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Abstract. In this paper, we study differential privacy in noisy search.
This problem is connected to noisy group testing: the goal is to find a
defective or anomalous item within a group using only aggregate group
queries, not individual queries. Differentially private noisy group testing
has the potential to be used for anomaly detection in a way that provides
differential privacy to the non-anomalous individuals while still helping
to allow the anomalous individuals to be located. To do this, we introduce
the notion of anomaly-restricted differential privacy. We then show that
noisy group testing can be used to satisfy anomaly-restricted differential
privacy while still narrowing down the location of the anomalous samples,
and evaluate our approach experimentally.

1 Introduction

We consider the problem of privacy-sensitive anomaly detection—screening to
detect individuals, behaviors, areas, or data samples of high interest. What
defines an anomaly is context-specific: examples include a spoofed rather than
genuine user attempting to log in to a web site, a fraudulent credit card transac-
tion, or a suspicious traveler in an airport. The unifying assumption is that the
number of truly anomalous points is quite small with respect to the population,
so that deep screening of all individual data points would potentially be time-
intensive, costly, and unnecessarily invasive of privacy. Anomaly detection is well
studied (see the survey of Chandola et al. [11]), but methods to provide anomaly
detection along with privacy are less well studied. In this paper we provide a
framework for identifying anomalous data while guaranteeing quantifiable pri-
vacy in a rigorous sense. Once identified, such anomalies could warrant further
data collection and investigation, depending on the context and relevant policies.
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While anomaly detection is important for many applications, it can also raise
privacy concerns when the underlying data is sensitive. Search algorithms on pri-
vate data can violate data use agreements and can make people uncomfortable
with potential anomaly detection methods. In this paper, we focus on guarantee-
ing privacy during the deployment of anomaly detection. To achieve this, we take
as our starting point the notion of group testing [14], which was most famously
proposed for screening US military draftees for syphilis during World War II.
In group testing, individuals are tested in groups to limit the number of tests.
Using multiple rounds of screenings, a small number of positive individuals can
be detected very efficiently. Group testing has the added benefit of providing
privacy to individuals through plausible deniability—since the group tests use
aggregate data, individual contributions to the test are masked by the group.

Our work takes the first steps toward strengthening and formalizing these
privacy guarantees to achieve differential privacy. Differential privacy is a sta-
tistical measure of disclosure risk that was introduced in 2006 [18] and cap-
tures the intuition that an individual’s privacy is protected if the results of a
computation have at most a very small and quantifiable dependence on that
individual’s data. In the last decade, there has been an explosion of research in
differential privacy, with many techniques and algorithms poised for practical
application [20,27,31] and adoption underway by high-profile companies such as
Apple [21] and Google [20].

Potential anomaly detection applications for group testing would rely on
existing or new sensing technologies that can perform (reasonably accurate)
queries in aggregate to reveal and isolate anomalous outliers. Applications might
include privacy-sensitive methods for searching for outlying cell phone activity
patterns or Internet activity patterns in a geographic location. These techniques
are also in line with the US Department of Homeland Security’s visionary goal
of “screening at speed” [13]—unobtrusive screening of people, baggage, or cargo.

Our main contribution is a differentially private access mechanism for narrow-
ing down the location of anomalies in a set of samples using noisy group testing.
Our goal is to guarantee privacy for non-anomalous individuals while identify-
ing anomalous samples. To formalize this we introduce the notion of anomaly-
restricted differential privacy. By adding noise to group query results, we can
guarantee differential privacy while allowing efficient and accurate detection of
non-anomalous individuals. The adaptive sequential query design is an active
learning algorithm for noisy binary search that is connected to information-
theoretic models of communication with feedback.

A summary of our contributions is as follows:

– We introduce a new notion of anomaly-restriction differential privacy, which
may be of independent interest.

– We provide a noisy group-based search algorithm that satisfies the anomaly-
restricted differential privacy definition.

– We provide both theoretical and empirical analysis of our noisy search algo-
rithm, showing that it performs well in some cases and exhibits the usual
privacy/accuracy tradeoff of differentially private mechanisms.
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2 Related Work

Machine learning methods have found widespread use in anomaly detection due
to their ability to analyze and extract patterns from large amounts of data. Sev-
eral surveys cover the wide variety of anomaly detection techniques and appli-
cations. For example, Hodge and Austin [23] and Agyemang et al. [2] survey
anomaly detection techniques in the context of outlier detection via proximity
and statistical approaches. Chandola et al. [11] provide a comprehensive survey
addressing techniques in these categories as well as covering information theo-
retic and spectral approaches and techniques used in range of applicable fields
including popular applications such as intrusion detection and fraud detection,
as well as medical, industrial, image, and text anomalies.

Group testing describes a set of techniques for detection of anomalies from
sets primarily containing non-anomalous items by performing testing on groups
rather than querying individual items. Group testing was initially conceived
during World War II as a cost-efficient method to test for syphilis by grouping
multiple individuals’ blood into a single sample [14]. A negative result for the
single sample would imply all the individuals were negative, while a less-common
positive result would require further follow up. The technique was not put into
practice due to the limited number of individuals that could be tested at any
one time, and group testing languished for several years before eventually being
revived for industrial testing purposes [15].

Group testing has received more recent interest in the statistics and infor-
mation theory communities. In particular, classical connections between group
testing and error control coding have led to relaxations of the group testing prob-
lem, as surveyed in a recent paper by Mazumdar [29]. Group testing has also
been used for multiaccess communications [5,37], data mining [28], molecular
biology [12], and DNA screening [32]. Related concepts have been explored in
constructing compressed sensing matrices [9,30].

Introduced by Dwork et al. in 2006 [18], differential privacy has become
a widely studied framework for providing privacy-sensitive results from data
analyses. Differential privacy for anomaly detection has been studied previously
in the context of training classifiers using machine learning [22]. In contrast, our
work addresses differential privacy during the deployment of an anomaly search
algorithm by using differentially private group testing.

Our method of differentially private group testing makes use of noisy group
testing [3,8,10], which provides methods that successfully identify anomalies
using group queries among a set of items even if the answers to the group queries
are not completely accurate. Specifically, we use a probabilistic binary search [4,
25,33–35], which is intimately connected to the problem of communication over
noisy channels with feedback. The classical scheme by Horstein [24] uses what
we would now call a Bayesian active learning approach to learn a threshold
with noisy labels. In our case, the noise is used (and may even be deliberately
introduced) to provide differential privacy.
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3 Problem Formulation

The main idea behind our approach is to query individuals in groups and use
noise to provide differential privacy. For this to work, we must have a group
query which can detect the presence of an anomalous sample. As in active learn-
ing algorithms, we use multiple adaptive queries to locate the anomalies. In
particular, we use a Bayesian formulation in which the algorithm maintains a
probability distribution, or posterior belief, over the point representing its belief
about where the anomaly lies. The number of queries can be controlled by either
a stopping rule based on the belief or limits on overall privacy risk.

Notation: We generally use calligraphic script to denote sets. For any positive
integer K, we denote the set {1, 2, . . . ,K} by [K].

3.1 Data Model

In this paper, we analyze a simplified version of the full problem with a single
anomaly: for this setting, we can characterize the performance theoretically.

The data is a vector X = (x1,x2, . . . ,xn+1) of n + 1 individuals, where
xi ∈ R

+. With some abuse of notation we write this as an ordered multiset
{xi : i ∈ [n + 1]}. The i-th element xi represents the output of some anomaly
score function applied to individual i: larger x denotes a higher anomaly level.
One of the data points is an anomaly x∗. Let i∗ be the index of the anomaly,
so that xi∗ = x∗. Two thresholds t� and th separate the anomaly value of the
anomalous points from the other points such that

x ∈
{

[0, t�] x �= x∗

[th,∞) x = x∗ (1)

for a set of two thresholds t�, th ∈ R
+ where t� < th. This corresponds to a

scenario where there is some measurement that can distinguish the anomaly
from the non-anomalous values.

The data is held by an oracle that has access to X and can answer queries
about X . The search algorithm knows the number of points n + 1 and the index
set [n+1], the levels t� and th separating anomalous from non-anomalous values,
and that X contains a single anomalous point. However, it does not know the
actual values {x1, . . . ,xn+1}. We wish to model a situation in which the oracle
can only query groups of points. This could correspond to a situation where
there is a measurement or sensor which can access aggregates (for example, all
items in a given area) but not individual records.

3.2 Differential Privacy

The search algorithm queries the oracle, which provides differentially private
responses. Traditional differential privacy protects privacy for every individual
in the database [18]. The key difference in our model is that we only require that
the oracle provide differential privacy for the non-anomalous points: we define a
new notion of anomaly-restricted neighbors.
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Definition 1 (Anomaly-Restricted Neighbors). We say that two data sets
D and D′ are anomaly-restricted neighbors (and write D ∼ D′) if x∗ ∈ D ∩ D′

and |D ∩ D′| = n.

Definition 2 (Differential Privacy [18]). A randomized mechanism A(·) is
ε-differentially private if for any set of measurable outputs Y and any two
databases D and D′ with D ∼ D′,

Pr [A(D) ∈ Y] ≤ eε Pr [A (D′) ∈ Y] . (2)

A differentially private algorithm A(·) guarantees that neighboring databases
create similar outputs: for anomaly-restricted neighbors this means that adding
or removing a single non-anomalous individual does not significantly alter the
output of the mechanism. The privacy parameter ε is the privacy risk: larger
values of ε allow larger differences between the distributions of A(D) and A(D′)
[16–18]. Differential privacy controls the error probabilities in the hypothesis test
between D and D′ given the output of the mechanism [26,36].

The Laplace mechanism [18] is a common approach to making differentially
private approximation to scalar functions H(·). This approach adds Laplace
noise with a parameter that is a function of the privacy risk ε and the global
sensitivity Δg of H(·). Corresponding to our new neighbor definition, we also
need a model for anomaly-restricted global sensitivity.

Definition 3 (Anomaly-Restricted Global Sensitivity). Let H(·) be a
scalar-valued function. The anomaly-restricted global sensitivity of H(·) is

Δg = max
D,D′:D∼D′

|H (D) − H (D′)| . (3)

Given ε and H(·), the Laplace mechanism computes A(D) = H(D)+Z where
Z ∼ Lap (Δg/ε) where the Laplace distribution Lap(λ) has density

p (z;λ) =
1
2λ

exp
(
− z

λ

)
. (4)

Differential privacy satisfies several composition properties.

Definition 4 (Simple Sequential Composition [18]). Given a series of
n independent differentially private mechanisms A1,A2, . . . ,An with privacy
parameters ε1, ε2, . . . , εn computed on D, the resulting function is differentially
private with privacy parameter

∑n
i=1 εi.

Definition 5 (Parallel Composition [18]). Given a series of n indepen-
dent differentially-private mechanisms A1,A2, . . . ,An with privacy parameters
ε1, ε2, . . . , εn computed on disjoint subsets of D, then the resulting function is
differentially private with privacy parameter maxi εi.

In this paper, we restrict our attention to ε-differentially private methods.
For approximate (ε, δ)-differential privacy there are stronger composition results
in which the total privacy risk for sequential composition grows sublinearly with
the number of terms [6,19,26], including the so-called “moments accountant” [1].
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4 Algorithms

At each time t the search algorithm issues a query Qt ⊂ [n+1] to the oracle that
depends on the responses to past queries. A search algorithm consists of rules
for sequentially selecting sets Q1,Q2, . . . with privacy risks ε1, ε2, . . . where Qt ⊂
[n+1]. A standard (noiseless) bisection search algorithm receives accurate queries
and can then discard non-anomalous data points with certainty. When the oracle
responses are noisy, we cannot fully discard any data points. We use a discretized
version [4,7] of a probabilistic bisection algorithm [24] to adaptively determine
the location of the anomaly. In particular, the algorithm uses a Bayesian inference
step to update a probability mass function on [n + 1] that represents the belief
about i∗.

4.1 Warmup: Randomized Response

A baseline algorithm for privacy binary search is noisy binary search using ran-
domized response. At each time t the algorithm chooses a query Qt and sends
it to the oracle, which responds with

Yt = 1 (i∗ ∈ Qt) ⊕ zt (5)

where ⊕ is addition modulo 2 and zt ∼ Bernoulli(p).

Proposition 1. The response in (5) guarantees log 1−p
p -differential privacy.

Given a response Yt and noise parameter p, the algorithm can compute a
posterior distribution on the location of the anomaly. Given Q̄t = [n + 1] \ Qt,
let Rt = Qt if Yt = 1 and Rt = Q̄t if Yt = 0. Given an initial estimate ft−1 on
[n + 1], the Bayesian update is given by

ft (i) =

⎧⎨
⎩

ft−1(i)(1−p)∑
j∈Rt

ft−1(j)(1−p)+
∑

k/∈Rt
ft−1(k)p

i ∈ Rt

ft−1(i)p∑
j∈Rt

ft−1(j)(1−p)+
∑

k/∈Rt
ft−1(k)p

i /∈ Rt

. (6)

Because p < 1
2 , this rule increases ft−1(i) for i ∈ Rt and decreases ft−1(i)

for i /∈ Rt and eventually concentrates the posterior on i∗. If at each itera-
tion the algorithm chooses a query Qt with posterior probability close to 1/2
(i.e. a median split) this is a classic algorithm first analyzed by Burnashev and
Zigangirov [7] (see also Horstein [24]) for i∗ chosen uniformly in [n + 1]; we can
initialize by uniformly permuting the indices to use their result.

4.2 Proposed Algorithm: Differentially Private Binary Search

Before presenting the search algorithm, we introduce a modified oracle. Ran-
domized response forces the oracle to determine whether i∗ ∈ Qt or i∗ ∈ Q̄t

and then obfuscates that value. In some cases, the oracle may simply be a noisy



26 D. M. Bittner et al.

privacy-preserving sensor that instead returns noisy estimates A(Qt;X ) of some
function H(Qt;X ). Consider an oracle that computes

Yt = A (Qt;X ) Ȳt = A (Q̄t;X
)
, (7)

where the oracle splits the data set into Qt and Q̄t = [n + 1] \ Qt and returns
anomaly-restricted differentially private approximation to both components.
Notationally, we suppress X from H(Qt;X ) when it is clear from context.

There are many choices for the aggregation function H(·) used to calculate
A. For example, we could take the average H(Q) = 1

|Q|
∑

i∈Q xi. The anomaly-
restricted global sensitivity is Δg = t�

|Q| , so we can hypothetically add Laplace
noise Z ∼ Lap( t�

|Q|ε ), Z̄ ∼ Lap( t�

|Q̄|ε ) to form Y = H(Q) + Z and Ȳ = H(Q̄) + Z̄,
respectively.

In this work, we consider instead the max function:

H (Q) = max{xi : i ∈ Q}. (8)

Due to our definition of anomaly-restricted sensitivity, averages that include the
anomaly can “dilute” the effect of the anomaly level. The max function can
show the difference between Y and Ȳ in a way the depends less strongly on the
distribution of the non-anomalous population. It has a higher sensitivity than
the average function but we demonstrate its effectiveness empirically.

Lemma 1. The anomaly-restricted global sensitivity of the aggregation function
H(Q;X ) = max{xi : i ∈ Q} in (8) is Δg(H) = t�.

Proof. Let Q be any query. Consider two anomaly-restricted neighboring data
sets X and X ′ and let i∗ be the index of the anomalous point. If i∗ ∈ Q then
|H(Q;X ) − H(Q;X ′)| = 0 and |H(Q̄;X ) − H(Q̄;X ′)| ≤ t�. If i∗ ∈ Q̄ then
|H(Q;X )−H(Q;X ′)| ≤ t� and |H(Q̄;X )−H(Q̄;X ′)| = 0. Thus max |H(Q;X )−
H(Q;X ′)| = t�. 
�

The oracle can then provide a differentially private query mechanism A for
H(Q) = max{xi : i ∈ Q} by generating

A (Q) = max{xi : i ∈ Q} + Z and A (Q̄)
= max{xi : j /∈ Q} + Z̄, (9)

where Z and Z̄ are independent random variables with distribution Lap(t�/ε).
Given this revised oracle, we can turn to the search algorithm. The search is

greedy: the searcher picks a query set which yields the most information (mea-
sured with respect to its belief) about the location of the anomaly. To represent
our relative certainty about whether a given point is the anomaly, our search pro-
cedure updates a probability mass function ft on [n+1] where ft(i) = Pr(i∗ = i).
At each iteration we treat the previous posterior as a new prior and use ft−1 to
determine the new query Qt. Since we do not have any prior knowledge about
what element of X is the anomaly, at t = 0, we assume that each point is equally
likely to be the anomaly: the initial prior distribution f0 is uniformly distributed
on [n + 1], so f0(i) = 1

n+1 .
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The algorithm uses the probability mass function ft−1 in order to select a
query at each iteration Qt. First, the algorithm chooses a uniformly chosen
random permutation σ on [n + 1]. The corresponding permutation of the prior
distribution is f̃t−1(σ(i)) = ft−1(i). For a probability mass function on [n + 1]
define the median M(f) = max{m :

∑m
i=1 f(i) <

∑n+1
i=m+1 f(i)}.

The algorithm selects a query that maximizes information gain by dividing
each query along the median of the permuted probability mass function.

At each iteration t the algorithm queries the oracle with

Qt =
{

i : σ (i) ≤ M
(
f̃t−1

)}
. (10)

Let qt−1 =
∑M(f̃t−1)

i=0 f̃t−1(i) be the probability mass of the query set Qt. Note
that q ≤ 1

2 . Correspondingly, randomly choosing σ prevents reductions in infor-
mation gain when q deviates significantly from 1

2 .
The oracle returns noisy values Yt and Ȳt using (7) and (9) and the algorithm

updates using a Bayesian update step similar to the case of randomized response.
Given a prior belief ft−1(i) that i∗ = i, the likelihood of observing (Yt, Ȳt) is
approximated by

φ
(Yt, Ȳt | i∗ = i

)
=

⎧⎨
⎩

ε2

4t�
2 exp

(
− ε

t�
|Yt − th|

)
exp

(
− ε

t�
|Ȳt − t�|

)
i ∈ Qt

ε2

4t�
2 exp

(
− ε

t�
|Yt − t�|

)
exp

(
− ε

t�

∣∣Ȳt − th
∣∣) i ∈ Q̄t

.

(11)

We can use this approximation in the Bayes update:

ft (i) =
ft−1 (i) φ

(Yt, Ȳt | i∗ = i
)

∑
j∈[n+1] ft−1 (j) φ

(Yt, Ȳt | i∗ = j
) . (12)

There are two ways in which this procedure can halt. The first is if the
algorithm expends the privacy budget. From the composition results, after T
queries with ε-differentially private responses, the algorithm has incurred privacy
risk Tε. Given a total privacy budget b, we therefore halt the algorithm when
(T + 1)ε > b.

The second halting condition is on the estimated posterior distribution ft. If
the posterior has concentrated around a single point or small interval, we can
halt the procedure and output the posterior distribution. This is characterized
by computing some stopping time τ(ft). For example, Ben-Or and Hassidim [4]
proposed a multi-epoch recursive search strategy and suggest taking τ(f) =
1(maxi ft(i) > εpar) for εpar = (24 log n)−1/2 to prune the initial set [n+1] into a
smaller set of indices with larger posterior probability. In the approach studied by
Burnashev and Zigangirov [7], the algorithm terminates when maxi log ft(i)

1−ft(i)
>

log(1/δ) for a target error probability δ. In this case, the goal is to guarantee
that the largest posterior probability is ft(i∗) with probability 1 − δ.

Pseudocode for the algorithm is shown in Algorithm1.
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Algorithm 1. PrivateBinarySearch(X , ε, b, t�, th, εpar)
1: f0 ← 1

|X| for i = 1, 2, . . . , |X |, t = 1

2: while τ(ft−1) �= 1 and tε < b do
3: Draw σ uniformly at random from permutations on [n + 1].
4: Qt ← {i : σ(i) ≤ M(f̃t−1)}
5: YQt ← A(Qt) and YQ̄t

← A(Q̄t) from (9)
6: Update ft using (12)
7: t ← t + 1
8: end while
9: return ft−1

4.3 Finding the Output

The search algorithm uses a halting condition based on ft−1 and then outputs
ft−1, leaving open the question of how to determine the location of the anomaly
i∗. If the algorithm waits for ft−1 to concentrate significantly, then with high
probability the largest value in ft−1 corresponds to i∗. If instead it prioritizes
the privacy budget, then it could pass a list of the largest entries of ft−1 for
further processing. More issues regarding practical deployment of this algorithm
are discussed in Sect. 7.

5 Analysis

The sensitivity of the max query in Lemma 1 immediately implies that each
iteration guarantees ε-differential privacy.

Proposition 2. Each query in Algorithm1 is ε-differentially private. After t
iterations of the loop, the overall privacy risk is tε.

Proof. The result follows from the fact that the noisy computation in (9) guar-
antees ε-differential privacy for Z, Z̄ ∼ Lap(t�/ε). Fix neighboring anomaly-
restricted datasets X and X ′ and queries Q ⊂ [|X |] and Q′ ⊂ [|X ′|]. Since each
iteration of the algorithm splits the dataset into disjoint subsets and applies A to
each independently, by demonstrating that each A is ε-differentially private, we
can apply the parallel composition theorem of differential privacy in Definition 5.

If Q = Q′, then clearly

Pr [A (Q) = Y] = Pr [A (Q′) = Y] , (13)

so the application of A is ε-differentially private. We are therefore left with
the case where Q and Q′ differ in a single non-anomalous point. By the post-
processing invariance of differential privacy [18], it is sufficient to show that Y =
A(Q) is ε-differentially private. This follows from Lemma 1 and the differential
privacy of the Laplace mechanism. 
�
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Analyzing the convergence of Algorithm 1 is challenging because using
Laplace noise means the amount of “progress” made by the algorithm using (12)
varies from iteration to iteration. Furthermore, because we only know bounds
on the non-anomalous and anomalous values, the update rule is performing an
approximation to a Bayes update.

To understand the convergence of the method, we show that a modified
version of the update reduces the problem to a noisy binary search. There are
two changes: firstly, we do away with the random permutation and secondly, we
compute a binary response from (Yt, Ȳt) and then apply the same Bayes update
as randomized response update in (6). More specifically, the algorithm computes
Zt = 1

(Yt > Ȳt

)
and performs a Bayesian update of the prior distribution ft−1

to form the posterior ft. Because the determination of the subset containing
the anomaly Zt may be inaccurate, in order to perform the update, we must
determine p = Pr(i∗ ∈ Zt).

Lemma 2.

Pr (i∗ ∈ Zt) ≥ 1 −
(

1
2

+
th − t�

t�
· ε

4

)
exp

(
−ε

th − t�
t�

)
. (14)

Proof. Without loss of generality, let us assume i∗ ∈ Q. We want to find the
probability that the following difference is positive:

Y − Ȳ = max{xi : i ∈ Q} + Z − max{xi : i ∈ Q̄} − Z ′. (15)

By assumption, H(Q) ≥ th and H(Q̄)} ≤ t�, thus H(Q) − H(Q̄) ≥ th − t�.
Therefore Pr(Z ′ − Z) > th − t� serves as a lower bound on the probability of
that the query will return an erroneous result due to noise.

Since the Z and Z ′ both have zero mean, the distribution of W = Z ′ − Z is
the same as that of Z + Z ′, which can be found by convolving the two Laplace
densities given by (4) with parameter λ = t�/ε. By assumption, th − t� > 0, so
the probability density function for w > 0 is

f (w) =
∫ ∞

−∞

1
2λ

exp (−|z|/λ)
1
2λ

exp (− |z − w| /λ) dz (16)

=
∫ 0

−∞

1
4λ2

exp ((2z − w) /λ) dz +
∫ w

0

1
4λ2

exp (−w/λ) dz

+
∫ ∞

w

1
4λ2

exp (− (2z − w) /λ) dz (17)

=
1
8λ

exp (−w/λ) +
w

4λ2
exp (−w/λ) +

1
8λ

exp (−w/λ) (18)

=
λ + w

4λ2
exp (−w/λ) . (19)
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The cumulative distribution function for w > 0 is

F (W ≤ w) =
1
2

+
∫ w

0

λ + u

4λ2
exp (−u/λ) du (20)

=
1
2

+
[
−1

4
exp (−u/λ)

]w

u=0

+
[
− u

4λ
exp (−u/λ)

]w

u=0

−
∫ w

0

− 1
4λ

exp (−u/λ) du (21)

=
1
2

− 1
4

exp (−w/λ) +
1
4

− w

4λ
exp (−w/λ) − 1

4
exp (−w/λ) +

1
4

(22)

= 1 −
(

1
2

+
w

4λ

)
exp (−w/λ) . (23)

Now, plugging in λ = t�

ε and w = th − t� we have (14). 
�
Thus, we define

p =
(

1
2

+
th − t�

t�
· ε

4

)
exp

(
−ε

th − t�
t�

)
. (24)

from (14) and apply the Bayes update in (6).

Proposition 3. Suppose the anomaly i∗ is uniformly distributed in [n+1]. For
any δ ∈ (0, 1), let

T = min
{

t : max
i

log
ft(i)

1 − ft(i)
> log

1
δ

}
. (25)

Set the stopping time τ(ft−1) = 1(t = T ). Then the modified version of
Algorithm1 using Zt = 1

(Yt > Ȳt

)
and (24) with update (6) satisfies

E [T ] ≤ log(n + 1) + log(1/δ) + ε

1 − hb(p)
(26)

where hb(p) = −p log p − (1 − p) log(1 − p) is the binary entropy function.

Proof. The result follows by mapping the algorithm to the interval estimation
problem studied by Burnashev and Zigangirov [7]. The main difference is that
when using Zt, (24) is only an upper bound on the error probability of the oracle
for randomized response. However, this means that the oracle is only potentially
less noisy than the randomized response oracle. Using the stopping rule in (25),
we get the upper bound on the expected number of queries [7, Theorem 3]. 
�

6 Experimental Results

We demonstrate the practical performance of our approach through experiments
on a data set for anomaly detection. The experiments investigate how different
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configurations of input parameters and constraints on the datasets can affect
accuracy and total privacy risk. Specifically, we are interested in the impact
of the thresholds th and t�, the oracle response configuration, and the halting
conditions τ and privacy budget b.

6.1 Dataset

The experiments use the A1 Benchmark from the Yahoo Labeled Anomaly
Detection Dataset, part of the Yahoo Webscope reference library [38]. Each
dataset in the benchmark is preprocessed down to single anomaly by selecting
the largest anomalous point in each dataset and selecting thresholds by letting
xj = max{xi : i �= i∗} and setting th = xi∗−.1(xi∗−xj) and t� = xj+.1(xi∗−xj).
Some experiments are run specifically on datasets 6 and 8 in order to explore the
effects of the non-anomalous point distribution on the algorithm performance.
These two datasets exemplify the two primary distributions for sets contained
in benchmark: datasets that are a mixture of normal distributions, and datasets
where points are heavily skewed toward 0.

6.2 Procedure

Because we are interested in approximate detection of the anomaly, we declare
that the algorithm succeeds if it halts and can output a small set S of indices such
that i∗ ∈ S. In particular, we choose |S| = 4 and set S to be the indices with the 4
largest posterior probabilities. This selection is to capture the difference between
f(i∗) being the close to the largest posterior probability and being much smaller.
Cases where f(i) = f(j) for i �= j are prevented in practice by the randomized
permutation of the probability mass function after each iteration. For these
experiments, τ = 1(max{f(i) : i ∈ [n + 1]} > 0.5) is used as a halting condition
when not otherwise specified. Each configuration of the algorithm parameters
are run for a set number of cycles c. The approximate average error rate for the
configuration is (1−

∑c
i=1 1(i∗∈Si)

c ) and the average total privacy risk is
∑c

i=1(tε)i

c .
For these experiments, we take c = 100.

6.3 Results

We demonstrate the algorithm’s performance as a function of the privacy param-
eter ε. Smaller ε values result in noisier responses from the oracle which require
more iterations to reach the halting condition. Correspondingly, larger values
of ε decrease noise which requires fewer total iterations, but at greater privacy
cost per iteration. The tradeoff between error rate and total privacy risk forms
a concave upward curve. Lower values of the privacy parameter are more costly
in total privacy risk as the noise at each iteration strongly decreases Pr(i∗ ∈ R).
Increasing the privacy parameter increases Pr(i∗ ∈ R) at a greater rate than the
privacy cost per iteration increases, thus decreasing total privacy risk. However,
these improvements have diminishing returns. Eventually, increasing the privacy
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parameter no longer improves the error rate as Pr(i∗ ∈ R) → 1. At this point,
increasing the privacy parameter doesn’t improve the error rate, but continues
to increase total privacy risk.

Threshold Ratios. Figure 1 demonstrates the effect of the thresholds on the
algorithm’s performance. Each point in the figure depicts the error rate as a func-
tion of that dataset’s threshold ratio th−t�

t�
with privacy parameter set to ε = 1. A

dataset with a higher threshold ratio tends to perform better than an equivalent
dataset with a lower threshold ratio for a given value of the privacy parameter.
This is due to Δg = t�, which causes smaller differences between thresholds th−t�
to be more likely to be overcome by noise. The steep improvement in error rate
for small changes in the threshold ratio highlight the importance of tuning the
privacy parameter to the thresholds of the dataset. (Note that datasets 6 and 8
were selected to have similar threshold ratios at 0.647 and 0.701 respectively).

Fig. 1. Error rate for each dataset as a function of the threshold ratio th−t�
t�

.

Oracle Response Constructions. Figure 2 demonstrates how different con-
structions of the oracle response and Bayesian update methods affect the error
rate. The proposed oracle response approaches include the randomized response
oracle (5), the binarized noisy response oracle (14) and the direct noisy result
oracle (11). Despite all constructions achieving tε-differential privacy, there is a
strong difference in effect on the error rate and total privacy risk.

Randomized response has the worst error rate because the oracle error prob-
ability is fixed. This contrasts with the oracle mechanisms that use the noisy
aggregations: the actual noisy response depend on the values (Y, Ȳ), which can
be more informative depending on the noise. For example, when the actual dif-
ference between Y or Ȳ exceeds the difference between th and t�, added noise
is less likely to cause incorrect responses than in randomized response. Simi-
larly, the oracle that directly uses the noisy response performs better than the
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Fig. 2. The error rate and total privacy risk as a function of the privacy parameter ε
for different oracle response constructions on data sets 6 and 8.

binary oracle construction as the likelihood for the binary oracle at each iter-
ation is a lower bound given by (14) which gives up some information gain on
each iteration. Because the binarized construction is a lower bound on the actual
likelihood, more updates become required to achieve the same effect as the other
constructions and thus ends up having greater total privacy risk.

Algorithm Halting Conditions. The algorithm’s two termination conditions,
τ and total privacy risk exceeding budget b, are explored in Figs. 3 and 4. Figure 3
depicts the algorithm’s error rate with varying budget constraints where the
halting constraint τ has been removed. When the total privacy risk passes pre-
assigned budget checkpoints, S is checked for the presence of the anomaly and the
algorithm continues. Similarly Fig. 4 depicts various halting constraints where
the budget constraint has been removed and again checks S at pre-assigned halt-
ing checkpoints. When the algorithm is forced to preemptively halt because total
privacy risk exceeds the budget, errors are excessively high. This is due to the
increased chance that not enough iterations have been run to allow the algorithm
to overcome noisy oracle responses. When the privacy parameter ε is larger, the

Fig. 3. Error rates for varying inputs of the privacy parameter ε with differing maxi-
mum budget constraints b for datasets 6 and 8.
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Fig. 4. Error rates and total privacy risk across varying halting constraints τ for data
sets 6 and 8.

algorithm is more likely to suffer errors from the algorithm terminating early.
Correspondingly, when total privacy risk does not prevent early termination due
to budget b, larger values of ε result in fewer errors. Thus, a proper privacy
budget should be allocated to perform enough iterations to prevent errors due
to halting early.

Figure 4 demonstrates how different halting conditions τ affect the error rate
with unlimited privacy budget. Specifically, the figure depicts the effect of alter-
ing α for τ = 1(max{f(i) : i ∈ [n + 1]} > α). As the halting condition serves
as a requirement of convergence of the probability mass toward a single point,
the algorithm can steadily improve the error rates by increasing α. This requires
correspondingly more iterations to achieve, incurring greater total privacy risk
for any run of the algorithm.

7 Discussion

We have described a differentially private search algorithm using noisy binary
search with applications to anomaly detection. For this application, we defined
a new notion of anomaly-restricted neighboring databases to capture the idea
that anomalous points (which potentially merit scrutiny even if it is privacy-
invasive) are not given privacy guarantees. The noise in the algorithm provides
quantifiable privacy during the search. We showed theoretically and empirically
that the greedy Bayesian search strategy can quickly narrow down a small set
of samples that contain the anomaly.

There are a number of practical considerations that must be further addressed
for our work to be useful in particular applications. For example, in most cases, it
will be necessary to handle multiple anomalies rather than only a single anomaly.
If a good upper bound is known on the expected maximum number of anomalous
points, then one approach for using our method would be to first divide the set
into disjoint subsets that with high probability contain only a single anomaly,
and then proceeding to apply our method to each of those subsets individually.
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In any particular application, it is also necessary to specify what points the
algorithm should return. This depends on various factors, including what will
be done with those points. We envision a scenario in which the points returned
undergo some further screening, presumably after appropriate policies are fol-
lowed. However, this creates a tradeoff between false positives and false nega-
tives. To provide the most privacy, it would be desirable for the returned set to
be as small as possible. However, narrowing down too far increases the chance
of returning a set that misses the anomalous point. In very large search spaces
or problems with many anomalies, one option would be to recursively prune
out non-anomalous points: while this should work well in practice, theoretically
analyzing the corresponding privacy-utility tradeoffs may be quite complex.

Our method uses a fixed privacy loss εt per iteration, not without loss of
generality. Varying εt across iterations in a decaying manner could correspond to
active learning or noisy search under the Tsybakov noise condition. Results from
active learning can yield bounds on convergence to interpret the error/privacy
tradeoff. A key difference between our search model and standard noisy search
is that we can design the noise to optimize the privacy-utility tradeoff.

In order to provide privacy without relying on a trusted party, our method
relies on the existence of a sensor or other measurement device that carries out
the noisy aggregate queries directly, without carrying out individual queries and
computing a noisy aggregate result from them. Practical use of our techniques
therefore depends on the practical creation and deployment of such sensors.
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