An Authentication Logic Supporting Synchronization, Revocation, and Recency

Stuart . Stubblebine*

Abstract

Distributed systems inherently involve dynamic changes to
the value of security attributes such as the goodness of en-
cryption keys. Since concurrent knowledge is usually infea-
sible or impractical, it is often necessary for the participants
of distributed protocols to determine and act on beliefs that
may not be supported by the current state of the system.
Policies for determining beliefs in such situations can range
from extremely conservative, such as only believing state-
ments if they are very recent, to extremely optimistic, such
as believing all statements that are not yet known to be re-
voked. Such security policies often are heavily dependent on
timing of received messages and on synchronization between
principals.

We present a logic for analyzing cryptographic protocols
that has the capability to specify time and synchronization
details. This capability considerably advances the scope of
known techniques for both expressing practical authentica-
tion policies of protocol participants as constraints, and for
reasoning about protocol goals subject to these constraints.
In the course of reasoning about protocol goals, one is able
to deduce requirements for trust between protocol partic-
ipants, synchronization between protocol participants, and
timeliness of message contents.

Our logic is flexible, and can support a wide range of se-
curity policies. The ability to reason about the conjunction
of individual participant policies and protocols will be es-
pecially important as public and private key infrastructures
are deployed and new and unanticipated policies are put into
use.

1 Introduction

In distributed systems, the lack of physical protection on a
communication path means that communication is suscep-
tible to attacks involving eavesdropping, modification, and
impersonation. Protocols using cryptographic mechanisms
such as encryption and digital signatures form the basis of se-
curity in distributed systems by providing protection against
such attacks. Unfortunately, cryptographic protocol design
has historically been error prone as evidenced by numerous
vulnerabilities cited in the literature. However, analysis and
design techniques have proven useful in detecting protocol
vulnerabilities.

*AT&T Bell Laboratories, 600 Mountain Avenue, Room 2A—-345A
Murray Hill, NJ, USA, 07974. E-mail: stubblebine@research.att.com.

TAT&T Bell Laboratories, 600 Mountain Avenue, Room 2T-314,
Murray Hill, NJ, USA, 07974. E-mail: rwright@research.att.com.

Also appears in Proceedings of the 3rd ACM Conference
on Computer and Communications Security, March 14-
16, 1996, New Delhi, India.

Rebecca N. Wright !

We present a logic for analyzing cryptographic protocols
with a capability to specify time and synchronization details.
This capability considerably advances the scope of known
techniques for both expressing practical authentication poli-
cies of protocol participants as constraints, and for reasoning
about protocol goals subject to these constraints. Since we
can reason about properties of synchronization, recency, and
revocation, one can analyze protocol goals that are beyond
the scope of existing analysis techniques. Using our logic
one can derive protocol goals such as the presence of partic-
ipants at particular times, the goodness of keys at particu-
lar times, and participants beliefs at particular times. More
specifically, goals might involve showing the long-term evolu-
tion of beliefs in practical systems characterized by dynamic
changes to the goodness of keys, jurisdiction, authorization,
and quality of synchronization, showing the correctness of
replay detection mechanisms using timestamps, showing be-
liefs about the goodness of keys or authorization “tickets”
subject to policies requiring that these statements are re-
cent and aren’t known to be revoked, or showing the time of
presence and continued presence of remote principals.

In the course of reasoning about protocol goals, one is
able to deduce requirements such as trust between protocol
participants, synchronization bounds between participants,
and recency or timeliness of message contents. We sepa-
rate the protocol itself from security policies that specify,
for example, the methods principals use for determining be-
liefs from previously received messages, and handling of re-
vocation. Policies can range from conservative, such as only
believing statements if they are very recent, to optimistic,
such as believing all statements that are not yet known to
be revoked.

1.1 Related Work

Considerable effort has been spent on understanding, extend-
ing, and improving the use of logics for cryptographic proto-
cols [2, 6, 7, 12, 13]. Additional research has been performed
in calculi for access control and authentication in distributed
systems [1, 8, 11]. However, these approaches fall short of
our objectives for reasoning about synchronization, recency,
and revocation.

In their seminal paper [3], Burrows, Abadi, and Need-
ham introduced a logic for reasoning about authentication
protocols. In the BAN logic and its successors (for example,
[2, 7, 13]), time is divided into two epochs, the past and the
present. The past is all time before the current run of the
protocol being considered; the present begins at the start of
the current run. Since all beliefs held in the present are as-
sumed to be stable during the current run of the protocol,
principals are not allowed to change their beliefs during the
run. In particular, in their logic, if a principal P believes
that K is a good key at some point in the run of a protocol,
then P must believe that K is a good key for the duration
of the protocol.

Our underlying logic is closely based on the BAN logic, as

reformulated by Abadi and Tuttle [2], and later by Syverson
and van Oorschot [13]. Unlike these logics, we qualify all
statements with time to allow arbitrary revocation of keys,
beliefs, and jurisdiction. We use a notation and formalism
that is similar to the BAN-related logics to highlight the
parallels between our logic and the BAN-related logics.

The work of Syverson on adding time to a logic of authen-
tication [12], although related, has a different focus than our
work. His work incorporates temporal formalism into the
semantics model of BAN logic [2] using temporal notions of
“all points in the run prior to the current one,” and “at some
point in the run prior to the current one.” Our logic, on the
other hand, allows for arbitrary granularity of time.

Recent work of Stubblebine [11] is more closely related
to our work. It introduces the notion of recent-secure au-
thentication. Recent-secure authentication characterizes an
authentication policy based on the recency of security in-
formation (such as keys) used in authenticating channel or
message. In particular, it requires that at the time of authen-
tication, verifiers must have received a recent account attest-
ing to the accuracy of security-relevant information used for
authentication. Awuthentication according to recent-secure
policies ensures that revocation is fail-safe. That is, if se-
curity information is revoked at time ¢ then no verifier will
authenticate a message using revoked credentials after time
t+ 6 where 6 is the recency interval. Our work formalizes the
notions of recency and of individual authentication policies
based on recency presented by Stubblebine. Unlike this pre-
vious work, our method does not assume clock synchroniza-
tion and allows for reasoning about trusted synchronization
paths and synchronization bounds between multiple protocol
participants.

The work of Gaarder and Snekkenes [6] extends BAN
logics to handle issues within the scope of our logic. They
introduce the notion that a participant claims a formula is,
was, or will be good in a time interval and the notation that
the local clock of a participant has a time within an interval.
The work makes the strong assumption that the duration of
a protocol run must be short, and that participants commit
themselves to believing that messages are correct for the du-
ration of the protocol. The logic has the limiting character-
istic of other BAN-like logics that beliefs may not be revoked
at an arbitrary time. Also, the assumptions used are too re-
strictive for reasoning about long-lived security associations.
Furthermore, reasoning about synchronization and synchro-
nization bounds is beyond the scope of their work. Our work
removes these restrictions by allowing arbitrarily long proto-
col durations in which participants beliefs may change over
time.

1.2 Our Work

The main difference between our logic and the BAN logic and
its successors is that we allow for the possibility of revocation
of keys, jurisdictions, and more generally, of arbitrary beliefs.
That is, we allow for a principal to hold a belief at one point
in the run of a protocol, and not to hold that belief later in
the run. We are also much more strict about the extension
of beliefs from a given point in time to a later point. In
particular, a belief at a given time can only be extended to a
later time according to the policies that are specified as part
of the assumptions of the protocol.

Another significant difference between our logic and the
BAN logic is our use of timestamps. BAN treats all times-
tamps as nonces. As such, the important property of a times-
tamp is its freshness. However, there are cases where it is the

recentness, rather than the freshness, of a timestamp that is
important. This is the case, for example, with a Kerberos
ticket [10] that may have been sent before, so is not fresh,
but is still valid because it was created recently enough. Our
logic explicitly captures the time of the timestamp and uses
this time to reason about recentness.

In the BAN-like logics, the response to a nonce-based
challenge is idealized as the same nonce as in the challenge.
We feel that this is not the proper way to handle challenge-
response protocols in our logic, since in particular, it is the
freshness of both the challenge and the response that allows
the recipient to determine the presence of the responder. In
using our logic, the response should be idealized as it is said,
allowing the differentiation between the freshness of the chal-
lenge and the freshness of the response. As an example of
the usefulness of this approach, consider a protocol in which
P issues a challenge X to @ at time ¢1, @) responds with
X + 1 encrypted with a shared key K at time t2, and then
@ sends the same response again at t3. Our logic allows P
to determine (Q’s presence between t; and t2 because of the
freshness of (}’s response at time ¢z, but does not allow P
to determine Q’s presence between ¢ and t3, since the mes-
sage at t3 may have been a replay. This example illustrates
how our logic allows for different beliefs to be concluded at
different times.

In addition, we have added a synchronization construct
to allow reasoning about trusted synchronization paths and
synchronization bounds between protocol participants. Con-
sequently, analysis makes explicit the impact that derivation
of trustworthy synchronization paths and synchronization
bounds have on achieving protocol goals.

Although the addition of time into our logic yields a
slightly more complicated logic, we feel the additional com-
plexity is justified due to the considerable gains in being able
to specify and analyze important properties of systems and
policies found in practice. Also, we feel that the analysis
technique can easily be reduced to implementation, thereby
removing much of the complexity of analysis.

We define our logic in Section 2. In Section 3, we analyze
a protocol fragment to highlight several interesting aspects
of the use of our logic. In Section 4, we define our model of
computation and sketch a proof of the soundness of the logic
with respect to the model of computation.

2 The Logic

Before proceeding to a formal definition of our logic, we first
give an intuitive description. Our logic consists of formulas
that make statements about the knowledge and beliefs of the
principals involved.

We make statements such as P believes; X (P believes
X holds at time ¢) and P received; X (P received X at time
t), about messages such as {X}x (X encrypted by K) and
| X | x-1 (X signed by K™'). We assume each principal has
a local concept of time, and that different principals’ times
may not agree. In our basic formulas, a time refers to the
local time of the principal in the formula. Where there is no
principal, or more than one principal, involved, we explicitly
state the principal whose time is being referenced. We use
[t1,t2] to indicate that a formula holds at all times between
t1 and t2, and we use ({1, t2) to indicate that a formula holds
at some time between t; and ¢2.

Our logic makes some simplifying assumptions similar to
those made by related logics (cf. [3]). We do not attempt to
answer every important question about cryptographic proto-
cols. Our goal is not to reason about implementation details

such as the correct use of cryptographic functions. Principals
are trusted to communicate honestly, hence, senders believe
the truth of message contents. Also, principals can be trusted
to keep secrets. In particular, although their keys may be-
come compromised and thereby allow others to decrypt en-
crypted messages, principals are assumed not to pass on the
decrypted contents themselves unless specified by the proto-
col. Keys are assumed to be adequate for their purposes and
cryptosystems are assumed to be secure and properly used.
For example, we assume that it is only possible for a principal
to create the value {X}x that is the encryption of X with
key K if the principal has both X and K, and conversely, if a
principal attempts to decrypt {X }x with the wrong key, the
result will not be a message. In practice, this is easily achiev-
able by formatting messages according to a specified format
before encrypting them. Principals can recognize their own
encrypted messages, and will not mistakenly attribute them
to another principal.

We also make certain assumptions about the use of our
logic. In particular, we assume that users of our logic prop-
erly idealize protocols and make “reasonable” assumptions
when carrying out protocol analysis. For example, assump-
tions should not contradict each other, and should reflect the
real world in which the correctness of the protocol is being
claimed.

In Section 2.1, we formally define the set of messages and
formulas in the logic. In Section 2.2, we define the axioms
that allow us to derive one formula from another.

2.1 Messages and formulas

T is the set of primitive terms. We assume 7 contains the
real numbers and several distinguished subsets of constant
symbols called: principals, public keys, private keys, shared
keys, times, data constants (such as nonces), and primitive
propositions. Together, the set of public keys, private keys,
and shared keys, are called keys. We assume that the set of
times is ordered. Each key has an inverse. Given a public or
shared key K, we write K ! to denote its inverse. If K is a
public key, then K ™! is a private key. If K is a shared key,
then K ! is a shared key and K~! = K. As a notational
convention, we always denote a private key as the inverse of
the corresponding public key.

F 7 is the set of functions on primitive terms. In partic-
ular, there are distinguished functions in F7 that represent
encryption ({X}x), digital signatures (| X |x-1), and con-
catenation ((X1,...,Xn))

Some messages have truth values while others, such as
times, principal’s names and nonces, do not. We identify a
subset F7 of M7 that is the set of formulas. All formu-
las have truth values. Messages and formulas in the logic
are defined by mutual induction. Given the set of terms 7,
we define the set of messages, M7, to be the smallest set
satisfying the following conditions:

M1. ¢ is a message if ¢ i1s a formula.
M2. X is a message if X € 7.
M3. F(Xi,...,X,)is a message if X1,..

and F'is any n-ary function in F.

., X are messages

In particular, it follows from M3 that {X}rx, [X|x-1,
and (Xi,...,X5) are messages if X is a message, K is a
public or shared key, and Xi,..., X} are messages.

The set of formulas, F7, is the smallest set satisfying the
following conditions.

F1. pis a formula if p is a primitive proposition,
F2. = and ¢ A 9 are formulas if ¢ and 4 are formulas.

F3. t1 <3 and ¢; > 2 are formulas if ¢; and ¢2 are times
or real numbers.

F4. If P is a principal and ¢ is a formula, then
a. P believes; ¢ and P controls; ¢ are formulas if ¢
is a time.

b. P believesy, ¢,] ¢ and P controlsy, ., ¢ are for-
mulas if ¢; < ¢y are times.

c. P believes, 1,y @ and P controls(;, ¢,y ¢ are for-
mulas if ¢; < ¢y are times.

F5. If P is a principal and X is a message, then
a. P received; X, P said, X, and

P says; X are formulas if ¢ is a time.

b. P receivedy, ;) X, P saidy,) X, and

P SAYS[ty,t5] X are formulas if ¢; < ¢35 are times.
c. P receivedy, 1,y X, P saidy, 1,y X, and
P 5QYS(t, ts) X are formulas if ¢; < ¢35 are times.
Fé6. If P and @ are principals, K is a shared key, and K>
is a public key, then

K, Ko Ko o .
a. P—=; Q, = P, +—; P are formulas if ¢ is a time.

b. P ﬁ[tlyw] Q’ gﬁ[tlyw] P and &[tlyw] P are for-
mulas if ¢; < ¢y are times.

K K K
c. P <—1<t17t2> Q, l:>2<t17t2> P and b—%<t17t2> P are for-
mulas if ¢; < ¢y are times.

F7. If P is a principal and K is a key, then

a. P has; K is a formula if ¢ is a time.
b. P haS[tlth] K is a formula if ¢, < 2 are times.

c. P has<t17t2> K is a formula if ¢; < 2 are times.
F8. If X is a message and P is a principal, then
a. freshs p X is a formula if ¢ is a time.

b. freshp, ¢,1,p X is a formula if #; < ¢2 are times.

c. freshg, 1,y p X is a formula if ¢ < ¢ are times.
F9. If P and @ are principals and € is a real number, then
a. synce e (P, Q) is a formula if ¢ is a time.

b. syncp, 1,0, (P, Q) is a formula if ¢; < ¢, are times.

C. SYNC(ty 1,y (P, Q)is aformulaif ¢, < 3 are times.

F10. If P is a principal, tis a time, and ¢ is a formula, then
¢ atp tis a formula.

F11. If ¢ is a formula and ¢ is a time, then

a. (3t : ¢ <t < t2)p is a formula if ¢ and ¢, are
times.

b. (3t > t')¢ and (It < t')p are formulas if ¢ is a
time.

F12. If ¢ is a formula and ¢ is a time, then

a. (Vt : 41 <t < t2)p is a formula if ¢ and ¢, are
times.

b. (Vt > t')¢ and (V¢ < ') are formulas if ¢ is a
time.

In addition, any time ¢ that appears in a formula can be
replaced by ¢, P to yield another formula. Similarly, [¢1, 2]
can be replaced by [t1, 2], P and (t1,t2) can be replaced by
(t1,12), P.

The semantics of all formulas are made precise by the
definitions given in Section 4.

2.2 Axioms

Our axiom system includes two inference rules. For any for-
mulas ¢ and ¥, and time ¢,

R1. Modus Ponens: From ¢ and ¢ D % infer .
R2. Necessitation: If F ¢, then from ¢ infer P believes: .

F ¢ means that ¢ is a theorem, i.e. it is derivable from the
axioms alone. Since the - symbol is a metalinguistic symbol,
it does not actually appear in any proofs. We write I' F ¢ if
from the set I' of formulas, it is possible to derive ¢.

We take all tautologies of propositional logic as axioms.
In addition, we take as axioms all instances of the following
axiom schemas.

Belief
Al. P believes, ¢ A P believes; (¢ D) D P believes, o

A2. P belicves; ¢ = P believes: P believes: ¢
A3. P believes, p = P believes; (¢ atp t)

Multiple levels of belief are equivalent to a single level. Since
principals can be mistaken, P believes; ¢ D ¢ atp t does not

hold.

Time and Synchronization
A4. Time interval axioms
a. P believesy,] ¢ = (Vt:t1 <t < ta)
(P believes; ¢)
b. P believess, s,y ¢ = (Tt 1 11 <t < t2)
(P believes; ¢)
We also include analogous axioms for controls, received,
says, said, —, —, = has, fresh, and sync.

A5. Monotonicity axioms

a. P received; X ANt' >t D P receivedy X
b. P saidi X At' >t D P saidy X

c. X hass KAt <tD X hasy K

d. freshep X Nt' <t D freshy p X

e. (p atp t1) atp to ANty <tz Dy atp ty
f. syncee (P,Q)ANe< € D sync, o (P,Q)

A6. Synchronization and time conversion axioms

a. ¢ atp t Asyncye (P,Q) D¢ atg (t —e,t+€)

b. SYNCt e (Pa Q)) Sync(t—e,t-l-e),e (Qa P)
C. sync[t—max(el,62),t+max(61762)],61 (Qa P) A
Sync[t—max(el,eg),t-l-max(el,eg)],eg (aR))

SYNCt (e14¢2) Pa

d. ((p atp t1) atp to Atz > 11 D @ atp ta,
where ¢ is ¥ atp t for some 9, P, and ¢, or ¢ is
Q saysy X, Q said, X, Q has; X, or QQ received,
X, for some @}, X, and ¢.

Originator ldentification

AT. P L, 5 QAP received | X| -1 D Q said,p X
AQ saidyp | X | -1 AQ hase p K1

AS. é\;t,p Q A P received; | X | -1 D Q saidyp X
AQ saidyp | X | -1 AQ hase p K1
Principals use signatures to deduce the originator of mes-
sages.
Receiving
A9. P received, (X1,...,Xn) D P received, X;
A10. P recewved; {X}x A P has; K™ > P received; X
A11. P received, | X | -1 D P received, X

Principals can decrypt encrypted messages if they have de-
cryption keys, and principals can read signed messages with
or without the signature verification key. (However, in order
to actually verify the originator of a signed message, it is
necessary to have the key.)

Saying

Al12. P saidy (X1, n) D P said; X;

X
.., X5) D P says; X;

)

(
A13. P says; (X1,
A14. P saidy | X|x-1 D P saidy X
A15. P sayss | X | g1 D P saysy X
A16. P said; X D (' <)P saysy X
A17. P saysy X DO P sawdy X

A14 and A15 state that principals are responsible for the
contents of signed messages that they send, even if they did
not sign them. If instead, P wants to forward a signed mes-
sage | X |x-1 from @ without being responsible for the con-
tents, P would send the message “Q said; [X |17

Freshness
A18. freshy X D freshy F(X,Y)

It is assumed that the function F' in A18 actually depends
on the argument X.

Nonce-Verification

A19. freshi, p X NP said;, X D P 5QYS(t, t5) X

Jurisdiction

A20. P controlsy o AP says; ¢ D ¢ atp t

Symmetry of Shared Keys

a21. P&, 0=0&, P

2.3 Extension of Beliefs

As defined above, our logic is somewhat restrictive because it
is not possible to extend beliefs from one time to a later time.
This is done for two reasons. First, it allows for the possibil-
ity of beliefs to change over time. Second, it supports the use
of different policies for extension of beliefs. Some example
policies follow. Note that these are not axioms, but must
be explicitly assumed as initial assumptions if they are to be
used in a proof. The simplest policy allows arbitrary exten-
sion of belief, essentially treating all beliefs as stable. More
restrictive policies require a new construct, P still-believes;
o, that acts like P believes: ¢, except that the belief exten-
sion policy does not apply to it. Assuming this were defined,
some example policies can be formulated as follows.

P1. Stable beliefs: P believes; ¢ A (t < ') D
P believes,: ¢

P2. Believe if recent: P belicves; o atp t' A)
(' <t<i<6+1) D P still-believes; ¢ atp 1

P3. Believe until revoked:
P believesy ¢ atp U At <t < V')A
(Vi:t' <1< t")=(P believes,n ((—y) atp 1)) D
P still-believesyn @ atp t”

P4. Believe if recent and not revoked:
P believes; ¢ atp ' At/ <t <" <54+ A
(Vi:t' <1< t")=(P believes,n ((—y) atp 1)) D
P still-believes,n ¢ atp t"

These policies are simple, but useful. Policy P1 results
in a setting in which beliefs are stable, since any belief at a
given time can be extended to a later time. Policy P2 says
that formulas are believed for a window of time of length é.
These policies should not be assumed if the protocol allows
for revocation of the particular formula specified in the pol-
icy. If the protocol allows for revocation, then other policies
such as P3 may be more appropriate. Policy P3 says that
principals believe formulas until they receive notification to
revoke the belief. Policy P4 says that principals believe for-
mulas if they are recent and not believed to be revoked.

It would also be possible to define more complicated poli-
cies. For example, one might wish to define a policy in which
the extension of beliefs depends on the formula in question.
There are several reasons for representing policies as infer-
ences to be assumed in a proof. It allows more flexibility,
as the policy can be tailored to an individual situation. In
addition, it allows for consideration of a particular proto-
col with respect to multiple policies. The ability to reason
about the conjunction of policies and protocols will be es-
pecially important as public and private key infrastructures
are deployed and new and unanticipated policies are put into
use.

2.4 Using the Logic

In this section, we sketch the use of our logic to perform
syntactic analysis of protocols. As is done in previous logics
[2, 3, 13], the first step is to idealize the protocol. In this
step, the messages of the protocol are written in the lan-
guage of messages defined in Section 2.1. In the idealization,
each message is labeled with a time that represents the time
that the message is received. Once the protocol is idealized,
we can attempt to prove protocol goals, such as participants
agreeing on keys. The premise set of our proof consists of

any initial assumptions, such as shared keys between partic-
ipants. In addition, for each message

P—Q: X

in the idealization, @ received; X is included in the premise
set where ¢ is the time on @’s local clock when the message
is received.

We recommend that the time of a principal’s beliefs in
any initial assumptions is no later than when the principal
starts to operate. If this restriction is followed, one is less
likely to overlook policy assumptions used to make formulas
and beliefs current at the time of message receipt.

A proof consists of a sequence of formulas. Each formula
must either be in the premise set, be an axiom, or be deriv-
able from formulas earlier in the sequence by modus ponens
or by necessitation.

3 Example Techniques

In this section, we analyze a protocol fragment to illustrate
techniques for specifying and reasoning about cryptographic
protocols using our logic. We show techniques for reasoning
about synchronization, recency, and revocation.

ldealizing Timestamps using “says” Our logic is unambigu-
ous in the notion of the time when a message was sent using
the says construct and the notion that the ¢ on X atp t is
the time the formula is true using P’s clock as a reference.
Furthermore, since principals are assumed to say formulas
that are true we can drop the atp t and merely use says if
the time the message sent is the same time that the sender
believes the formula is true. If a timestamp indicates the
time a message is sent and a second timestamp indicates the
time the referenced formula is true, then both the says and
atp t constructs are used for idealization. The examples
that follow illustrate how idealizing both notions of times-
tamps is important for reasoning about the correctness of
cryptographic protocols.

Consider a public key identity certificate where @ is a
principal, K¢ is @’s public signature verification key, sg is
the certificate serial number, ¢; and t¢. are the begin and end
times of the key validity period, t. is a timestamp indicating
the time the certificate information was deemed accurate,
and Ks_l is the private signature key of the certifying au-
thority principal S, as shown by the following message.

Message 1 S — P: |Q,Kq,s5q,t,te,ts] -1
=

We idealize this timestamped certificate as

K,
Message 1 S —¢, P: |S says:, ‘:g[tb,te],s Q=
=
where the timestamp ¢, is a subscript parameter of says and
the goodness of the key is being asserted at that time.

Stable Beliefs We extend the time of beliefs using belief
extension policies. Suppose we are given as assumption the
initial belief at ¢y that Ks is a good key for S for all time t.

1. P belicves, (Vt) Iéft,P S

To extend statement 1 to time ¢; where ¢; > t{o we assume a
variant of stable belief policy P1 particular to principal S’s
key.

K
2. P believesy (Vt) lzgt,p SAt <t'>D
P believes,n Ié-ftyp S

This statement says that beliefs about the goodness of S’s
signature verification key are stable as time progresses. We
caution the reader that stable belief assumptions should be
used sparingly in protocols that must tolerate security fail-
ures such as breaches of private keys. However, in some de-
signs, stable assumptions, although strong, may be justified,
for example if keys are embedded in hardware.

Applying this policy to statement 1 we deduce the up-
dated belief at ¢;.

3. P believes, (Vi) Iéft,P S

In practice, protocols may be designed to recover from the
compromise of a key or the loss of jurisdiction. Unlike other
BAN-like logics we can reason about these protocols using
policies for belief extension such as “believe until revoked”
or “believe if recent”. Analysis assuming these policies is
performed in a manner similar to the analysis of this protocol
fragment and is illustrated later in this section.

Identifying the Originator Originator identification axioms
help deduce the originator of a message. From the receipt of
Message 1 we have the following.

K

4. P receivedy, |S says, '\:g[tb,te],s Q| =1
=

We apply the originator identification axiom A8 using the

updated belief for the signature key of statement 3 and the

received message statement 4.

5. P believesy, S saidy, p |S says, {;g[tb,te],s QJK;1
This statement illustrates the technique for qualifying sub-
script times with the identifier of a principal when the time
of the reference is different from the principal making the
statement. The subscript ¢, P on sa¢d indicates that P be-
lieves this certificate was sent at or before t; on P’s local
clock.

Fresh Uses of Key Our logic clarifies ambiguity about fresh
keys and fresh messages created using keys. A key is fresh if
it has never been sent in a message. For example, a princi-
pal may generate a random session key in an authentication
exchange. However, some keys are never sent in messages.
It is useful to express the notion that a key has not been
used to encrypt or sign a message. For example, consider
the following statement.

6. P believesy, (YP', Kpi,ty,tL, t%)

K,
freshoep (1S saysy &5 s Pl 1)
! ot z

This says that P believes that certificates signed using Ks_l
were fresh at time t*, for example, because S was not given
Ks_l before time t*. If we assume an appropriate belief ex-
tension policy we can extend this belief to ¢;. We instantiate
the particular belief relating to the certificate in the received
message, as follows.

K,
7. P believes;, freshy=p (|5 says, ':g[tb,te],s QJK_l)
s

Deducing the Time a Message was Sent We can deduce
a message was sent within a time interval if we believe the
message was fresh at the beginning of the interval. We use
the nonce-verification axiom A19, belief axiom Al, and state-
ments 5 and 7 to deduce that S sent the certificate sometime
between t* and ¢;:

8. P believesy, S says(xs,).p
Ko
15 sayse, S5 Qo

We remove the signature from statement 8 using axiom A15
for saying.

K,
9. P believesy, S says+syp S sayst, ':g[tb,te],s Q

Deducing Beliefs and Presence from Jurisdiction Suppose
as an initial assumption we believe that S has jurisdiction
over the time that time-stamped certificates are believed ac-
curate for all times after ¢*.

10. P believes;, (Yt > t*)S controls;« 4 p

K
(VP! K th, 10, 10)S saysy = (o1 P’

{e
Depending on the design details, it may have been appropri-
ate to make the stronger policy assumption that P believes
that S controls the time (i.e., timestamps) that S sends any
message. Using a belief extension policy assumption, we ex-
tend this belief to ;1 where 1 > #; and instantiate it for the
particular certificate and interval in question:

K,
11. P believest, S controlsyx .1 p S says:, ':g[tb,te],s Q

We apply the jurisdiction axiom A20 and A1l to statements
9 and 11.

K,
12. P belicvest, (S says:, ':g[tb,te],s Q atp (t*,11))

To remove atp (t*,¢1) from the saysin statement 12 we first
append atp t1 to statement 12 using A3. Next we apply the
reduction axiom on stable formulas A6d using Al. Finally,
we remove atp t1 using A3.

K
13. P belicvest, (S says:, ':g[tb,te],s Q)

Statement 13 proves the presence of principal S at time ¢;
using S’s clock as a reference. Simply proving the presence
of a principal at a particular time is a design goal of some
protocols. Although other BAN-like logics are capable of
proving presence, they are limited in reasoning about the
time of presence. Later, we translate ¢; into a time on P’s
clock using synchronization assumptions.

In a similar manner as before, we assume general beliefs
about jurisdiction of key certificates for Q:

14. P belicvest, (Vt)S controls,
1 ! ! I\’ég
(V[XQa tba te) = [t;),t’e],s Q
and we instantiate the jurisdiction assumptions for the par-
ticular certificate in question.
K
15. P believes;, S controls;, ‘\:g[tb,te],s Q
Next we apply the jurisdiction axiom A20 to statements 13
and 15.
. Ko
16. P belicvess, (=4, 11,5 @ ats ts)

We deduce that P believes that K¢ 1s a good key at t. on
S’s clock. Where protocol correctness relies on clock synchro-
nization, we need to derive a trusted clock synchronization
path between S and P to determine what ¢; on S’s clock
means in reference to P’s clock.

Reasoning about Synchronization Our logic enables one to
deduce trusted synchronization paths and to derive synchro-
nization bounds between principals from initial assumptions
and messages. Deducing trusted synchronization paths and
deriving the synchronization bounds is a necessary step when
protocol correctness depends on synchronization.

Suppose we wish to deduce a trusted synchronization
path and derive the degree of synchronization between P
and S to interpret the time ¢; on S’s clock in terms of P’s
clock for the belief in statement 16. As with other formu-
las, principals may come to believe synchronization formulas
from the extension of initial assumptions or from receipt of
messages containing synchronization formulas. For purposes,
of illustrating the synchronization axiom, assume we derive
the following beliefs; where I is some intermediate principal
that has known synchronization bounds with both P and S.

17. P believesy, syncie,—max(e;,en),te4max(er,ea),er (4> P)
18. P believest, SYNC[t;—max(eq,e2),ts+max(ey,e2)] €2 (I’S)

We apply the clock synchronization axiom A6c to statements
17 and 18.

19. P belicves;, sync, . (S, P)

where ¢ = ¢; +¢€2. Hence, we have deduced a synchronization

bound between S and P.

Converting the Time of Reference Converting the time of
reference from one principal’s clock to another’s is relatively
straight forward given a belief about synchronization bounds
for the time in question. We apply the time conversion axiom
A6a to statements 16 and 19.

K,
20. P believes:, ':g[tb,te],s Q atp (ts — €t + €)

The time of reference for the goodness of)’s verification
key is now in terms of P’s clock.

Reasoning about Recency In practice, it is sometimes im-
portant that principals believe statements that are recent.
For example, in [11] it is noted that Kerberos [10] requires
certain recency constraints for authentication. The time that
clients authenticate principals is carried in a ticket that is
presented later to application servers when requesting ser-
vice. Application servers can choose to reject tickets if the
time of authentication does not meet the application server’s
policy for recency.
We now give an example for reasoning about recency.

Suppose we have

21. P receivedy, LXJK(;
where, if authentic, the statement @ says; X has great value.
To reduce the chances that K ! is no longer a good key
for 2, we may require tight constraints on the recency of
the goodness of @’s key used in deducing @ says; X from
the received message in statement 21. Suppose our initial
assumptions include the recency policy pertaining to @’s keys
for all values of K&;, ty, and t.:

K]
22. P believes; l:g[%yt/e]ys Qatp ANt <t <

o~

<6+1)D

K, .
P still-believes; ':g[t;),t’e],s Q atp t

Finally, we apply the particular instance of the policy of
statement 22 to statement 20.

K
23. P still-believes,, ((':g[tb,te],s Q) atp ta3)

provided that there exists ¢* such that ts —e < t* < ts+¢
and ts+e < t; <tz < t*+86. Therefore, we have updated our
belief about @’s key to ¢35 and we can proceed to analyze our

received message in statement 21 using K¢ provided ¢, <
ts < te.

Recency Policy for Enforcing Replay Detection Determin-
ing the recency of statements is important for replay de-
tection mechanisms. An approach used in practice by the
Kerberos network authentication protocol [10] requires syn-
chronization between a client and server be sufficiently small
such that the server can store and check for replayed mes-
sages during this window. Messages falling outside the win-
dow timeout since the server can not check the storage to
determine if the message is a replay. Given that we can de-
duce a synchronization path between principals originating
and authenticating the message, analysis consists of deducing
message authentication assuming a “believe if recent” policy
where the recency interval 6 is chosen to reflect the length of
message storage on the server. However, one can not over-
look the dependency of recency intervals on sufficiently small
synchronization bounds. Protocol analysis using our logic
makes this dependency explicit.

Reasoning about Revocation Our logic allows us to reason
about revocation of formulas. We give an example for rea-
soning about revocation of keys however the techniques ap-
ply to all formulas (e.g., jurisdiction, synchronization, etc.).
Our example assumes a certificate revocation list similar to
that of the X.509 standard [4]. The certificate revocation
list contains a timestamp ¢, and zero or more serial num-
bers unambiguously identifying revoked keys. For simplicity,
we assume the following revocation message containing one
serial number.

Message 2 S — P: |t,s0]

~—1
I\S

We idealize the certificate revocation list as follows.

Message 2 S —¢, P: [S says; — Il\zg[tbyte]ys Q| KD
where K is the key uniquely identified by the serial number
sg. Of course, to idealize particular statements about keys
from the revocation list we need to have the corresponding
key information.

Suppose we are able to deduce the following from revo-
cation lists and other formulas

K,
24. P believes;, (‘:g[tb,te],s Q atp tp)

K
25. P believes, (— ':g[tb,te],s Q atp t*)

where t* > tp. Suppose our goal is to interpret the received
message 1n statement 21 subject to a “believe until revoked”
concerning the goodness of (’s keys. That is, our policy
assumption is for all values of K&;, t,, and 1.,

K] .
26. P believes; ':g[t;),t’e],s Qatp t' At <t <Y (VE

~ I\’I ~
t' <t< t”)"(P believes,n (—| ng[%yt/e]ys Q atp t)) D
K
P still-believes,n (::g[t 1,5 Q atp 2!

We are unable to obtain the extended belief for ¢35 > 2

I
b

K,
27. P still-believes;, (':g[tb,te],s Q atp t3)

since

K
28. P believes, (— ‘:g[tb,te],s Q atp t*)

where t3 > t* > tp. Therefore, we are prevented from us-
ing an extended belief like 27 to derive the originator of the
received message in statement 21 at ¢3.

The above example illustrates the basic procedure for rea-
soning about revocation. Using our logic, one can specify
and reason about more complex revocation lists and more
complex revocation policies.

4 Model of Computation

In this section, we sketch our model of computation. An
important feature of our model is the description of relevant
timing of events that can play a central role in authentica-
tion and security policies. Our model is quite general since
we make no assumptions about the synchronization of princi-
pal’s clocks. Our model builds upon the works of [2, 5, 9, 13].
We consider a setting in which a finite set of principals
P ={P1,..., P} communicate by sending messages to each
other. In addition, there is a special environment principal P,
that represents relevant aspects of the external environment.
Each principal has a clock that represents his local time. P.’s
clock represents the global time. (In general, the global time
is not known to the principals). All times are real numbers.
The behavior of the principals will be described by a run,
and the set of possible runs will constitute a system.
Formulas, messages, and other basic values are defined as
in Section 2.1. Given a message M and a set K of keys, we

define submsgs,. (M) to be the union of {M} and

a. submsgs,(X1) U
M= (X1,....Xn),

(ifM={X}xand K € K,
c. submsgs (X)) if M = | X |x-1,
(X)if M =X at, P.

. Usubmsgs (X,) if

b. submsgs(X)
)
d. submsgs

Thus submsgs, (M) is the set of messages derivable from M
by reading submessages and using keys in K. We extend
submsgs - to sets of messages in the obvious way.

We define several basic events that may take place for
principals.

e send(X, P;): send message X to Pj,
o receive(X): receive message X, and
o generate(X): generate message X.

A timestamped event is a pair (v,t) where v is a basic
event and ¢ is a time. A history is a (possibly infinite) se-
quence of timestamped events. If (v,¢) is a timestamped
event in the history H, we write (v,t) € H. H is a se-
quential history at t; if (1) t; < ¢z for every ti1,t> such that
(v1,t1), (v2,t2) € H and (v1,t1) appears earlier in the se-
quence than (v2,¢2), and (2) ¢ < ¢; for every (v,t) € H.

Associated with each principal P; (1 <1 < n) is a local
state that contains the all the information P; has access to,
namely, P;’s identity, the current local time, keys P; can
use, and a history of events that have taken place for P;.
Formally, a local state is a tuple s; = (1, ¢, Ki, H;), where ¢;
is a time, KC; is a set of keys, and H; is a sequential history
at t;.

As mentioned before, the environment P. captures rele-
vant aspects of the system not captured in the local states of
the principals, including message modification, replay, loss,
and delay. The environment state contains

a. a time t., called the real teme,
b. a sequential history H. at t., and

c. for 1 <1 < n, a message buffer b; for P; containing the
set of messages sent to P; but not yet delivered.

The global state of a system with n principals is a (n+1)-
tuple of the form (s, s1,..., $n), where s. is the environment
state and each s; is the local state of principal P;. A run is
a function r : ® — G, associating a global state with every
point of real time. Given a run r and a time ¢, we denote
the local state of P; in the global state r(¢) by r;(¢). We
sometimes write (r,t) to denote r(t), and call (r,t) a point.

Given arun 7, a time ¢, and a principal P;, Timep,(r,t) is
defined to be P;’s local time, i.e. the time in P;’s local state
r;(t). Similarly, History p (7, t) is defined to be the history in
the local state r;(), and Keysetp (r,t) is defined to be the
key set in the local state ri(t). We also define Msgsp (r, 1) =
{M : (receive(M),
Msgsp (7, 1) is the set of messages received by P; at or before
time ¢ 1n run r. Since P;’s local time ¢; may be the same for a
period of real time in the run r, the set {¢ : Timep,(r,t) = ¢;}
generally contains more than a single element. We write
Startp,(r, ;) and Endp,(r, ¢;) to denote the minimum and
maximum element, respectively, of this set.

A run r is legal if certain monotonicity and consistency
conditions hold. Namely, r is legal if for every principal P,

1) e History p, (r,) for some '}, so

a. if t < ¥, then Timep(r,t) < ¥,
b. if ¢ < ¢, then Keysetp(r,t) C Keysetp(r,t'),
c. if K € Keysetp(r,t) then either

(a) (generate(K),t’
or

) € History p(r, ¢) for some ¢ < ¢,

(b) there exists a sequence Ko, K1, K2,..., Ky such
that K, = Keyset p(r, 1), Ko = Keyset p(r,¢') for
some t' < t, and if K € K¢, then either K € K,_4
or K € submsgsy, (Msgsp(r,t)).

d. if (receive(X),t') € History p(r,t), then
(send(X, P), ") € History ,(r, ¢) for some @ and t"
such that Endg(r, ") < Startp(r,t').

A system is a set of legal runs. Typically, we will be inter-
ested in a set of runs consisting of relevant events occurring
before the start of a protocol followed by possible executions
of that protocol.

4.1 Truth Conditions

In this section, we inductively define the truth of formulas
in our model. An interpretation w is a function © : G X
¢ — {T,F} assigning truth values to primitive propositions
at each global state. A pair Z = (R, x) is an interpreted
system. The truth of formulas is evalunated with respect to
a given point (r,t) in an interpreted system Z. We write
(Z,r,t) = ¢ to indicate that ¢ is true at the point (r,¢) of Z,
and (Z,r,t) £ ¢ to indicate that ¢ is not true at the point
(r,t) of Z. Where T is clear from context, we write simply

(r,t) = ¢ and (r,t) = o.

We define our truth conditions in such a way that for
nonnegated basic formulas, only formulas about the past can
be true. We do this in order to maintain a certain kind of
stability of formulas that is important to the soundness of
the logic. In particular, we only define statements that can
be revoked, such as statements about belief, control, and
keys, to be true at a given time on a principal’s clock if the
principal’s clock has changed from that time, since otherwise
it would be possible to construct runs in which the same
statement is both true and false at the same time.

Primitive Propositions (r,t) |= p if and only if (r,t) € n(p)
for primitive proposition p.

Logical Connectives
(r,t) E @ A ¢ if and only if (r,¢) |= ¢ and (r,t) E 9.
(r,t) E — if and only if (r,t) £ ¢.

(r,t) = (3 : t1 <t < t2)p if and only if (r,¢) E ¢ for
some t’' such that t; < t' <t,.

(r,t) = (3t1 > t2)p if and only if (r, t) = ¢ for some t; such
that t1 Z t2.

(r,t) = (3t1 < t2)p if and only if (r, t) = ¢ for some t; such
that t1 S t2.

(r,t) = (V¢ t1 <t < t2)p if and only if (r,¢) E ¢ for
every t' such that t; <t <ts.

(r,t) E (Vi1 > t2)p if and only if (r,t) = ¢ for every t;
such that ¢; > ts.

(r,t) E (Vi1 < t2)p if and only if (r,t) = ¢ for every t;
such that ¢; < t5.

Relations

(r,t) Et1 < t2if and only if t; < 5.

(r,t) Et1 >t if and only if t1 > ¢o.
Receives P derives X from the set of received messages and
P’s current key set.

(r,t) |= P received,r X

if and only if ¢ < Timep(t) and
X e SubmSgSKeysetP(r,t)(MSgS(T’ t)).

(r,t) = P receivedy, 1,1 X

if and only if (r,¢) |= P received, X for every t1 <t < o,
and

(r,t) |= P receivedy, ¢,y X
if and only if (r,t) = P received,y X for some t; < ' < 5.

Has
(r,t) |= P hasy K

if and only if ¢’ < Timep(¢) and K € Keysetp(r,t').
(r,t) |= P hasy, 4, K

if and only if (r,t) = P hasy K for every t; < ¢ < o, and
(r,t) = P hasg, ey K

if and only if (r,t) = P hasy K for some ¢ < ' < to.

Says
(r,t) = P saysy X

if and only if ' < Timep(t) and there is some message M and
principal @ € P such that (send(M, Q),t') € History p(r, ¢)
and X € SubmSgSKeysetP(r,t')

(r,t) |= P sayspy,] X
if and only if (r,t) = P saysy X for every ¢ < t' < s, and

(r,t) |= P saysq, ¢,y X
if and only if (r,t) = P saysy X for some t; < ' < 15,
Said

(r,t) E P saidy X

if and only if ¢ < Timep(?) and there is some t" < ¢’ such
that P saysq X.

(rnt)yEP said, 1) X
if and only if (r,t) = P saidy X for every ¢ <t' <o, and
(r,t) |= P saidg, iy X
if and only if (r,t) E P saidy X for some ¢1 < ' < to.
Controls Principals neither lie about formulas they control,
nor make contradictory statements about formulas they con-
trol using the same timestamp.
(r,t) = P controlsy ¢

if and only if (1) ¢ < Timep(?) and (2) (r,t) = P saysy ¢
implies (7,1) = ¢ atp .

(r,t) |= P controlsy,] ¢

if and only if (r,t) = P controls, ¢ for every t; < t' < ¢,
and
(r,t) |= P controlsgy, 1,y ¢

if and only if (r,¢) = P controls, ¢ for some ¢ < t' < to.

Fresh A message is fresh if it has not been said before in
the run.

(r,t) |= freshy p X
if and only if ¢ < Timep(r,t) and (r,t) & @ saidy p X for
all principals Q.

Shared Keys Shared keys provide both confidentiality and
originator identification.

(nt)EPS0RQ
if and only if (1) t1 < Timer(t), (2) (r,t) = S received,
| X |x implies (r,t) & P saidy X or (r,t) |= Q saidy X,
and (3) (r,t) E S receivedy {X}x and (r,t) |E S received,
X imply either

e Se{pPQ}
o (generate(X), ") € History 5 for some " < ¢'.

K
(rnt)yEP g2,k @
if and only if (r,t) E P <I—(>t/7R Q for all t; <t <t5, and

K
(T’ t) =P T (t1,t2),R Q

if and only if (r,t) E P <I—(>t/7R Q for some t; < t' < ts.

Public Signature Verification Keys Signature checking keys
are good if they properly identify signatures.
K
(rt) = (Sv.q P)
if and only if (1) 1 < Timeg(t) and (2) (r,t) = Q received,
| X | x-1 implies (r,t) |= P saidy X.
K
(T’ t) |: (I:>[t17t2]7Q P)
if and only if (r,t) E (é\;tzg P) for all t; < ¢’ < o, and
K
(Ta t) |: (‘:><t17t2>7Q P)

if and only if (r,t) E (é\;tzg P) for some #1 < t' < to.

Public Encryption Keys A public encryption key must yield
messages that cannot be read by anyone other than the prin-
cipal whose key it is.

() (Cuq P)

if and only if (1) ¢ < Timeg(¢) and (2) (r,t) |= R received,
{X}x and (r,t) = R received; X imply either

a. R=P, or
b. (generate(X),¢") € Hg for some ¢ < ¢'.

K
(T’ t) |: (H[t17t2]7Q P)

if and only if (r,t) E (»I—itzyQ P) for all t; < ¢’ < o, and

K
(T’ t) |: (H<t17t2>7Q P)
if and only if (r,t) E (&K Pt',Q) for some 11 <t < to.

Believes We define the possibility relation ~p, for a prin-
cipal P; in a state (r,t) by (r,t) ~; (v', ') if ri(¢) = r{(t').
Hence, ~; defines an equivalence relation for P; among global
states. We define belief relative to this equivalence class.

(r,t) = P believesy ¢
if and only if ¢ < Timep(t) and (v',¢') = ¢ atp ¢’ for all
(r', ') such that (r', ') ~p (1, t).
(r,t) = P believesy, i) ¢

if and only if (r,t) | P believes, ¢ for every t1 < t' < o,
and
(r,t) |= P belicvess, ¢,y @

if and only if (r,t) = P believes, ¢ for some ¢1 < t' < t5.

Synchronization Principals’ clocks are not more than ¢ time
units from each other. Synchronization between principals
places no constraints on how far clocks drift from real time.

(r,1) |= synco e (P, Q)

if and only if ¢ < Timep(¢) and |t' — t"| < € for all ¢" such
that Timeg(r, Start p(r, 1)) < ¢ < Timeg(r, Endp(r,t')).

(rt) = SYNClty,t5],¢ (P,Q)
if and only if (r,t) | syncy . (P, Q) for every ¢1 < ¢’ < i,
and

(rt) = SYNC(ty,t5),e (P,Q)
if and only if (r, t) |= syncy . (P, Q) for some 3 < ' < 1.

10

At
(r,t) = ¢ atp '

if and only if ¢ < Timep(t) and (r,¢") |= ¢ for all ¢ such
that Startp(r,¢') < ¢” < Endp(r,t).

(Ta t) |: @ atp [tlat2]
if and only if (r,t) = ¢ atp ' for every t1 < ' < ¢, and

(r,t) = ¢ atp {t1,t2)

if and only if (r,t) = ¢ atp t' for some ¢1 < t' < to.

4.2 Soundness

Our logic is sound, in the sense that any derivation allowed
by the logic corresponds to a truth in the model. For any
formula ¢ and set T' of formulas, we write I' |= ¢ if (r,t) = ¢
for all (r,t) such that (r,t) |= ¢ for every ¢ € T.

Theorem 4.1 LetT be a set of formulas and ¢ be a formula.
IfTE o, thenT = .

Proof (sketch): Assume I' - ¢. We show by induction
that T' |= ¢. If ¢ is a theorem or a member of T, then
trivially T' |= . Otherwise, ¢ was derived by applying one
of the inference rules to some formula ¥. We assume as an
inductive hypothesis that T |= 9.

To show that T' |= ¢ if ¢ was obtained by modus ponens
from some 9 such that T' |= ¢, we use a case by case analysis
(omitted here) of the axioms of our logic to show that all
the axioms preserve truth, in the sense that they cannot be
used to derive untrue formulas from true ones. Specifically,
for each axiom ¢ D ¢, we show that if (r,¢) F %', then
(r,t) £ 4. It therefore follows that if ¢ was obtained by
modus ponens from 9, that since T' |= ¢, T |= ¢.

If ¢ was obtained by necessitation from some % such that
I' = ¢, then F ¢ and ¢ = P believes;, 9 for some P and
tp. Since v is a theorem, |= 9. Hence, for any 7, ¢, and P,
(r,t) = . In particular, given a point (r,t), then for any
(r', ') such that (r,t) ~p (r',t'), (r',¢') |= 9. Tt follows from
the truth conditions for believes that (r,t) |= P believes,,,
¢ for every (r,t). Hence T' |E P believes;, ¢. Since ¢ =
P believes;, 1, it follows that T' = . [|

The full proof of Theorem 4.1 will be included in an ex-
panded version of the paper.

5 Conclusions

We present a logic for reasoning about cryptographic pro-
tocols. Our logic supports reasoning about several impor-
tant properties underlying practical cryptographic protocols:
synchronization, recency, and revocation. We represent secu-
rity policies as implications that are specified as assumptions
during the analysis of a protocol. In the course of reasoning
about properties of synchronization, recency, and revocation,
the security policies advance the flow of reasoning provided
the preconditions relating to the property is satisfied. In
this way, the analysis yields information about the protocol
together with the specified security policies. By evaluating
security objectives with respect to the context of particu-
lar principals and their policies, one determines whether as-
sumptions of the correctness proof are within the constraints
of the policies of the principals.

In practice, bounds on clock synchronization can have a
significant impact on the correctness of cryptographic proto-
cols for distributed systems. We demonstrate how our logic

exposes assumptions about trusted synchronization paths
and synchronization bounds between principals. This estab-
lishes requirements for evaluating the adequacy of the un-
derlying clock synchronization algorithm. Also, it provides
a metric for comparing protocol designs. For example, by
modifying synchronization assumptions to reflect synchro-
nization failures the designer can assess the extent of vul-
nerability due to a synchronization failure. Finally, exposing
synchronization assumptions is a step towards engineering
security architectures to minimize risk due to inconsistent
knowledge. No synchronization assumptions are inherent to
our logic or model. Like other security-relevant features,
protocol-specific assumptions about synchronization are in-
cluded in the premise set for analysis.

In this paper, we illustrated some recency policies and
gave examples for reasoning about recency. We have shown
how proving recency properties is fundamental to proving
the correctness of practical security mechanisms such as re-
play detection. Authentication subject to recency properties
can also prove the continued presence of an entity. Authen-
tication based on recency of beliefs (such as beliefs about the
goodness of keys) or recent-secure authentication [11] is fun-
damental to managing risk due to the inherent problem of
obtaining concurrent knowledge in distributed systems. Re-
cency policies place constraints on the recency of statements,
such as statements about the goodness of keys and jurisdic-
tion for issuing keys. In effect, recency policies constrain the
window of inconsistent knowledge as the protocol progresses.

Revocation, or referencing and negating previously made
statements about belief, jurisdiction, and keys, is an impor-
tant part of practical systems. Our logic provides a general
method for expressing revocation policies and for reasoning
about revocation. We illustrated some revocation policies
and gave an example for reasoning about the revocation of
keys.

6 Acknowledgments

We thank Seema Maru for helping us to refine the logic by
using it to analyze several protocols.

References

[1] M. Abadi, M. Burrows, B. Lampson, and G. Plotkin. A
calculus for access control in distributed systems. ACM
Trans. Program. Lang. Syst., 15(4):706-734, 1993.

Martin Abadi and Mark R. Tuttle. A semantics for a
logic of authentication. In Proc. 10th Annual ACM Sym-
posium on Principles of Distributed Computing, pages
201-218, August 1991.

(2]

Michael Burrows, Martin Abadi, and Roger Need-
ham. A logic of authentication. Technical Report SRC
Research Report 39, Digital Equipment Corporation,
February 1989. Revised February 1990.

CCITT. The directory - authentication framework.
Technical Report X.509, International Telegraph and
Telephone Consultative Committee, February 1993.

R. Fagin, J. Halpern, Y. Moses, and M. Vardi. Rea-
soning about knowledge. The MIT Press, Cambridge,
Massachussetts, 1995.

11

[6] K. Gaarder and E. Snekkenes. Applying a formal anal-
ysis technique to the CCITT X.509 strong two-way au-
thentication protocol. Journal of Cryptology, 3(2):81-
98, 1991.

Li Gong, Roger Needham, and Raphael Yahalom. Rea-
soning about belief in cryptographic protocols. In Proc.
14th IFEFE Symposium on Research in Security and Pri-
vacy, pages 234-248 May 1990.

B. Lampson, M. Abadi, M. Burrows, and E. Wob-
ber. Authentication in distributed systems: Theory and
practice. ACM Trans. on Comp. Systs., 10(4):265-310,
1992.

Y. Moses and B. Bloom. Knowledge, timed precedence
and clocks. Technical Report 95-21, Weizmann Insti-
tute, July 1995.

B. Clifford Neuman and Theodore Ts’o. Kerberos: An
authentication service for computer networks. IEFFE
Communications, 32(9), 1994.

[10]

Stuart G. Stubblebine. Recent-secure authentication:
Enforcing revocation in distributed systems. In Proc.
19th IEFE Symposium on Security and Privacy, pages
224235, May 1995.

[11]

[12] Paul F. Syverson. Adding time to a logic of authentica-
tion. In Proc. 1st Conference on Computer and Com-
munication Security, pages 97-101, November 1993.

[13] Paul F. Syverson and Paul C. van Oorschot. On unifying
some cryptographic protocol logics. In Proc. 18th IEFFE
Symposium on Research in Security and Privacy, pages

14-28, May 1994.

	ccs1996 11
	ccs1996 10
	ccs1996 9
	ccs1996 8
	ccs1996 7
	ccs1996 6
	ccs1996 5
	ccs1996 4
	ccs1996 3
	ccs1996 2
	ccs1996 1

