modification that uses additional secret sharing to eliminate this leak, thus achieving the same level of
privacy as in the TTP model.

The modified protocol uses two additional variables: is_pure and majority_class. We treat is_pure as Bool-
ean (with 0 ¼ false and 1 ¼ true). Each of these variables is randomly shared between Alice and Bob, via
shares is pureA; is pureB;majority classA, and majority classB. At the end of each iteration, the protocol ensures
that is pureA � is pureB ¼ is pure and majority class � ðmajority classA þmajority classBÞmodN . Initially,
is_pure is set to false by setting is pureA ¼ false and is pureB ¼ false. If is_pure becomes true at the end of some
iteration, it means that the protocol has determined that the database D at the beginning of that iteration is
pure (all rows have the same class label). At the end of each iteration, the protocol ensures that majority_class
contains the most frequently occurring class label in database D.

The modified protocol requires changes to Subset Purity Checking and Majority Label (Sections 3.5 and 3.6).
In the modified version of Subset Purity Checking, is pureA; is pureB;majority classA, and majority classB are
supplied as additional inputs and the protocol checks if is_pure is false. If so, the protocol computes random
shares of the new values of is_pure and majority_class and returns these to Alice and Bob. On the other hand, if
is_pure is true when the subprotocol is invoked, then the values of is_pure and majority_class do not change,
but a new random sharing of each is computed and sent to Alice and Bob.

In the modified version of Majority Label, the values of is pureA, is pureB;majority classA and majority classB

are supplied as additional inputs. The subprotocol first checks if is_pure is false. If so, the computation for the
majority_class proceeds as usual. The value of majority_class is randomly shared as majority classA and
majority classB. On the other hand, if is_pure is true, the computation of the majority label is skipped. Instead,
ðmajority classA þmajority classBÞmodN is used in place of majority_class, and this is again randomly shared
as majority classA and majority classB.
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Given these modifications, the new version of the main protocol runs as many iterations as there are attri-
butes. That is, the iteration of the main loop in the protocol does not end if a pure set D is obtained before all
attributes have been used. (Indeed, it could not, as now neither participant knows that this has occurred.) At
the end of all iterations, Alice sends the value of majority classA to Bob who then uses majority
classA þmajority classB mod N as the imputed value. This eliminates the earlier privacy leak and results in a
private protocol for Bob to learn the desired imputed value.
4. Other imputation protocols

In this section, we briefly describe other private data imputation protocols. As explained in Section 1.1,
however, the results of the decision-tree solution are likely to be better in most settings. Let a1; . . . ; an denote
the values of the attribute M for which I 2 Bob has a missing value for the instances d1; . . . ; dn.

4.1. Mean

Because Bob will inevitably be able to compute the sum of Alice’s values for attribute M from the mean of
their combined values, we can satisfy the privacy requirements described in Section 2.2 with a very simple pro-
tocol. Alice computes a ¼

P‘
j¼1aj and sends a to Bob. Bob computes b ¼

Pn
j¼ð‘þ1Þaj and computes the missing

value I(M) as ðaþ bÞ=n.

4.2. Mode

Alice computes the frequencies of the possible values ðc1; . . . ; cgÞ of M in her database DA as a1; . . . ; ag and
Bob computes the frequencies in his database DB as b1; . . . ; bg. Alice and Bob then use Yao’s protocol with
inputs a1; . . . ; ag and b1; . . . ; bg for Bob to learn j ¼ argmax16i6gðai þ biÞ. Bob then takes cj as the missing
value.

4.3. Linear regression

We describe the protocol for two variables. The extension to multiple regression is straightforward. Sup-
pose x is an independent variable and y is the variable that has a missing value. Linear regression involves

fitting the straight line y ¼ mxþ b, where m ¼
Pn

i¼i
ðxiyiÞ�

Pn

i¼1
xi

Pn

i¼1
yið Þ=nPn

i¼1
x2

i �
Pn

i¼1
xið Þ2
�

n
and b ¼

Pn

i¼1
xi

n � m �
Pn

i¼1
yi

n . The opera-

tions involved are linear, so Alice and Bob can securely compute shares of m and b. Using these shares, Bob

can compute the missing value.

4.4. Clustering

Alice and Bob use a secure clustering protocol (such as the one in [18]) to compute shares of m cluster cen-
ters, where m is a user-specified parameter. Let CA

i ¼ ðaA
i1; . . . ; aA

ik; p
A
i Þ and CB

i ¼ ðaB
i1; . . . ; aB

ik; p
B
i Þ, for 1 6 i 6 m,

denote the shares of the m cluster centers for Alice and Bob, respectively. Let the instance I ¼ ðx1; . . . ; xk; xÞ,
where x denotes the missing value.

Alice and Bob jointly and securely compute the shares of the distance between I and each of the m cluster
centers using only the first k coordinates. Let ZA ¼ ðzA

1 ; . . . ; zA
mÞ and ZB ¼ ðzB

1 ; . . . ; zB
mÞ denote Alice’s and Bob’s

shares of the distances, respectively. They use Yao’s protocol to compute random XOR shares i1 and i2 of the
index i such that zA

i þ zB
i ¼ min16j6mðzA

j þ zB
j Þ. Bob should learn the missing value as pA

i þ pB
i , where pA

i and pB
i

are Alice and Bob’s shares, respectively, of the missing attribute in cluster Ci. To do this, Alice and Bob then
invoke PIX twice, once for the vector ðpA

1 ; . . . ; pA
mÞ and the other for the vector ðpB

1 ; . . . ; pB
mÞ. In both invoca-

tions, they supply i1 and i2 as input. This gives them random shares of pA
i and of pB

i . Alice adds her shares
and sends them to Bob for him to compute the missing value.
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5. Conclusions

Privacy-preserving methods of pre-processing data are a critical component of enabling privacy-preserving
data mining algorithms to be used in practice, because if the data needs to be revealed in order to perform pre-
processing, then privacy is lost, while if pre-processing is not performed on the joint data, then the data mining
results are likely to be inaccurate.

In this paper, we provide a first step in this direction—namely, a privacy-preserving solution to data impu-
tation. Our main result is privacy-preserving protocol for filling in missing values using a lazy decision-tree
imputation algorithm for data that is horizontally partitioned between two parties. The participants of the
protocol learn only the imputed values; the computed decision tree is not learned by either party. We also
show privacy-preserving protocols for several other methods of data imputation.

Future directions include private solutions for other data imputation methods, handling vertically parti-
tioned data, extending our results to the multiparty case, and strengthening our results to withstand malicious
parties.
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