
In Distributed Computing Vol. 18, No. 2

Tight Bounds for Shared Memory Systems Accessed by Byzantine
Processes⋆

Noga Alon1⋆⋆, Michael Merritt2, Omer Reingold3⋆⋆⋆, Gadi Taubenfeld4†, Rebecca N. Wright5‡

1 Schools of Mathematics and Computer Science, Tel Aviv University, Tel Aviv, Israel. nogaa@tau.ac.il.
2 AT&T Labs, 180 Park Ave., Florham Park, NJ 07932, USA. mischu@research.att.com
3 Incumbent of the Walter and Elise Haas Career Development Chair., Dept. of Computer Science and Applied Mathematics,

Weizmann Institute of Science, Rehovot 76100, Israel. omer.reingold@weizmann.ac.il.
4 The School of Computer Science, the Interdisciplinary Center, P.O.Box 167, Herzliya 46150, Israel. tgadi@idc.ac.il.
5 Department of Computer Science, Stevens Institute of Technology, Hoboken, NJ 07030, USA. rwright@cs.stevens.edu.

Summary. We provide efficient constructions and tight
bounds for shared memory systems accessed by n pro-
cesses, up to t of which may exhibit Byzantine failures, in
a model previously explored by Malkhi et al. [MMRT03].
We show that sticky bits are universal in the Byzantine
failure model for n ≥ 3t + 1, an improvement over the
previous result requiring n ≥ (2t + 1)(t + 1). Our result
follows from a new strong consensus construction that
uses sticky bits and tolerates t Byzantine failures among
n processes for any n ≥ 3t + 1, the best possible bound
on n for strong consensus. We also present tight bounds
on the efficiency of implementations of strong consensus
objects from sticky bits and similar primitive objects.

1 Introduction

Although Byzantine fault tolerance in message-passing
systems has been extensively investigated, it was only
recently that Malkhi et al. initiated the study of Byzan-
tine fault tolerance in asynchronous shared memory sys-
tems [MMRT03]. Their work establishes a formal model
and shows how the use of access control lists (ACLs)
can constrain Byzantine behavior and permit reliable
distributed computation. They investigate universal ob-
jects, which can be used to implement any shared ob-
ject. Specifically, they show that sticky bits, a simple
shared memory primitive long known to be universal in
the crash failure model [Plo89], are also universal in the
Byzantine failure model, provided that n ≥ (2t+1)(t+1),
where n is the number of processes and t bounds the

⋆ A preliminary version of the results presented in this pa-
per appeared in [MRTW02].
⋆⋆ Research supported in part by a grant from the Israel
Science Foundation, and by the Hermann Minkowski Minerva
Center for Geometry at Tel Aviv University.
⋆⋆⋆ This work was partially completed while at AT&T Labs
and while visiting the Institute for Advanced Study, Prince-
ton, NJ. Research supported in part by US-Israel Binational
Science Foundation Grant 2002246.

† This work was partially completed while visiting AT&T
Labs.

‡ This work was partially completed while at AT&T Labs.
Research supported in part by the National Science Founda-
tion under Grant No. CCR-0331584.

number of processes that may fail (exhibiting uncon-
strained, or Byzantine, behavior). One of the main re-
sults of this paper is to strengthen their result, showing
that sticky bits are universal in the Byzantine failure
model for any n ≥ 3t + 1.

The universality results of [MMRT03] first use con-
structions from sticky bits to build strong consensus ob-
jects, then use strong consensus objects in an explicit
universal construction of an arbitrary shared object. (Def-
initions of sticky bits, weak and strong consensus, and
other objects mentioned in this introduction are pro-
vided in Section 2.) The bound n ≥ (2t+1)(t+1) follows
from the construction in the first step, building strong
consensus from sticky bits. In this paper, we present a
novel construction of strong consensus from sticky bits
for any n ≥ 3t + 1. The consequence for universality
is immediate: “Constructions of strong consensus from
sticky bits for larger values of t would imply a more
resilient universality result.” [MMRT03]. Malkhi et al.
demonstrate that strong consensus objects can only ex-
ist if n ≥ 3t + 1, so our result is the best possible un-
less a different universal construction is used. Beyond
strengthening the universality result for sticky bits, we
present tight bounds on the efficiency of implementations
of strong consensus objects from sticky bits and similar
“potentially powerful” shared objects. (Potentially pow-
erful objects include sticky bits that can be set by more
than one process, but exclude registers and single-writer
sticky bits. Formally, potentially powerful operations are
those other than wait-free reads and writes.)

In Section 2, we review the model and definitions.
Section 3 presents a general protocol schema that can
be used to implement strong consensus from sticky bits.
Instantiated separately for n = 3t + 1 and n = (t + 1)2,
the schema results in two strong consensus algorithms,
which use

(

2t+1
t

)

and t + 1 sticky bits, correspondingly.
The contrast in efficiency of these constructions is strik-
ing: exponentially many potentially powerful objects for
n = 3t + 1 and just t + 1 for n = (t + 1)2. We then
modify the latter protocol to show that t sticky bits are
sufficient, provided n ≥ t2+5t+1. Surprisingly, this algo-
rithm works despite the fact that all of the t potentially
powerful shared objects could be written by t Byzantine
processes.

In Section 4, we demonstrate bounds and tradeoffs
among n, t, and the number and type of objects used.

2 Noga Alon et al.: Tight Bounds for Shared Memory Systems Accessed by Byzantine Processes

We show that the protocols of Section 3 are essentially
optimal in the number of potentially powerful shared
objects used. In Section 4.1, we present a general lower
bound that constrains the types of potentially power-
ful shared objects and associated access control lists re-
quired to implement even weak consensus. Sections 4.2
and 4.3 investigate the tradeoff on the number of po-
tentially powerful shared objects that are necessary and
sufficient for constructing strong consensus objects as n
increases relative to t. The sufficiency results are con-
structive, providing explicit instantiations of the proto-
col schema of Section 3.

1.1 Summary of results

To summarize, the main contributions of this paper are
the following:

• We present a strong consensus protocol that can tol-
erate t Byzantine failures (and therefore a universal-
ity result) from sticky bits, for n ≥ 3t + 1.

• We present a strong consensus protocol that can tol-
erate t Byzantine failures using only t potentially
powerful shared objects. (Surprising since t Byzan-
tine processes can access all the potentially powerful
shared objects.)

• We show that at least t shared objects (such as sticky
bits) must be used in strong consensus protocols that
can tolerate t Byzantine failures.

• We show that any weak consensus protocol that tol-
erates t crash failures must use at least one object on
which at least t + 1 processes can invoke potentially
powerful operations.

• We demonstrate a tight tradeoff characterizing the
number—as a function of n and t—of objects taken
from a certain class of potentially powerful shared
object that is needed to implement strong consensus.
Specifically, we show that the number of potentially
powerful shared objects needed to implement strong

consensus is essentially t · 2Θ(t2/n).
• As a consequence of the tradeoff, we obtain a polyno-

mial-time protocol implementing strong consensus
from sticky bits for n = O(t2/ log t), an improve-
ment over the previous n = Ω(t2) for polynomial-
time strong consensus implementations from sticky
bits.

1.2 Related work

The paper was inspired by the work done in [MMRT03],
which includes the first study of the power of objects
shared by Byzantine process. We have already discussed
above many of the results that have appeared
in [MMRT03].

An operation is wait-free if it is guaranteed to return
within a finite number of steps. The power of various
shared objects has been studied extensively in shared
memory environments where processes may fail benignly
and every operation is wait-free. Objects that can be

used together with atomic registers to build wait-free
implementations of any other object are called universal
objects. Previous work on shared objects provided meth-
ods, called universal constructions, to transform sequen-
tial specifications of arbitrary shared objects into wait-
free concurrent implementations that use universal ob-
jects [Her91,Plo89,JT92]. In particular, Herlihy proved
that consensus objects are universal [Her91]. Implement-
ing consensus with sticky bits, Plotkin then showed that
sticky bits are universal [Plo89]. Herlihy also classified
shared objects by their consensus number: that is, the
maximum number of processes that can reach consensus
using multiple instances of the object and read/write
registers [Her91].

Suppose that at some point in a computation a shared
register is set to some unexpected value. There are two
complementary ways to explain how this may happen.
One is to assume that the register’s value was set by
a Byzantine process, as may happen in our model. The
other is to assume that the processes may be correct, but
that the register itself is faulty. The subject of memory
failures (as opposed to process failures) has been investi-
gated in several papers [AGMT95,JCT98]. These papers
assume any number of process crash failures, but bound
the number of faulty objects, whereas we bound the num-
ber of (Byzantine) faulty processes, but each might sab-
otage all the objects to which it has access.

Attie investigates the power of shared objects ac-
cessed by Byzantine processes for achieving wait-free
Byzantine consensus. He proves that strong consensus
is impossible to achieve using objects that can be reset
back to their initial setting [Att00].

The new consensus algorithms presented in this pa-
per are based on an idea of Berman and Garay [BG89,
Mis89] for performing consensus in the message passing
model. The proof of one of our main impossibility re-
sults (i.e., the ACL Theorem) is inspired by proofs and
techniques presented in [FLP85,LA87]; the result itself
is a generalization of a result by Dwork, Herlihy, and
Waarts [DHW97].

Many experimental and commercial processors pro-
vide direct support for shared memory abstractions, and
increasing attention is being paid to implementing shared
memory primitives and concurrent data structures ei-
ther in hardware or in software [Boe04,DHLM04,Lea04,
Mic04,MS04]. Our result relates to work on message-
passing systems that emulate shared memory abstrac-
tions tolerant of Byzantine failures [PG89,SE+92,Rei96,
KMM98,CL99,MR00]; these systems guarantee the cor-
rectness of the emulated shared objects themselves, the
question is what power do these objects provide to the
correct processes that use them, in the face of corrupt
processes accessing them.

2 Model and definitions

The model of computation we consider was introduced
by Malkhi et al., and parts of this section are adapted
from [MMRT03]. This model consists of an asynchronous

Noga Alon et al.: Tight Bounds for Shared Memory Systems Accessed by Byzantine Processes 3

collection of n processes, denoted p1, . . . , pn, that com-
municate via shared objects. Wait-free shared memory
fault models assume no bound on the number of poten-
tially faulty processes—each operation by a process p on
a shared object must terminate, regardless of the con-
current actions of other processes. Following [MMRT03],
this model differs in two ways: we make the more pes-
simistic assumption that process failures are Byzantine,
and we make the more optimistic assumption that the
number of failures is bounded by t, where t is less than
the total number n of processes. In any run any process
may be either correct or faulty. Correct processes are con-
strained to obey their specifications. A faulty processes
can either crash or behave in a Byzantine way. A pro-
cess that follows its protocol up to a certain point and
then stops sending messages or stops accessing shared
objects is called a crashed process or a crash failure. A
process that deviates from its protocol either by crashing
or by performing incorrect operations is called a Byzan-
tine process or a Byzantine failure. We generally use t to
denote the maximum number of faulty processes. When-
ever we discuss faulty processes we identify the type of
failure assumed.

2.1 Shared objects with access control lists

Each shared object presents a set of operations. For ex-
ample, x.op denotes operation op on object x. For each
such operation x.op on x, there is an associated access
control list, denoted ACL(x.op), which is the set of pro-
cesses allowed to invoke that operation. Each operation
execution begins with an invocation by a process in the
operation’s ACL, and remains pending until a response
is received by the invoking process. The ACLs for two
different operations on the same object can differ, as can
the ACLs for the same operation on two different ob-
jects. The ACLs for an object do not change. For any
operation x.op, we say that x is k-op if |ACL(x.op)| = k.
A process not in the ACL for x.op cannot invoke x.op,
regardless of whether the process is correct or Byzantine
(faulty). That is, a (correct or faulty) process cannot
access an object in any way except via the operations
for which it appears in the associated ACLs. Byzantine
faulty processes can, for example, write different values
than their specifications suggest, or refuse to invoke an
operation they are supposed to invoke, but they remain
constrained against invoking operations for which they
are not in the ACL.

Many abstract objects support read operations: oper-
ations that return information about the state of the ob-
ject, without constraining its future behavior (see [Her91]).
In this paper, we assume the primitive objects (regis-
ters and sticky bits) support wait-free read operations
by all processes, and focus on the ACLs for non-read op-
erations. Atomic registers (and some other abstract ob-
jects) are historyless [FHS98] in that they support only
operations that do not change the register value, and
operations such as wait-free write() operations, that con-
strain future object behavior independently of the state
in which they are invoked. These operations have long

been known to be weak synchronization primitives [LA87,
Her91].

We define an operation to be potentially powerful if
it is neither a wait-free read nor a wait-free write() op-
eration, and for an object (or object type) x, we de-
fine ACLpow(x) to be the union of ACL(x.op) for all
potentially powerful operations x.op of x. Moreover, we
call an object (or object type) x potentially powerful if
ACLpow(x) ≥ 2. That is, potentially powerful objects are
those that support potentially powerful operations by at
least two different processes. Thus, neither registers nor
sticky bits (defined below) writable by only one process
are potentially powerful, while sticky bits writable by
more than one process are potentially powerful. (Poten-
tially powerful operations and objects such as snapshot
or collect are implementable from registers yet are too
weak to implement consensus. Hence we use the more
accurate terminology of “potentially powerful operations
and objects”, instead of the shorter but misleading “pow-
erful operations and objects” used in [MRTW02].) Our
lower bounds indicate the number of potentially powerful
objects required to implement weak and strong consen-
sus. Whether such objects are sufficient will depend on
their specific operation semantics.

2.2 Object definitions

Next, we define some of the types of object used in this
paper.

Atomic registers: An atomic register x is an object with
two operations: x.read and x.write(v) where v 6= ⊥.
An x.read that occurs before the first x.write() re-
turns ⊥. An x.read that occurs after an x.write() re-
turns the value written in the last preceding x.write()
operation.

Sticky bits: A sticky bit x is an object with two op-
erations: x.read and x.set(v) where v ∈ {0, 1}. An
x.read that occurs before the first x.set() returns ⊥.
An x.read that occurs after an x.set() returns the
value written in the first x.set() operation. We will
be concerned with wait-free sticky bits. (To highlight
the specific semantics of the x.set() operation and to
distinguish it from the write() of atomic registers, we
depart from previous work [Plo89,MMRT03], which
uses write() to denote both operations.)

Weak consensus objects: [MMRT03] A weak (binary)
consensus object x is an object with one operation:
x.propose(v), where v ∈ {0, 1}, satisfying: (1) In any
run, the x.propose() operation returns the same value,
called the consensus value, to every correct process
that invokes it. (2) In any finite run in which all par-
ticipating processes are correct (no Byzantine fail-
ures), if the consensus value is v, then some process
invoked x.propose(v).

Strong consensus objects: [MMRT03] A strong (binary)
consensus object x strengthens the second condition
above to read: (2) If the consensus value is v, then
some correct process invoked x.propose(v).1

1 Note that in the binary case, this definition of strong
consensus coincides with one that only requires the consensus

4 Noga Alon et al.: Tight Bounds for Shared Memory Systems Accessed by Byzantine Processes

In our protocols, we use both multi-writer and single-
writer sticky bits. In the Byzantine setting, a single-
writer sticky bit provides stronger properties than a single-
writer one-bit register, in that a Byzantine writer cannot
cause different processes to read different non-⊥-values
from the same sticky bit. Notice also that a weak con-
sensus object can be trivially implemented from a single
sticky bit, and that in the crash-failure only case, weak
consensus and strong consensus are identical.

2.3 Fault tolerance

It is shown in [MMRT03] that strong consensus objects
tolerating t Byzantine failures do not exist when n ≤ 3t,
and do exist when n ≥ (2t + 1)(t + 1). In this paper, we
close this gap, showing that strong consensus objects tol-
erating t Byzantine failures exist whenever n ≥ 3t + 1.
(Technically, this means that a “strong consensus ob-
ject” is one that provides the strong consensus property
when n and t have the specified relationship, and has
arbitrary behavior otherwise.)

As indicated in [MMRT03], strong consensus objects
have inherently nonsequential runs: the additional con-
dition, using redundancy to mask failures, requires that
at least t+1 processes invoke x.propose() before any cor-
rect process returns from this operation. However, we re-
quire that if sufficiently many steps by correct processes
are taken, then operations should complete. Specifically,
for any operation x.op, we say that:

• Operation x.op can tolerate t failures if x.op, when
executed by a correct process, eventually completes
in any run ρ in which at least n− t correct processes
invoke x.op.

• Operation x.op is t-resilient if x.op, when executed by
a correct process, eventually completes in any run in
which each of at least n−t correct processes infinitely
often has a pending invocation of x.op.

We next define fault-tolerant objects.

• Object o can tolerate t failures if all the operations o
supports can tolerate t failures.

• Object o is t-resilient if all the operations o supports
are t-resilient.

Notice that an object that can tolerate t failures is t-
resilient, but not vice versa. In [MMRT03], an object
that can tolerate t failures is called a t-threshold object.
In these definitions, it may seem odd that termination is
guaranteed only when correct processes access the object
using the same operation. On the surface, it seems more
natural to require termination in runs where at least n−t
correct processes access the object via any operation.
Our definitions are actually more general, since one could
encode different operations to be invocations of a single
operation with different operands.

The t-resilience property is appropriate for construc-
tions in which each process requires the active participa-
tion of other processes in order to complete its operation—
hence, it assures termination only when other (correct)

value to be v when all correct processes have the same input
v. In the nonbinary case, this definition is strictly stronger.

processes continue to access the implemented object with
the same operation. The property of tolerating t failures
(the t-threshold property) is a stronger condition, requir-
ing each operation by a correct process to terminate once
at least n− t correct processes have invoked that opera-
tion. This condition makes the most sense for “one-shot”
objects, such as consensus or election.

The main positive result in [MMRT03] shows that
there is a t-resilient universal construction out of wait-
free sticky bits, in a Byzantine shared memory environ-
ment, when the number of failures t is limited. This
leaves open the question of whether the same is true
when t-resilient is replaced with t-threshold.

As in [MMRT03], we use wait-free sticky bits to im-
plement strong consensus objects that tolerate t Byzan-
tine failures. These are in turn used to implement arbi-
trary t-resilient objects. (Throughout, atomic registers,
sticky bits and any other primitive objects are assumed
to be wait-free.)

3 Efficient strong consensus protocols

In this section, we present strong consensus protocols
based on an idea of Berman and Garay [BG89,Mis89]
for performing consensus in the message passing model.
Their idea was to run a protocol in phases, where each
phase preserves agreement, and if coordinated by a cor-
rect process, assures validity. Concatenating t+1 phases
guarantees at least one is coordinated by a correct pro-
cess.

We first show in Section 3.1 how to use sticky bits to
implement a protocol phase with similar properties for
the shared memory model. In Section 3.2, we show how
several strong consensus protocols with different desir-
able properties can be constructed from these protocol
phases. Our protocols are easily modifiable to implement
nonbinary consensus, as shown in Section 3.3.

3.1 A protocol phase

A protocol phase makes use of two types of shared ob-
jects. First, a phase uses n personal sticky bits, si : pi ∈
P , (where P is the set of all processes, |P | = n). Each
si is writable only by the single process pi. Second, a
phase also uses a single sticky bit, S, which is writable
by some set of t+1 processes. We call the t+1 processes
in ACL(si.set()) active in the phase. Each process pi en-
ters the phase with a proposed consensus value ini and
leaves with the output value outi.

Operation of a protocol phase, for each process pi ∈ P :

1. Perform the wait-free si.set(ini) operation. (That is,
assign ini to the personal sticky bit si.)

2. Perform wait-free reads of the personal sticky bits
s1 . . . sn until seeing at least t+1 distinct occurrences
of some value v other than ⊥.

Noga Alon et al.: Tight Bounds for Shared Memory Systems Accessed by Byzantine Processes 5

3. If pi has write access to S, then perform the wait-free
S.set(v) operation. (Of course, the first such sched-
uled process succeeds; the value of S does not change
after that.)

4. Perform wait-free reads of S until returning a value
v other than ⊥. (Note that S could only return ⊥ if
pi does not have write access to S.)

5. Perform wait-free reads of the personal sticky bits
s1 . . . , sn until at least n− t return with values other
than ⊥. If the value v read in step 4 occurs in at least
t+1 of the values read, return outi = v (and say that
pi supports v in this phase), else return outi = v.

Lemma 1. A protocol phase has the following properties
(given n ≥ 3t + 1 and the bound t on the number of
Byzantine processes):

1. If at least n − t correct processes enter a phase, all
correct processes eventually exit it.

2. The output value of any correct process is the input
value of some correct process.

3. If all the active processes are correct, all correct pro-
cesses exit the phase with the same value v.

Proof. 1. The first and third steps are wait-free. Once
n− t correct processes finish the first step, since n− t ≥
2t+1, some value must occur at least t+1 times, and the
second and fifth steps must eventually terminate. The
fourth step of all processes must terminate once a single
correct active process executes the third step, and this
must eventually happen because there are t + 1 active
processes, so at least one of the active processes must be
correct and will therefore perform step 3.

2. This follows because the output value of any cor-
rect process appears in at least t+1 personal sticky bits,
so one must have been set by a correct process.

3. If all the active processes are correct, then the
value v that S is set to will be supported by every correct
process, and therefore every correct process will exit the
phase with value v.

Now consider a consensus protocol, Schema, construct-
ed by chaining finitely many separate protocol phases
(with different sticky bits) together in a fixed sequence.
Each process enters the first phase with its proposed
value, uses the value returned from each phase as the in-
put to the next phase, and returns as the protocol output
the value returned from the last phase.

Lemma 2. Given n ≥ 3t+1 and the bound t on the num-
ber of Byzantine processes, if any phase has only correct
active processes, Schema implements strong consensus.

Proof. Part 1 of Lemma 1 guarantees the correct pro-
cesses eventually exit each phase and so Schema. Part 2
guarantees the correct processes enter each phase with
a valid input. The assumption and part 3 guarantee the
correct processes eventually agree in a phase, and part 2
guarantees that the value they agree on is valid and that
the correct processes do not change their value there-
after.

3.2 Strong consensus protocols

We present three protocols that use the protocol phases
of Section 3.1 to implement strong consensus. The first
two use different techniques for guaranteeing that some
phase has only correct active processes, so Lemma 1 ap-
plies. The third replaces this requirement with a voting
step at the end. The first protocol (Theorem 1) works for
any n ≥ 3t + 1, but requires exponentially many poten-
tially powerful objects. Since Malkhi et al. [MMRT03]
show that n ≥ 3t + 1 is necessary for strong consensus
in this model, our protocol is optimal in terms of the
ratio between t and n. The second protocol (Theorem 2)
uses only t+1 potentially powerful objects, but requires
n ≥ (t + 1)2. The third protocol (Theorem 3) is surpris-
ing because it works even if the faulty processes have
access to all the potentially powerful objects. It modifies
Schema by replacing the requirement that some phase
contains only correct active processes by a voting step
at the end. It uses only t potentially powerful objects
and requires n ≥ t2 + 5t + 1.

Theorem 1. A strong consensus object tolerating t Byz-
antine failures can be implemented using (t+1)-set(), n-
read sticky bits and 1-set(), n-read sticky bits, provided
that n ≥ 3t + 1.

Proof. Let P ′ be a subset of P with 2t + 1 processes.
The protocol consists of

(

2t+1
t

)

phases, each following the
other, where the active processes in each phase consist of
a distinct subset of t + 1 processes from P ′. Since only t
processes are faulty, one such phase contains only correct
active processes, and the theorem follows from Lemma 2.

One of the main results in [MMRT03] shows that
there is a t-resilient universal construction out of wait-
free sticky bits and strong consensus objects tolerating
t Byzantine failures. Using this universality result and
Theorem 1, we get that:

Corollary 1. Any t-resilient object can be implemented
using (t + 1)-set(), n-read sticky bits and 1-set(), n-read
sticky bits, provided that n ≥ 3t+1, where t is the bound
on the number of Byzantine failures.

Though optimal in n and t, the protocol of Theo-
rem 1 is not efficient in time or the number of potentially
powerful objects, as it uses a number of rounds and of
potentially powerful objects exponential in t. We show
in Section 4 that the space bound is inherent: an expo-
nential number of potentially powerful objects is required
when n = 3t + 1.

The following instantiation of Schema uses only t+1
rounds and t + 1 potentially powerful objects, but re-
quires n ≥ (t + 1)2. In this instantiation, a completely
new set of t+1 active processes is used for each protocol
phase:

Theorem 2. A strong consensus object that can tolerate
t Byzantine failures can be implemented using t + 1 (t +
1)-set(), n-read sticky bits, together with 1-set(), n-read
sticky bits, provided n ≥ (t + 1)2.

6 Noga Alon et al.: Tight Bounds for Shared Memory Systems Accessed by Byzantine Processes

Proof. There are t+1 phases, each with a disjoint set of
t + 1 active processes, so for at least one phase all active
processes are correct. The result follows by Lemma 2.

Theorems 1 and 2 are two extreme points in a tradeoff
between the number of potentially powerful objects and
the ratio of t to n. We examine this tradeoff more closely
in Section 4.2. First, we present a final protocol that is
surprising because there are only t potentially powerful
objects, and therefore it works even if t Byzantine pro-
cesses can access all the potentially powerful objects.

Theorem 3. A strong consensus object tolerating t Byz-
antine failures can be implemented using t potentially
powerful (t + 1)-set(), n-read sticky bits, together with
1-set(), n-read sticky bits, provided that n ≥ t2 + 5t + 1.

Proof. We modify the protocol of Theorem 2 by omitting
the last phase. That is, there are t phases, each involving
a disjoint set of t+1 active processes accessing the (t+1)-
set(), n-read sticky bit for that phase. We then designate
exactly 4t+1 additional processes (there are at least that
many) not active in any phase as voters . Note that either
some phase contains only correct active processes, or all
the voters are correct. Each of the voting processes takes
its output from the last phase and writes its resulting
value in a personal sticky bit. After the last phase, all
processes read the voters’ personal sticky bits, and decide
on the first value they see occurring 2t + 1 times.

To see that this works, first note that at most one
value can occur 2t + 1 or more times among the 4t +
1 voters. We now show one value must occur at least
that often, and that the value is valid. By parts 2 and 3
of Lemma 1, if there is a phase in which all the active
process are correct, then all correct voters will write the
same valid value to their own personal sticky bit. Since
in this case at least 3t + 1 voters are correct, eventually
at least 3t+1 ≥ 2t+1 votes will be written and will agree
on some valid value v. If there is no phase in which all
the active processes are correct, then as argued above,
no voter is faulty. In this case, all voters will write a valid
value, so one value will be written at least ⌈(4t+1)/2⌉ =
2t + 1 times.

Since there are only t potentially powerful objects,
this algorithm works even in the case that no single po-
tentially powerful object is accessible exclusively by cor-
rect processes. In this case, the size, t+1, of the ACLs is
needed to ensure that each potentially powerful object
will eventually be written (and so other processes can
wait for it to be set), rather than ensuring that some po-
tentially powerful object will be written by a correct pro-
cess. Other protocols derived from the protocol Schema,
such as the algorithm in the proof of Theorem 1, can
be similarly modified, removing one protocol phase and
replacing it with a set of 4t + 1 voters.

One might expect that such tricks could be used to re-
duce the number of potentially powerful objects even fur-
ther. For example, can strong consensus be implemented
with even fewer than t potentially powerful sticky bits?
Do t sticky bits suffice for n = 3t + 1? (The t-bit algo-
rithm of Theorem 3 requires n ≥ t2 +5t+1.) We explore
these questions in Section 4.

3.3 Implementing Strong k-consensus

In this section, we describe how our protocols can extend
to k-valued strong consensus.

Strong k-consensus objects: A strong k-consensus object
x is an object with one operation: x.propose(v), where
v ∈ {0, . . . , k − 1}, satisfying: (1) In any run, the
x.propose() operation returns the same value, called
the consensus value, to every correct process that in-
vokes it. (2) If the consensus value is v, then some
correct process invoked x.propose(v).

To implement k-consensus, we modify the last step of
a protocol phase from Section 3.1 to return outi = ini in
the case that the value v read in step 4 is not supported
by pi in this phase. (This ensures that the output value
of any correct process is always the input value of some
correct process.) In order to ensure that step 3 always
terminates, it becomes necessary to have n ≥ (k+1)t+1.
This modification yields the corresponding results; the
straightforward modifications to the proofs are omitted.

Lemma 3. A modified protocol phase has the following
properties (given n ≥ (k +1)t+1 and the bound t on the
number of Byzantine processes):

1. If at least n − t correct processes enter a phase, all
correct processes eventually exit it.

2. The output value of any correct process is the input
value of some correct process.

3. If all the active processes are correct, all correct pro-
cesses exit the phase with the same value v.

Theorem 4. A strong k-consensus object tolerating t Byz-
antine failures can be implemented using (t+1)-set(), n-
read sticky bits and 1-set(), n-read sticky bits, provided
that n ≥ (k + 1)t + 1.

Theorem 5. A strong k-consensus object that can tol-
erate t Byzantine failures can be implemented using t+1
(t + 1)-set(), n-read sticky bits, together with 1-set(), n-
read sticky bits, provided n ≥ max((t + 1)2, (k + 1)t + 1).

4 Lower Bounds and Tradeoffs

The protocols of Theorem 1 and Theorem 2 represent
different points on a tradeoff between efficiency and use-
fulness for more values of n. The protocol of Theorem 1
achieves strong consensus whenever n ≥ 3t + 1, but re-
quires an exponential number (in t) of potentially pow-
erful sticky bits. In contrast, the protocol of Theorem 2
uses only a polynomial number of potentially powerful
sticky bits, but is only guaranteed to achieve strong con-
sensus when n ≥ (t + 1)2.

This raises the question of whether these results are
the best possible. For example, can we do with much
fewer (e.g., polynomially many) potentially powerful ob-
jects and still achieve strong consensus whenever n ≥
3t + 1?

In this section, we show that the answer to this ques-
tion is no. More generally, we show tight asymptotic

Noga Alon et al.: Tight Bounds for Shared Memory Systems Accessed by Byzantine Processes 7

tradeoff between the number, k, of potentially powerful
sticky bits or a more general class of potentially powerful
objects that must be used and the number of processes,
n (as a function of the number of possible failures t) in
order to achieve strong consensus. This tradeoff is es-

sentially given by k = t · 2Θ(t2/n). In particular, when
n = 3t + 1, an exponential number of such objects is in-
deed necessary. Interestingly, we also obtain a protocol
for n = O(t2/ log t) that uses a polynomial number of
sticky bits. Such a protocol was only previously known
for n = Ω(t2) [MMRT03].

We begin by showing in Theorem 6 that the upper
bound t on the number of faulty processes is in fact a
lower bound, regardless of the number n of processes, on
the number of potentially powerful sticky bits needed for
strong consensus. In the ensuing subsections, we examine
the general tradeoff between the number of sticky bits or
related objects and the size of n as a function of t for
implementing strong consensus. The reader may wish to
review the definitions in Section 2 before proceeding.

Theorem 6. No t-resilient strong consensus object can
be implemented from fewer than t potentially powerful
sticky bits (using no other potentially powerful objects),
where t is the bound on the number of Byzantine failures.

Proof. Suppose such a protocol exists. Since it uses at
most t − 1 potentially powerful sticky bits, the protocol
must remain 1-resilient even in the case that t−1 Byzan-
tine processes first set these bits to 0 before any correct
process takes a step, and subsequently take no action.
These sticky bits are clearly useless: omitting them and
the t− 1 Byzantine processes results in a 1-resilient pro-
tocol with no potentially powerful objects that uses reg-
isters and single-writer sticky bits. Obviously, this pro-
tocol is also correct in the crash-fault model (against
the failure of a single process). But in the crash model,
single-writer sticky bits can be implemented by registers,
and the resulting protocol contradicts the well-known re-
sults of Fischer, Lynch and Paterson [FLP85] and Loui
and Abu-Amara [LA87].

4.1 The ACL Theorem

We next prove a general theorem establishing a neces-
sary condition for implementing weak consensus even
in the presence of only crash failures. Dwork, Herlihy,
and Waarts [DHW97] show that any implementation of
wait-free n-process consensus algorithm includes an ob-
ject, say o, that can be accessed by n processes. Our
result generalizes theirs in two ways: it shows that the
object o, must be potentially powerful; and it covers
also implementations that tolerate t < n failures (not
just wait-free implementations). We show that when at
most t out of n processors may crash, the weak con-
sensus problem is only solvable in shared memory sys-
tems containing a potentially powerful object o such
that ACLpow(o) ≥ t + 1; our proof is similar to proofs
of [FLP85,LA87]. Note that it is possible to imple-
ment weak consensus tolerating up to t Byzantine fail-
ures using a single potentially powerful object o with

ACLpow(o) ≥ t + 1, such as a weak consensus object o
defined with |ACL(o.propose())| = t + 1 or a sticky bit o
with |ACL(o.set())| = t + 1. Hence, Theorem 7 is tight
in some sense.

Theorem 7. Any weak consensus protocol that tolerates
t ≥ 1 crash failures must use at least one object, o, such
that |ACLpow(o)| ≥ t + 1.

Proof. We denote a run of a protocol by the sequence in
which processes invoke operations. A finite run x is v-
valent if in all extensions of x where a decision is made,
the decision value is v (v ∈ {0, 1}). A run is univalent if
it is either 0-valent or 1-valent, otherwise it is bivalent.
In the following, P denotes a set of processes, x and x′

denote runs and x′p is an extension of the run x′ by one
step of process p.

Assume π is a consensus protocol that can tolerate t
crash failures. By familiar arguments, π has an empty bi-
valent run x0. We begin with x0 and pursue the following
round-robin bivalence-preserving scheduling discipline:

x := x0; P := ∅; i := 0;
repeat

j := i + 1
if x has a bivalent extension x′pj

then x := x′pj

else P := P ∪ {pj}
i := (i + 1) mod n

until |P | = t + 1.

If this procedure does not terminate, then there is an
infinite run with only bivalent finite prefixes in which
n−t processes are correct. However, the existence of such
a run contradicts the definition of consensus protocols
that can tolerate t crash failures. Hence, the procedure
will terminate with some bivalent finite run x and a set
P of t+1 processes such that any extension x′p of x, for
any process p in P , is univalent.

Pick any p ∈ P , and let v be such that the run xp is
v-valent. Since x is bivalent, there is a shortest extension
z of x which is v-valent. (See Figure 1(a).)

Let z′ be the longest prefix of z that does not contain
any step of p, and note that either z = z′ or z = z′p.
From the assumption about z′, it follows that z′p is v-
valent, and z′ 6= x. (See Figure 1(b).)

Consider the extensions of x that are also prefixes of
z′. Since xp and z′p have opposite valence, there must
exist an extension y of x and a process q 6= p, x ≤ y <
yq ≤ z′, such that yp and yqp are univalent but with op-
posite valence. Hence y is bivalent, and it further follows
that y is a P -free extension of x. (See Figure 1(c).)

Familiar case analyses [FLP85,LA87] preclude p from
invoking wait-free read or write() operations at y: If p’s
next step is a read operation, then ypq and yqp are in-
distinguishable to processes other than p, yet their p-free
extensions must have opposite valence, a contradiction.
If p’s next step is a write() operation, then yp and yqp
are indistinguishable to processes other than q, yet their
q-free extensions must have opposite valence, a contra-
diction. Thus we conclude that the next operation of p
at y is potentially powerful, and as y is a p-free extension

8 Noga Alon et al.: Tight Bounds for Shared Memory Systems Accessed by Byzantine Processes

(a)

xp

x, bivalent

v-valent

xp

v

v-valent

p-free

z′, prefix of z

(b)

xp

v

x x

P -free

yp

v

yq

y, bivalent prefix
of z

yqp

(c)

z′p
z

v
v

Fig. 1. Illustration of runs in proof of Theorem 7

of x, it follows that the next operation of p at x is also
potentially powerful (since they are the same operation).
Since we chose p arbitrarily from P , the identical argu-
ment for each member of P implies that the the next
operation of any member of P at x is potentially pow-
erful, and hence the next operation of any member of P
at the P -free extension y of x is potentially powerful.

It remains to show that the next operations of all
the members of P at y access the same object. Let o
be the object accessed by p in the last step of yp. If q
does not access o in the last step of yq, then ypq and
yqp are indistinguishable, a contradiction. Now consider
any p′ ∈ P , and the single-step extension yp′ of y. If p′

accesses an object other than o in the last step of yp′,
then note first that p′ is neither p nor q. Then either
yp′ is v-valent, and the indistinguishability of yp′qp and
yqpp′ leads to a contradiction, or yp′ is v-valent, and
similarly the indistinguishability of ypp′ and yp′p leads
to a contradiction. It follows that all t+1 processes in P
invoke potentially powerful operations on o. We conclude
that |ACLpow(o)| ≥ t + 1.

The famous impossibility result from [FLP85,LA87] fol-
lows immediately from Theorem 7.

Corollary 2. There is no weak consensus protocol toler-
ating even one crash failure that uses only atomic read/
write registers.

Proof. By Theorem 7, any weak consensus protocol that
tolerates one crash failures must use at least one object,
o, such that |ACLpow(o)| ≥ 2. However, for any atomic
register r, |ACLpow(r)| = 0.

As we will see, Theorem 7, in combination with the pro-
tocols of the previous section, is a powerful tool in estab-
lishing an asymptotic tradeoff on the number of sticky
bits (or other potentially powerful objects) necessary to
implement strong consensus, as n varies relative to t.

4.2 Subvertible Objects and Immunity

In this and the following subsections, we investigate a
tradeoff between the number of potentially powerful
sticky bits and the number n of processes (as a function
of the number t of possible failures) that must be used
in order to achieve strong consensus. Since a strong con-
sensus object s would of course trivially implement itself
(with ACLpow(s.propose()) = n), some care is needed
to generalize the question from the specific case of how
many sticky bits are necessary to how many objects are
necessary in order to implement strong consensus. Not-
ing that the relevant property of sticky bits is that a
single Byzantine process with access to a sticky bit can
render it useless to the correct processes, we generalize
from the notion of sticky bits to “subvertible” objects.

Accordingly, we define an object o to be subvertible
if it is potentially powerful and any Byzantine process
in ACL(o) can cause operations by correct processes to
be useless—that is, if there are runs in which the re-
turn values of correct processes are dependent only on
the operations of the Byzantine process.2 Sticky bits are
subvertible, since a Byzantine process can invoke set(0)
before any correct process takes a step. Obviously, if the
object supports write() operations it is subvertible, and
of course, strong consensus itself is not subvertible.

This section uses a combinatorial analysis to provide
a tight asymptotic tradeoff between the number, k, of
subvertible objects that must be used and the number
n of processes (as a function of the number t of possible
failures), in the case that only subvertible objects are
used.

Correctness of the first two protocols in Section 3
depends on there being enough such objects that at least

2 A formal definition of subvertible objects would require
considerable machinery and is beyond the scope of this pa-
per. A concerned reader may substitute “potentially powerful
sticky bits” in place of “subvertible objects” in the remainder
of the paper.

Noga Alon et al.: Tight Bounds for Shared Memory Systems Accessed by Byzantine Processes 9

one is accessed only by correct processes. This property is
a combinatorial property of the sticky bit access control
lists, which we call being “t-immune”: no set of t (faulty)
processes can subvert all the potentially powerful sticky
bits. This is formalized in the following definition. We
denote the set {1, 2, . . . , n} by [n]. A collection of subsets
S = {S1, S2, . . . , Sk} of the domain [n] is m-immune if
for every set T ⊆ [n] of m elements there exists Sj ∈ S
such that T ∩ Sj = ∅. We note that related objects have
been studied extensively in the past [Fur91,GGL95].

Theorem 3 shows that strong consensus protocols can
exist even when the access lists of the potentially pow-
erful objects are not t-immune. However, we now argue
that m-immunity (for some m that depends on t) is a
necessary condition. As a simple corollary of Theorem 7
(and generalizing Theorem 6) we have the following:

Corollary 3. Let π be any strong consensus protocol that
tolerates t1 ≥ 1 crash failures and t2 ≥ 1 Byzantine fail-
ures and uses only subvertible objects. Let S be the col-
lection of ACLpow(o) for all potentially powerful objects
o used by π that are of size at least t1 + 1. Then S is
t2-immune.

Proof. Assume to the contrary that T2 = {i1, . . . , it2} is
a set of t2 processes that cover S (i.e., for all Sj ∈ S,
T2 ∩ Sj 6= ∅). Then π contains runs in which all the pro-
cesses in T2 are Byzantine. These processes can subvert
all the objects with large (size t1+1) access lists, making
these objects useless in fighting the remaining t1 crash
failures. More formally, it is easy to modify π so that it
still tolerates t1 crash failures but uses no object o with
ACLpow(o) bigger than t1. Since this is a contradiction
to Theorem 7, the corollary follows.

Noting that Byzantine failures can choose to sim-
ply crash, the next corollary follows trivially from Corol-
lary 3 by taking t1 = ⌊(1 − α)t⌋ and t2 = ⌈αt⌉.

Corollary 4. Let π be any strong consensus protocol that
tolerates t Byzantine failures and uses only subvertible
objects. Let 0 < α < 1 be some constant such that
(1 − α)t ≥ 1, and let S be the collection of ACLpow(o)
for all potentially powerful objects o used by π that are
of size at least ⌊(1 − α)t⌋ + 1. Then S is ⌈αt⌉-immune.

4.3 Bounds on the Size of m-Immune Collections

In light of Corollary 4 and the proof of Theorem 1, both
upper and lower bounds on the number of subvertible
objects needed by Byzantine consensus protocols (The-
orems 10 and 11) can be derived from corresponding
bounds on the number of sets in m-immune collections.
Such bounds are given in this section. The minimum
possible number of subsets in an m-immune collection
of subsets of cardinality at least t + 1 each in the do-
main [n] is precisely the minimum number of edges in a
(t+1)-uniform hypergraph on n vertices that contains no
independent set of size n−m. This number is the hyper-
graph Turán number T (n, n− m, t + 1), in the notation
of [Fur91]. Although these numbers have been investi-
gated extensively, the existing results focus on the cases

of fixed values of t + 1 (the size of each edge) and n−m
(the forbidden size of a maximum independent set), and
large n, whereas in our case the parameters are different.
We were therefore unable to deduce our results from pre-
vious work, but apply techniques similar to some of the
existing ones to derive our bounds (cf. [Fur91,GGL95]).
For simplicity, we concentrate in the next theorem on
the case n ≥ 3t + 1 which is the interesting one for our
application.

Theorem 8. Let S = {S1, S2, . . . , Sk} be an m-immune
collection of subsets of the domain [n]. If each set Sj ∈ S
contains at least t + 1 elements, where n ≥ 3t + 1, then
n ≥ t + m + 1, and

k ≥ max{m + 1, m · 2Ω(t·m/n)}.

Proof. That k ≥ m + 1 is trivial (any collection of less
than m+1 subsets can be covered by m elements). Simi-
larly, n must be at least t+m+1 as otherwise any subset
of [n] of cardinality m intersects all subsets of cardinality
at least t + 1 (which includes all of the sets in S). It re-
mains to prove that k ≥ m·2Ω(t·m/n), for which we apply
the probabilistic method (see [AS00]). We can assume
without loss of generality that t · m/n = Ω(1) (as oth-
erwise this inequality follows from k ≥ m + 1). Also as-
sume without loss of generality that m is even. Consider
a subset T ′ ⊂ [n] obtained by choosing m/2 elements
randomly with replacement from [n]. Then |T ′| ≤ m/2,
and for any j ∈ [k],

Pr[T ′ ∩ Sj = ∅] ≤

(

1 −
t + 1

n

)m/2

.

Therefore, the expected number of j ∈ [k] such that T ′∩

Sj = ∅ is at most k
(

1 − t+1
n

)m/2
. If k

(

1 − t+1
n

)m/2
≤

m/2 then there exists an assignment to the set T ′ that
covers all but m/2 of the subsets Sj . The remaining sub-
sets can be covered by additional m/2 elements in [n],
which contradicts the assumption that S is m-immune.

We can therefore conclude that k ≥ m/2·
(

1 − t+1
n

)−m/2
.

Since n ≥ 3t+1 and we also have n ≥ t+m+1, and m > 0
(otherwise this part of the proof is trivial), we get that
t+1
n ≤ 1/2. Therefore,

(

1 − t+1
n

)−1
= eΩ((t+1)/n) (by the

Taylor expansion of e−x). Since we assumed t · m/n =

Ω(1) we can conclude that m/2 ·
(

1 − t+1
n

)−m/2
= m ·

2Ω(t·m/n), completing the proof.

An upper bound on the number of sets in m-immune
collections can also be obtained by an application of the
probabilistic method. Nevertheless, we are interested in
an explicit construction of the m-immune collection (so
that the resulting consensus protocol is explicit as well).
The proof of the following theorem provides such a con-
struction.

Theorem 9. For any n, t and m with n ≥ t+m+1, there
exists an m-immune collection S = {S1, S2, . . . , Sk} of
subsets of the domain [n], such that (1) all the sets Sj ∈
S contain at least t + 1 elements and (2)

k ≤ max{m + 1, m · 2O(t·m/n)}.

10 Noga Alon et al.: Tight Bounds for Shared Memory Systems Accessed by Byzantine Processes

Proof. First we consider two values of n for which a sim-
ple construction of the desired collection S exists: (a)
If n ≥ (m + 1)(t + 1) we can simply define S to be a
collection of m + 1 disjoint subsets of size t + 1. (b) If
n < 8(t + m) + 1, we can define S to contain all the
subsets of size t+1 of the first t+m+1 elements. When
n < 8(t + m) + 1 this construction gives k =

(

t+m+1
m

)

<

2t+m+1 = 2O(t·m/n) as claimed. We can therefore assume
without loss of generality that n < (m + 1)(t + 1). We
can also assume without loss of generality that n, t + 1
and m are all (positive) powers of 2 and n ≥ 2(m+t)+1.
To justify this assumption, we note that it is sufficient to
construct our collection for n′ ≤ n, t′ ≥ t, and m′ ≥ m
that are the closest values such that n′, t′ +1 and m′ are
all powers of 2. As long as n ≥ 8(t+m)+1, we have that
n′ ≥ 2(t′ + m′)+ 1, (which in particular guarantees that
n′ ≥ t′ + m′ + 1). As argued above, it is safe to assume
that n ≥ 8(t + m) + 1.

We can now define the desired m-immune collection.
Set ℓ = 2(t + 1)m/n. By our assumptions, ℓ is a positive
integer (as both 2(t + 1)m and n are powers of 2 and
n ≤ 2(t + 1)m). Set r = n/2(t + 1). By our assumptions,
this also is an integer and furthermore r < m. Now, let us
divide the set [n] into 2ℓr = 2m disjoint subsets of equal
size: A1,1, . . . A1,2ℓ, A2,1, . . . , A2,2ℓ . . . , Ar,2ℓ (this is again
possible since n and m are powers of 2 and n > 2m). We
can now define the collection S. For any i ∈ [r] and
any ℓ distinct indices j1, j2, . . . , jℓ in [2ℓ], the collection
contains the set

Si,j1,j2,...,jℓ
= Ai,j1 ∪ Ai,j2 ∪ . . . ∪ Ai,jℓ

.

By definition, the number of sets in the collection is
r ·

(

2ℓ
ℓ

)

< r · 22ℓ = m · 2O(t·m/n). Furthermore, each set
contains n/2r = t + 1 elements. It remains to show that
S is m-immune. Let T be any subset of [n] of size m. By
averaging, there exists at least one i ∈ [r] such that T
contains at most m/r = ℓ elements in ∪2ℓ

j=1Ai,j . There-

fore, T contains elements in at most ℓ sets {Ai,j}2ℓ
j=1. It

follows that there exist distinct indices j1, j2, . . . , jℓ in
[2ℓ] such that T ∩ Si,j1,j2,...,jℓ

= ∅.

4.4 The Tradeoff Results

Putting it all together, we have the following comple-
mentary theorems.

Theorem 10. For any n ≥ 3t + 1, there exists a strong
consensus protocol that tolerates t Byzantine failures and
the only potentially powerful objects it uses are max{t +

1, t · 2O(t2/n)} sticky bits with access lists of size t + 1.

Proof. If t = 0, then strong consensus can be trivially
achieved using one single-writer sticky bit. Otherwise,
t ≥ 1. Applying Theorem 9 with m = t yields a t-immune

collection of max{t+1, t ·2O(t2/n)} subsets of [n], each of
size t+1. Taking those subsets as the access control lists

of max{t + 1, t · 2O(t2/n)} sticky bits yields the desired
protocol.

Theorem 11. For any n ≥ 3t+1 and any constant 0 <
α < 1, any strong consensus protocol that tolerates t
Byzantine failures using only subvertible objects must use

at least t · 2Ω(t2/n) subvertible objects with |ACLpow(o)|
≥ (1 − α)t for each such object o.

Proof. If (1 − α)t ≥ 1, then applying Corollary 4 we
have that the collection of ACLpow(o) for all potentially
powerful objects o used by the strong consensus protocol
that are of size at least ⌊(1−α)t⌋+ 1 ≥ (1−α)t is ⌈αt⌉-
immune. The theorem now follows from Theorem 8. In
case (1−α)t < 1, then in particular t is also a constant,
and the theorem follows as above by applying Corollary 4
(and then Theorem 8) with α′ = 1 − 1/t.

As a corollary of Theorem 10, we get the promised
protocol for n = O(t2/ log t) that only uses a polynomial
number of sticky bits.

Corollary 5. For any n ≥ 3t+1 such that n = O(t2/ log t),
there exists a strong consensus protocol that tolerates t
Byzantine failures and the only potentially powerful ob-
jects it uses are a polynomial number (in t) of sticky bits
with access lists of size t + 1.

5 Conclusions

We presented a strong consensus protocol that can tol-
erate t Byzantine failures (and therefore a universality
result for linearizable t-resilient objects) from wait-free
sticky bits for n ≥ 3t + 1. We demonstrated a tight
tradeoff between the fault tolerance and the efficiency
of any strong consensus protocol using subvertible ob-
jects such as sticky bits, in particular showing that any
strong consensus protocol that works for all n ≥ 3t and
uses only subvertible objects must use an exponential
number of objects. The tradeoff also implies a polyno-
mial time strong consensus protocol that can tolerate t
Byzantine failures for n = O(t2/ log t).

It remains open whether sticky bits are universal for
n ≤ 3t. Since strong consensus is not possible for n ≤ 3t,
a different universality construction not going through
strong consensus would be needed. (The impossibility of
strong consensus for n ≤ 3t rests on the logical inconsis-
tency of the object specification, and does not reflect the
implementability of other, especially linearizable, object
types.)

Acknowledgments

We would like to thank Yuval Ishai and Juan Garay for
useful discussions. We also thank the anonymous review-
ers for their extensive and helpful comments.

Noga Alon et al.: Tight Bounds for Shared Memory Systems Accessed by Byzantine Processes 11

References

[AGMT95] Y. Afek, D. Greenberg, M. Merritt, and
G. Taubenfeld. Computing with faulty shared
memory. Journal of the ACM, 42(6):1231–1274,
November 1995.

[AS00] N. Alon and J. Spencer, The Probabilistic
Method, Second Edition, Wiley, New York, 2000.

[Att00] P.C. Attie. Wait-free Byzantine Agreement.
Technical Report NU-CCS-00-02, College of
Computer Science, Northeastern University,
May 2000.

[Boe04] H-J. Boehm. An almost non-blocking stack. In
Proc. 23rd ACM Symp. on Principles of Dis-
tributed Computing, pages 40–49, July 2004.

[CL99] M. Castro and B. Liskov. Practical Byzantine
fault tolerance. In Proceedings of the 3rd Sym-
posium on Operating Systems Design and Im-
plementation – OSDI’99, February, 1999, New
Orleans, LA.

[BG89] P. Berman and J.A. Garay. Asymptotical
optimal distributed consensus. Proceedings
of the 16th International Colloquium on Au-
tomata, Languages and Programming (ICALP
89), LNCS 372, pages 80–94, 1989.

[DHLM04] S. Doherty, M. Herlihy, V. Luchangco, and
M. Moir. Bringing practical lock-free synchro-
nization to 64-bit applications. In Proc. 23rd
ACM Symp. on Principles of Distributed Com-
puting, pages 31–39, July 2004.

[DHW97] C. Dwork, M. Herlihy, and O. Waarts. Con-
tention in shared memory algorithms. J. ACM ,
44(6):779–805, November 1997.

[FHS98] F. Fich, M. Herlihy, and N. Shavit, On the
Space Complexity of Randomized Synchroniza-
tion. Journal of the ACM, 45(5):843–862,
September 1998.

[FLP85] M.J. Fischer, N.A. Lynch, and M.S. Paterson.
Impossibility of distributed consensus with one
faulty process. Journal of the ACM, 32(2):374–
382, April 1985.

[Fur91] Z. Füredi, Turán type problems. Surveys in
combinatorics, 1991 (Guildford, 1991), 253–300,
London Math. Soc. Lecture Note Ser., 166, Cam-
bridge Univ. Press, Cambridge, 1991.

[GGL95] M. Grötschel, R. L. Graham, and L. Lovász,
Handbook of Combinatorics. Vol. 2, Chapter 24.
MIT Press. 1995.

[HW90] M.P. Herlihy and J.M. Wing. Linearizability:
A correctness condition for concurrent objects.
ACM Transactions on Programming Languages
and Systems 12(3):463–492, July 1990.

[Her91] M.P. Herlihy. Wait-free synchronization, ACM
Transactions on Programming Languages and
Systems 13(1):124–149, January 1991. A prelim-
inary version appeared in PODC’88.

[JCT98] P. Jayanti, T. Chandra, and S. Toueg. Fault-
tolerant wait-free shared objects. Journal of the
ACM, 45(3):451–500, May 1998.

[JT92] P. Jayanti and S. Toueg. Some results on the
impossibility, universality, and decidability of
consensus. Proc. of the 6th Int. Workshop on
Distributed Algorithms LNCS 647, pages 69–84,
1992.

[KMM98] K. P. Kihlstrom, L. E. Moser and P. M. Melliar-
Smith. The SecureRing protocols for securing
group communication. In Proceedings of the 31st
IEEE Hawaii Int. Conf. on System Sciences,
pages 317–326, January 1998.

[MS04] E. Ladan-Mozes and N. Shavit. An Optimistic
Approach to Lock-Free FIFO Queues. In Pro-
ceedings of the 18th International Symposium on
Distributed Computing, LNCS 3274, pages 117–
131, 2004.

[Lea04] D. Lea. The Java concurrency pack-
age JSR-166. http://gee.cs.oswego.edu/dl/

concurrency-interest/index.html.
[LA87] M.C. Loui and H. Abu-Amara. Memory require-

ments for agreement among unreliable asyn-
chronous processes. Advances in Computing Re-
search, 4:163–183, 1987.

[MMRT03] D. Malkhi, M. Merritt, M. Reiter, and
G. Taubenfeld. Objects shared by Byzantine
processes. Distributed Computing 16(1):37–48,
2003. A preliminary version appeared in Pro-
ceedings of the 14th International Symposium
on Distributed Computing (DISC 2000), LNCS
1914, pages 345–359, 2000.

[MR00] D. Malkhi and M. K. Reiter. An architecture
for survivable coordination in large distributed
systems. IEEE Transactions on Knowledge and
Data Engineering 12(2):187–202, March/April
2000.

[MRTW02] M. Merritt, O. Reingold, G. Taubenfeld, and
R. N. Wright, In Proceedings of the 16th Inter-
national Symposium on Distributed Computing
(DISC 2002), LNCS 2508, pages 222–236, 2002.

[Mic04] M. M. Michael. Practical Lock-Free and Wait-
Free LL/SC/VL Implementations Using 64-Bit
CAS. In 18th International Symposium on Dis-
tributed Computing, LNCS 3274, pages 144–158,
2004.

[Mis89] J. Misra. A simple proof of a simple consen-
sus algorithm. Information Processing Letters,
33(1):21–24, 1989.

[PG89] F. M. Pittelli and H. Garcia-Molina. Reliable
scheduling in a TMR database system. ACM
Transactions on Computer Systems, 7(1):25–60,
February 1989.

[Plo89] S.A. Plotkin. Sticky bits and universality of con-
sensus. In Proc. 8th ACM Symp. on Principles
of Distributed Computing, pages 159–175, Au-
gust 1989.

[Rei96] M. K. Reiter. Distributing trust with the
Rampart toolkit. Communications of the ACM
39(4):71–74, April 1996.

[SE+92] S. K. Shrivastava, P. D. Ezhilchelvan,
N. A. Speirs, S. Tao, and A. Tully. Princi-
pal features of the VOLTAN family of reliable
node architectures for distributed systems.
IEEE Trans. on Computers, 41(5):542–549,
May 1992.

