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Abstract

The recent investigation of privacy-preserving

data mining has been motivated by the growing con-

cern about the privacy of individuals when their

data is stored, aggregated, and mined for infor-

mation. In an effort towards practical algorithms

for privacy-preserving data mining solutions, we

analyze and implement solutions to an important

primitive: the privacy-preserving scalar product of

two vectors held by different parties. Privacy-

preserving scalar products are an important compo-

nent of privacy-preserving data mining algorithms,

particularly when data is vertically partitioned be-

tween two or more parties.

We examine a cryptographically secure privacy-

preserving data mining solution in different compu-

tational settings. Our experimental results show that

in the absence of special-purpose hardware acceler-

ators or practical optimizations, the computational

complexity, rather than the communication complex-

ity, is the performance bottleneck. We also evaluate

several practical optimizations to improve the effi-

ciency.

Keywords: privacy, data mining, scalar product
protocol.

1 Introduction

Privacy-preserving data mining is intended to
address conflicting goals. On the one hand, it

∗This work was supported by the National Science Foun-
dation under Grant No. CCR-0331584. A preliminary version
of this work appears as [SWY04].

is often desirable to extract information from col-
lected data. On the other hand, there are often
legitimate concerns about the privacy of personal
data, proprietary data, and other sensitive infor-
mation. Privacy-preserving data mining, in which
certain computations are allowed, while other infor-
mation is to remain protected, was first introduced
in 2000 by Agrawal and Srikant [AS00] and Lin-
dell and Pinkas [LP02]. Since then, extensive re-
search has been devoted to privacy-preserving data
mining and other privacy-preserving primitives effi-
cient enough to be used on extremely large data sets
(e.g., [AD01, FIM+01, CIK+01, ESAG02, VC02,
KC02, EGS03, VC03, FNP04, AMP04, WY04]).

In general, this research has been divided into
solutions that provide strong cryptographic privacy
protection, which require more computational over-
head and have so far been limited to extremely sim-
ple (but useful) functions, and those that use pertur-
bation, which provide weaker privacy properties, but
allow much more efficient solutions and allow com-
putation of more sophisticated data mining func-
tions.

Our work provides an experimental evaluation of
a cryptographic solution to the problem of com-
puting the scalar product of two vectors. The
particular solution we use for our experiments ap-
pears in [WY04] and is proven secure in [GLLM04].
The scalar product primitive is extremely useful in
privacy-preserving data mining both when data is
vertically partitioned and when it is arbitrarily par-
titioned between two or more parties. In these cases,
such vectors are typically binary vectors represent-
ing which of the records that each party are com-
patible with a particular set of assignments to all
the attributes. (Hence, even if the underlying data
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itself is non-binary, it is binary scalar products that
are typically required). Examples include associ-
ation rules [VC02], naive Bayes classifiers [VC04],
Bayesian networks [WY04, MSK04, YW05], and k-
means clustering [JW05].

Our results show that the total running time
needed is quite high, but it becomes feasible if cer-
tain straightforward optimizations are done, such as
some precomputation before the actual computation
is to be done. Unless special hardware accelerators
or practical optimizations are used, the computa-
tional delay caused by the encryption operations is
the bottleneck, while the communication delay is sig-
nificantly less.

To our knowledge, our implementation is one
of the first implementations of cryptographically
secure privacy-preserving database computations.
Relatedly, Malkhi et al.’s recent implementa-
tion [MNPS04] of Yao’s general secure two-party
computation solution [Yao86] provides the first gen-
eral secure multiparty computation results, and
demonstrates that many computations on relatively
small data sets can be done extremely efficiently.
Indeed, secure multiparty computation and crypto-
graphically strong privacy-preserving database com-
putations, largely considered only theoretical, seem
to be on the cusp of practicality as both theoreti-
cal and technological advances have improved their
performance. Therefore, this kind of initial experi-
mental work is an important contribution to under-
standing where such results are within the realm of
practice and where further improvements are still
needed.

Further details of the scalar product protocol
we use are given in Section 2. We report on our
experimental results in Section 3.

2 Privacy-Preserving Scalar Prod-

ucts

As previously discussed, the scalar product, or
inner product, of two binary vectors is a frequently
used computation in privacy-preserving data mining
applications. Given two vectors z = (x1, . . . , xn)
and z′ = (y1, . . . , yn) of the same length, their scalar
product is z · z′ =

∑n

i=1
xiyi.

Distributed privacy-preserving scalar product
protocols are an important primitive for privacy-
preserving data mining. Several such protocols have
been proposed (e.g. [CIK+01, DA01, VC02, LKR03,
WY04, FNP04, GLLM04, MSK04]), with varying
degrees of security. A nice overview of the problem

Setting: Alice has a binary vector za =
(a1, · · · , an) and Bob has a binary vector
zb = (b1, · · · , bn).

Goal: Bob learns za · zb + R and Alice learns
R, where R is a random number chosen by
Alice.

1. Bob generates a cryptographic key pair
(PK ,SK ) of a semantically secure homo-
morphic encryption scheme and sends the
public key PK to Alice. We denote en-
cryption using PK by e(·) and decryption
using SK by d(·).

2. Bob encrypts his elements using PK and
sends the vector (e(b1), · · · , e(bn)) of en-
cryptions to Alice.

3. Alice generates a random number R and
encrypts it using PK .

4. Alice computes P = e(R) ·
∏n

i=1
yi, where

yi = e(bi) if ai = 1 and yi = 1 if ai = 0.
Alice sends P to Bob.

5. Bob decrypts P to get d(P ) = R +∑n

i=1
ai · bi.

Figure 1. Privacy-Preserving Scalar Prod-
uct Protocol

and the security properties of some solutions appears
in [GLLM04]. In a privacy-preserving scalar product
protocol, one party Alice holds z and the other party
Bob holds z′. One or both parties are supposed to
learn z · z′. Ideally, neither party should learn any-
thing about the other party’s input beyond what is
implied by his or her own vector and his or her re-
sult (where his or her result is either the scalar prod-
uct or nothing, depending on whether the party was
supposed to learn it), though some of the proposed
protocols provide only weaker notions of privacy.

To be useful as a privacy-preserving primitive
that can be used as a sub-protocol in a larger
privacy-preserving protocol, it is often desirable to
use a privacy-preserving scalar product protocols in
which Alice and Bob learn additive secret shares of
the resulting scalar product, rather than either party
learning the scalar product itself. For example, if
Alice holds z, Bob holds z′, and the scalar product
z · z′ is known to be less than M , then Alice learns
rA and Bob learns rB , where rA and rB are random
integers, called shares , between 0 and M − 1 such
that rA + rB mod M = z · z′. Therefore, together

2



Alice and Bob “know” z ·z′, but individually neither
learns any information about its value. We call
such a protocol a privacy-preserving scalar product

share protocol . Most of the above protocols can be
modified to act as privacy-preserving scalar product
share protocols with no performance penalty.

The privacy-preserving scalar product share pro-
tocol that we use for our experiments is a relatively
straightforward one based on semantically secure ho-

momorphic encryption. The protocol was presented
in [WY04] and—in the version that computes the
product itself rather than the shares—proven secure
in [GLLM04]. The protocol as we implement it is
presented in Figure 1.

3 Experimental Results

We implemented the scalar product protocol
shown in Figure 1 and measured the computa-
tion and communication performance. We imple-
mented the protocol in Java and C. The Java ver-
sion uses the Java security package to perform cryp-
tographic operations and the C implementation uses
the OpenSSL libraries. For the semantically secure
homomorphic encryption, we use the Paillier pub-
lic key scheme [Pai99] as the building block of the
protocol. We tested the protocol performance with
cryptographic keys of 512 bits and 1024 bits, respec-
tively. We experimented across various vector sizes
from 10, 000 elements to 500, 000 elements, where
each element was either 0 or 1. On average, the
performance results from our Java experiments were
around five times slower than those of similar C ex-
periments; except in Section 3.4, we report only the
C numbers here.

The experimental data was measured in different
computational settings. Our results show that com-
putation time prevails over the communication time,
accounting for the bulk of the total running time.

3.1 Performance Results without Any Opti-
mization

Figures 2–5 show experimental results of the di-
rect implementation of the solution described in Sec-
tion 2, without any optimizations. The experimen-
tal environment is two NetBSD systems running on
AMD Athlon 2GHz processors with 512M memory.
Alice’s process ran on one of the computers in our
experiment, and Bob’s on the other. They were con-
nected by an Ethernet.

Figure 2 shows the overall running time of the
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Figure 2. Overall Running Time of the
Protocol

protocol with different key sizes of 512 and 1024
bits respectively. 1024-bit cryptographic key pro-
vide much stronger security than 512 bits, but the
security comes at a price: the protocol with 512-bit
key is five times faster than the one with 1024-bit
key. For vectors of 200, 000 elements, the protocol
with 512-bit key takes 17.4 minutes, and the proto-
col with 1024-bit key takes 80.7 minutes.

Our results illustrate linear time performance,
as expected. The bulk of the execution time is
attributable to Alice’s computation of the n public
key encryptions of her input vector. Figure 3 shows
that Alice’s computation dominates, taking 98% of
the overall running time of the protocol. The time
for Bob’s computation is significantly less, and the
communication time of the protocol is also much
less.

Figures 4 and 5 represent the communication time
and Bob’s computational time in the protocol with
various vector sizes. Our results show that in the
absence of any practical optimizations or specialized
hardware to accelerate Alice’s encryption, computa-
tion time is the bottleneck for the protocol’s per-
formance. In Sections 3.2–3.4, we evaluate several
straightforward practical optimizations.

3.2 Streaming Execution and Pipeline paral-
lelism

Noting that both Alice’s computation and Bob’s
computation can be done in a single “streaming”
pass through their inputs, we implemented “batch-
ing” of the client processing, in which Alice batches
her processing of indices into smaller sized chunks,
performing and sending the encryptions of the in-
dices in each chunk before proceeding to the next
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Figure 3. Ratio of Alice’s Computational
Time to Overall Running Time
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Figure 4. Bob’s Computational Time
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Figure 5. Communication Time

chunk. Upon receiving each chunk, Bob can con-
tinue computing the partial product.

In addition to taking advantage of pipeline par-
allelism, this approach also reduces the memory re-
quirements of both Alice and Bob. At any point
in time, Alice has to allocate memory needed to
hold only one chunk of her vector rather than the
whole vector. Similarly, Bob needs only hold a sin-
gle vector chunk in memory at one time. The opti-
mal chunk size depends on the relative communica-
tion and computation speeds, as well as the overhead
in processing messages and memory access. In or-
der to achieve maximum parallelization, ideally all
three activities (communication of one batch, client
processing of the next batch, and server processing
of the previous batch) should require approximately
the same amount of time.

In the computational setting of Section 3.1, Bob’s
computation and the communication account for
only 2% overhead of the overall overhead, so pipeline
parallelism, at best, slightly improves the perfor-
mance. However, if Bob is running on a slow com-
puter or the protocol is running over a slow com-
munication channel, the overall running time can be
more substantially reduced via pipeline parallelism.

We ran the protocol with a 512-bit key to test
the effect of pipeline parallelism. Figure 6 compares
the overall runtime of the protocol with and without
batching data. In this experiment, which ran on
two computers with 1GHz CPU and they are slower
than the setting of Section 3.1, we took a batch size
of 100 elements, resulting in approximately a 10%
reduction in overall runtime.
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Figure 6. The Comparison of Overall
Running Time with and without Batch-
ing
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Figure 7. The Overall Running Time with
Preprocessing

3.3 Preprocessing the vectors

This optimization aims to reduce the overall
computation complexity by having Alice encrypt her
vector offline in advance and store the encrypted
data. Even if Alice does not know in advance
which vector elements will be 0 and which will be
1, she can simply encrypt a large number of 0’s
and a large number of 1’s to use later. (Recall
that because semantically secure encryption is used,
each encryption of 0 will be different from the other
encryptions of 0, and similarly for the encryptions
of 1.) When Alice needs to send encrypted data
to the server, she can just retrieve the appropriate
encryptions. The optimization is useful for mobile
devices, e.g. PDAs, that have limited computing
power but reasonable amounts of storage.

The experimental results of this optimization are
shown in Figure 7, with overall on-line execution
times reduced to about 19.72 seconds for a database
of 200, 000 elements, under the 1024-bit crypto-
graphic key size. Alice’s processing time, now sim-
ply to read the stored encryptions and send them
to Bob, is much smaller. All other components re-
main unchanged; Bob’s computation time becomes
the dominant factor.

3.4 Using Multiple Clients in Parallel

This alternative aims at reducing the time spent
by Alice in encrypting her data by partitioning the
task of encryption among multiple clients, while still
protecting Bob’s privacy.

In this setting, k clients work in cooperation.
Each client is responsible for 1/kth of the database,

and will interact with Bob to learn a partial product
corresponding to the chosen data in that part of
the database. However, learning these partial sums
violates Bob’s privacy. Accordingly, Bob uses a
randomized blinding to protect the partial sums;
the blinding is removed by the clients only after the
partial products are combined into a single product,
as shown in Figures 8 and 9 for k = 3.

In phase one, k clients C1, C2, . . . , Ck are involved
each holding a vector of size n/k elements. (If the
database size n is not a multiple of k, then some
of the clients should hold ⌈n/k⌉ elements and some
should hold ⌊n/k⌋ elements.) The clients indepen-
dently and in parallel choose their own encryption
keys and interact with the server to learn a blinded
encryption of the appropriate partial sum. That is,
the server chooses random numbers R1, R2, .., Rk

such that
∑k

i=1
Ri = 0 (mod M) (where again M

must be chosen sufficiently large). When computing
the product to return to client Ci, Bob also computes
E(Ri) and multiplies it into the product. This has
the effect of adding Ri to the partial sum Pi.

In phase two, the clients combine their partial
sums and remove the blinding factor:

1. Client C1 sends its blinded partial sum to client
C2.

2. In turn, each client Ci adds the value received
from client Ci−1 to its own blinded sum and
sends the result to client Ci+1.

3. Client Ck receives the blinded partial sum from
client Ck−1, adds it to its blinded partial sum
to generate the total unblinded sum, and broad-
casts the result to all the other clients.

The results in Figure 10 show performance results
for k = 3. The overall execution time is reduced
by a factor of approximately 2.99, which represents
a 3-fold improvement minus a small overhead for
the combining phase. Note that we implemented
multiple clients only for our Java implementation, so
these performance numbers are significantly higher
than those in earlier graphs. They are shown only
to indicate the close to 3-fold improvement. The use
of k clients would result in approximately a k-fold
reduction in execution time.

4 Conclusions

We have experimentally evaluated an important
primitive in privacy-preserving data mining, that of
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Figure 8. Multiple Clients (k = 3):
Phase 1

Figure 9. Multiple Clients (k = 3):
Phase 2

0

40

80

120

20 40 60 80 100

Vector Size (Thousands)

T
im

e
 (

M
in

s
)

One Client Three Clients

Figure 10. Performance Improvement
with Three Clients (Java implementa-
tion)

privately computing shares of the scalar product be-
tween two binary vectors held by two parties. Nei-
ther party learns anything about the other party’s
private data.

Our experimental results show that the running
time needed is quite high, though perhaps feasible in
some settings where privacy is considered sufficiently
important. In a direct implementation, overall run-
ning times are around 80 minutes for a database of
200,000 elements in a high-speed communication en-
vironment. With straightforward optimizations, the
running times are only a few seconds, clearly within
the realm of practice for many applications. Unless
practical optimizations or specialized hardware are
used to accelerate encryptions, computation delay is
the major bottleneck of performance of our imple-
mentation.
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