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Abstract. Privacy-preserving classification is the task of learning or training
a classifier on the union of privately distributed datasets without sharing the
datasets. The emphasis of existing studies in privacy-preserving classification
has primarily been put on the design of privacy-preserving versions of particular
data mining algorithms, However, in classification problems, preprocessing and
postprocessing— such as model selection or attribute selection—play a promi-
nent role in achieving higher classification accuracy. In this paper, we show gen-
eralization error of classifiers in privacy-preserving classification can be securely
evaluated without sharing prediction results. Our main technical contribution is a
new generalized Hamming distance protocol that is universally applicable to pre-
processing and postprocessing of various privacy-preserving classification prob-
lems, such as model selection in support vector machine and attribute selection
in naive Bayes classification.

1 Introduction

Rapid growth of online services has increased the opportunities to store private or con-
fidential information. Data mining enables to exploit valuable knowledge from data
collections while dataminers are forced to treat such private datasets under prudent
control in order to prevent the leakage or misuse. Considering such situations, privacy-
preserving data mining (PPDM) provides a secure way to compute the output of a par-
ticular algorithm applied to the union of privately distributed datasets without shar-
ing them. Privacy-preserving classification is defined as a problem to train a clas-
sifier with the union of privately distributed datasets without sharing them. Privacy-
preserving classification was pioneered by Lindell and Pinkas, who considered ID3 de-
cision trees [6]. Following this, various privacy-preserving classification methods have
been presented, including naive Bayes classifiers [11],k-nearest neighbor [15], and sup-
port vector machines [14, 5].

These privacy-preserving classifiers have been designed as privacy-preserving ver-
sions of particular data mining algorithms. However, the dataminer’s task rarely starts
and ends with running a particular data mining algorithm. Rather, various preprocessing
and postprocessing steps improve the capability of knowledge discovery with data min-
ing. For example, real datasets often include noisy or useless attributes; including them
in the classifer learning process reduces classification accuracy. Classification accuracy
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can be improved by eliminating these unnecessary attributes (i.e., attribute selection).
Furthermore, when the target classifier has tunable parameters, adjustment of model
parameters (i.e., model selection) can help minimize the generalization error.

The emphasis in privacy-preserving data mining has mostly not been placed on
pre- and postprocessing. Earlier work of Yang et al. [12] begins to address privacy-
preserving model selection. As we discuss below, our work extends their initial study
in many ways.

In a distributed setting, there are many ways that data can be distributed. Two com-
monly considered cases are vertically partitioned data and horizontally partitioned data.
In this paper, we consider data partitioned between two parties. In the vertically parti-
tioned model, each party holds a subset of attributes of the data entries. In the horizon-
tally partitioned model, each party holds a subset of data entries of all attributes [10].
Usually, these subsets are assumed to be disjoint; in the vertically partitioned case, both
parties are assumed to know the identity of the complete attribute set.

Most distributed privacy-preserving classification algorithms produce as output an
actual classifier known to one or more of the involved parties. In our work, we also
consider “extending” the privacy to later stages of the process, sometimes keeping the
classifier itself privacy (which we refer to as aprivately shared classifier) or even the
prediction results themselves (which we callprivately shared prediction). If the classi-
fier and the prediction are not privately shared, we refer to these as regular classifier and
regular prediction, respectively. (See Section 2.2 for more detail.) Many combinations
of partitioning models and representations are possible in privacy-preserving classifica-
tion. The most privacy is obtained if both the classifer and the prediction are privately
shared; this also enables a modular design of post-processing such as cross validation
that requires using multiple generated models for prediction before deciding on the fi-
nal output model. Table 1 summarizes representations of classifiers and predictions in
existing privacy-preserving classification.

Yang et al. [12] presented a privacy-preservingk-fold cross validation that evaluates
generalization error of privacy-preserving classifiers. A limitation of their protocol is
that it is applicable only to privacy-preserving classifiers that return regular predictions
in the vertically partitioned model.

We note that in principle, any private distributed computation can be carried out
using secure function evaluation (SFE) [13, 4]. It follows that SFE technically allows us
to evaluate generalization errors of privacy-preserving classifiers with any partitioning
models and representations. However, as we demonstrate in Section 3.3 with experi-
mental results, these computations can be inefficient for practical use, particularly when
the input size is large.

Our contribution. We present a new Hamming distance protocol that allows us to
evaluate generalization errors of privacy-preserving classifiers usingk-fold cross vali-
dation (Section 3.2). Our protocol works with privacy-preserving classification with any
representation and partitioning model. It is therefore is more general and more private
than Yang et al.’s protocol [12]. Experimental results show that the computation load of
our protocol is much smaller than that of Hamming distance computation implemented
with SFE (Section 3.3). To demonstrate our protocol with pre- and postprocessing of
privacy-preserving classification, our protocol is applied to model selection in support
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Table 1. Data partitioning models and representations of classifiers and predictions in privacy-
preserving classification and privacy-preserving cross valiadtion

Horizontally partitioned model Vertically partitioned model
Regular classifier Naive Bayes [11] ID3 [6],SVM [14],
Regular prediction ID3 [2] cross validation [12]

Privately shared classifier
k-NN [15] cross validation [12] (in restricted cases)Regular prediction

Regular classifier
Privately shared prediction
Privately shared classifier SVM [14] Naive Bayes [11]
Privately shared prediction SVM [5]

vector machine with polynomial kernels (Section 4) and attribute selection in naive
Bayes classification (Section 5). In both applications, the efficiency is examined with
experimental analysis.

2 Preliminaries

2.1 Privacy-preserving Classification

Let a set of training examples beXtr = {(xi , yi)}ni=1, wherexi ∈ X and yi ∈ Y =
{1, ...,m}. In classification tasks, classifierh : X 7→ Y is trained onXtr. Let {(x, y)} be
test examples, which are unseen in the training phase. The classification problem is to
find a classifierh ∈ H with a small generalization errorϵ = E(x,y) ([h(x) , y]) where
E(x,y) is the expectation over (x, y). [z] is 1 if predicatezholds and 0 otherwise.

In privacy-preserving classification, we assume a setting such that training and test
examples are distributed over two or more parties and these examples are desired to be
kept private mutually. We assume two parties, denoted as Alice and Bob. Let partitioned
sets of training examples of Alice and Bob beXA

tr andXB
tr, respectively.

Typically two types of data partitioning models are considered. Invertically par-
titioned model, a partitioned dataset corresponds to a subset of attributes of all data
entries. Inhorizontally partitioned model, a partitioned dataset corresponds to a subset
of data entries of all attributes. Test examples are partitioned similarly. If not specifically
mentioned, both partitioned models are considered together in this paper.

2.2 Representations of Classifier and Prediction

Privacy-preserving classification essentially includes two problems, privacy-preserving
training and privacy-preserving prediction. In the training phase, classifierh is desired
to be trained without violating the given partitioning model. Knowledge that Alice and
Bob can obtain from the execution of the training phase is determined by the represen-
tation of the classifier. Given distributed training examples, if at least one party obtains
a trained classifier after the training phase, we say the party learns aregular classi-
fier. As long as the training protocol is designed correctly and securely, private inputs
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will not be exposed to parties explicitly. However, note that the regular classifier itself
might leak some private information to the party who receives the classifier. For exam-
ple, naive Bayes classifier consists of frequency of attributes, which leaks statistics of
attributes held by other parties.

Theprivately shared classifierprovides enhanced privacy-preservation with the idea
of secret sharing byrandom shares. Let ZN = {0,1, ...,N − 1}. We say Alice and Bob
have random shares of secrety ∈ ZN when Alice hasrA ∈ ZN and Bob hasrB ∈ ZN

in which rA andrB are uniform randomly distributed inZN with satisfyingy = (rA +

rB) modN. Assume that classifiers are characterized by a parameter vectorα ∈ Zq. If
two parties obtain random shares ofα after the training phase, we say two parties obtain
a privately shared classifier. Note that no information associated with the classifier can
be obtained from any single share of the classifier. For example, a hyperplane classifier
is written ash(x;α, β) =

∑d
i=1αi xi + β. Let (αA,αB

i ) and (βA, βB) be random shares ofα
andβ, respectively. Then, (αA, βA) and (αB, βB) forms a privately shared classifier.

Representations of predictions are stated similarly. Once a party obtains a regu-
lar classifier, the party can locally compute predictions of its own test examples. This is
referred to as theregular prediction. When a privately shared classifier is trained, an ad-
ditional protocol to obtain predictions is required. If the prediction protocol is designed
such that it returns the prediction to at least one party, it is again called regular predic-
tion. If the prediction protocol returns random shares of the prediction, it is referred to as
privately shared prediction. See Table 1 for the summary of existing privacy-preserving
classification with respect to partitioning models and representations.

2.3 Problem Statement

Let y = (y1, ..., yn) and ŷ = (ŷ1, ..., ŷn) be a vector of labels of test examples and pre-
dicted labels, respectively. Assume binary classification for now, that is,y, ŷ ∈ {0,1}n.
Then, the generalization error of binary classification is evaluated as Hamming distance
H(y, ŷ) =

∑n
i=1(yi ⊕ ŷi). As shown in Table 1, there are many possible combinations of

representations and partitioning models in privacy-preserving classifications, while the
protocol for the generalization error evaluation in privacy-preserving classification is
desired to be universally applicable to privacy-preserving classifiers with different rep-
resentations and partitioning models.

First, assume that a prediction protocol which returns regular predictions is given to
Alice to Bob. Then, in the vertically partitioning model, predictions can be represented
asŷA = (ŷ1, ..., ŷn) andŷB = (0, ..., 0). In the horizontally partitioning model, predictions
can be represented asŷA = (y1, ..., yc,0, ..., 0) andŷB = (0, ..., 0, ŷc+1, ..., ŷn) for somec
without loss of generality. Thus,ŷ = ŷA + ŷB holds for both partitioning models.

Next, assume that a prediction protocol which returns privately shared predictions
is given to Alice and Bob. Then, ˆyi = ŷA

i + ŷB
i mod N holds for alli in both horizontally

and vertically partitioning models. Thus, regardless of representations of predictions
and partitioning models, private evaluation of generalization errors is reducible to the
problem stated as follows:

Statement 1 Let (yA, yB) and (ŷA, ŷB) be vectors of random shares of binary vectory
and ŷ, respectively. Assume that Alice and Bob takes(yA, ŷA) and (yB, ŷB) as inputs,
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respectively. After the execution of the Hamming distance protocol, Alice and Bob ob-
tain random shares sA and sB such that sA + sB = H(y, ŷ) mod N. Furthermore, neither
Alice nor Bob obtains anything else.

In Section 3.2, we describe our Hamming distance protocol, which is secure and
correct in the sense of Statement 1. This protocol provides a way to evaluate classifi-
cation errors of given privacy-preserving classifiers. Generalization errors of privacy-
preserving classifiers can be evaluated by making use ofk-fold cross validation with
this Hamming distance protocol.

Next, a problem of model/attribute selection in privacy-preserving classification is
stated. LetH be a set of candidate classifiers. Letℓ : X×Y×H 7→ [0,1] be an estimator
of the generalization error. Then, the model selection problem in privacy-preserving
classification is stated as follows:

Statement 2 Let H = {h(·;αA
i ,α

B
i )|i = 1, ..., ℓ} be a set of candidate privately shared

classifiers. Alice takes XAtr and(αA
1 , ...,α

A
ℓ ) as private inputs. Bob takes XB

tr and(αB
1 , ...,α

B
ℓ )

as private inputs. Let XAts and XB
ts be test examples of Alice and Bob, respectively. Af-

ter the execution of model selection, Alice and Bob obtain privately shared classifier h∗

such that h∗ = argminh∈H ℓ(XA
ts∪XB

ts,h). Furthermore, neither of Alice nor Bob obtains
anything else.

Note that any regular classifiers are special cases of privately shared classifiers. This
problem statement therefore includes any possible combinations of different represen-
tations listed in Table 1. Furthermore, if we regardH = {h(·;αA

i ,α
B
i )|i = 1, ..., ℓ} as a set

of privately shared classifiers which are trained with candidates of attribute subsets, the
statement described above is readily rewritten as the statement of the attribute selection
problem in privacy-preserving classification.

We present a protocol to solve problems defined as Statement 2 in Section 3. We
then demonstrate the universal applicability of our protocol by taking model selection
in privacy-preserving support vector machines (Section 4) and attribute selection in
privacy-preserving Naive Bayes classifiers (Section 5) as examples.

3 Privacy-preserving Evaluation of Generalization Error

This section describes our Hamming distance protocol, which enables evaluation of
classification errors in privacy-preserving classification. Then a model selection proto-
col for privacy-preserving classification is presented by using the Hamming distance
protocol, in which the generalization errors are estimated withk-fold cross validation.
Before going into the protocol description, we introduce necessary cryptographic tools.

3.1 Cryptographic Tools

Homomorphic Public-key Cryptosystem. Given a corresponding pair of (sk, pk) of
private and public keys and a messagem, thenc = epk(m; ℓ) denotes a (random) en-
cryption of m, andm = dsk(c) denotes decryption. The encrypted valuec uniformly
distributes overZN if ℓ is taken fromZN randomly. Anadditive homomorphic cryp-
tosystemallows addition computations on encrypted values without knowledge of the
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secret key. Specifically, there is some operation· (not requiring knowledge ofsk) such
that for any plaintextsm1 andm2, epk(m1 + m2; ℓ) = epk(m1; ℓ1) · epk(m2; ℓ2), whereℓ
is uniformly random provided that at least one ofℓ1 andℓ2 is. Based on this property,
it also follows that given a constantk and the encryptionepk(m1; ℓ), we can compute
multiplications byk via repeated application of·, denoted asepk(km; kℓ) = epk(m; ℓ)k.
In what follows, we omit the random numberℓ from our encrypt ions for simplicity.

Secure Function Evaluation. In principle, private distributed computations such
as these can be carried out using Secure function evaluation (SFE) [13, 4] is a general
and well studied methodology for evaluating any function privately. Technically, the
entire computation of model selection itself can be implemented with SFE; however,
these computations can be too inefficient for practical use, particular when the input
size is large. Classification often takes large dataset as input. Therefore, we make use of
existing SFE solutions for small portions of our computation for a more efficient overall
solution. Specifically, we use SFE for a problem of private computation of argmax. Let
Alice and Bob take (sA

1 , ..., s
A
k ) and (sB

1 , ..., s
B
k ) as private inputs. We use SFE for Alice

and Bob to learni∗ = arg mini(sA
i + sB

i ) without sharing their private inputs.

3.2 Hamming Distance Protocol

As discussed in Section 2.3, we can suppose Alice and Bob hold class label vectors
(yA, yB) and predictions of labels (ŷA, ŷB) in the form of random shares regardless of
partitioning models representations of classifiers/predictions. The classification error is
then evaluated in the form of Hamming distance as

H(y, ŷ) =
n∑

i=1

(
(yA

i + yB
i ) ⊕ (ŷA

i + ŷB
i )

)
=

n∑
i=1

(
(yA

i + yB
i ) − (ŷA

i + ŷB
i )

)2

= (yA − ŷA)T · (yA − ŷA) + (yB − ŷB)T · (yB − ŷB) + 2(yA − ŷA) · (yB − ŷB), (1)

where⊕ is logical exclusive-or and other operations are all arithmetic. The first and the
second term of RHS of eq. 1 can be locally and independently evaluated by Alice and
Bob, respectively. Therefore, via the private evaluation of 2(yA− ŷA) · (yB− ŷB), random
shares ofH(y, ŷ) is privately evaluated . Based on this idea, the protocol to solve the
problem of Statement 1 is shown in Fig. 1. In the protocol, operation∈r means choosing
an element of the set uniform randomly. The correctness of the protocol is explained as
follows. In Step 2, what Bob computes is rearranged as

c← epk

−rB + 2
n∑

i=1

(yA
i − ŷA

i )(yB
i − ŷB

i )

 = epk

(
−rB + 2(yA − ŷA) · (yB − ŷB)

)
.

Then, In Step 3, Alice obtains

sA = dA(c) + (yA − ŷA)T · (yA − ŷA) = −rB + 2(yA − ŷA) · (yB − ŷB) + (yA − ŷA)T · (yA − ŷA)

and Bob obtainssB = rB + (yB − ŷB)T · (yB − ŷB). Thus,sA andsB are random shares of
H(y, ŷ), which are the desired outputs. The security of this protocol is shown.

Lemma 1. (Security of Hamming distance protocol) If Alice and Bob behave semi-
honestly, Hamming distance protocol is secure in the sense of Statement 1.
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– Alice’s input: yA, ŷA ∈ Zn
N, key pair (pk, sk)

– Bob’s input:yB, ŷB ∈ Zn
N, public keypk

– Alice’s output:sA ∈ ZN

– Bob’s output:sB ∈ ZN, wheresA + sB = H(yA + yB, ŷA + ŷB) modN

1. For i = 1, ..., n, Alice computeepk(yA
i − ŷA

i ) and send them to Bob

2. Bob computesc← epk(−rB) ·∏n
i=1 epk(yA

i − ŷA
i )2(yB

i −ŷB
i ), whererB ∈r ZN. Then, Bob sendsc

to Alice
3. Alice outputssA ← dA(c) +

∑n
i=1(y

A
i − ŷA

i )2 and Bob outputssB ← rB +
∑n

i=1(y
B
i − ŷB

i )2

Fig. 1.Hamming distance protocol

Due to space limitations, we give only the intuition behind the security of this pro-
tocol. The message Alice receives during the protocol execution isc. Alice can decrypt
c but this is randomized by Bob; nothing can be learned by Alice. The messages Bob
receives areepk(yA

i −ŷA
i )(i = 1, ..., n). Bob cannot decrypt this and nothing can be learned

by Bob, either. Consequently, both learn nothing.

3.3 Preliminary Experiments: Hamming Distance Protocol

The scalability of Hamming distance protocol with randomly generated binary vectors
were examined. Programs were implemented in Java 1.6.0. As the cryptosystem, [8]
with 1024-bit keys was used. Experiments were carried out under Linux with Core2
2.0GHz (CPU), 2GB (RAM). The results were compared with the computation time of
SFE in that the Hamming distance computation with exactly the same input and output
is performed. Fairplay [7] was used for the implementation of SFE.

Fig. 2 shows the results of experiments. The results are the average of ten times ex-
ecution with different binary vectors. A single execution of Hamming distance protocol
with n-dimensional vectors includesn times modulo multiplication andn times modulo
exponentiation. As expected, the change in the computation time with respect to the
dimensionality of input vectors is linear. While the computation time of SFE is polyno-
mially bounded, the results show that the computation time of SFE is more inefficient
than that of our Hamming distance protocol.

3.4 Privacy-preserving Model Selection by means ofk-fold Cross Validation

In k-fold cross validation, a setX of examples is randomly split intok mutually disjoint
subsetsX1,X2, ...,Xk. Classifierh j is then trained onX\X j . Let ϵ j be generalization error
of h j . The cross validation estimate of the generalization error is given asϵ =

∑k
j=1
ϵ j
k .

For model selection, classifiers are trained with candidates of model parameters. For
each trained classifier, the generalization error is evaluated withk-fold cross validation.
The model that achieves the lowest generalization error is chosen as the output of the
model selection.

Suppose thatℓ candidates of model parameters are prepared in the form of privately
shared classifiers. Then, the protocol for privacy-preserving model selection by means
of k-fold cross validation is described as shown in Fig. 3.
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In the protocol, (XA
ts, j ,X

B
ts, j) is the jth fold of training examples. (αA

i j ,α
B
i j ) is the

privately shared classifier trained with theith candidate of model parameters and the
jth fold of test examples. (ŷA

i j , ŷ
B
i j ) is privately shared predictions ofjth fold of test

examples classified by theith candidate model. Labels of test examples are evaluated as
privately shared prediction in Step 1. Then, the number of misclassifications is evaluated
as random shares of Hamming distance by Hamming distance protocol (Step 2). Finally,
the model with the lowest generalization error is privately chosen by secure function
evaluation (Step 3). The security of this protocol is as follows:

Theorem 1. Assume Alice and Bob behave semi-honestly. Given a privacy-preserving
protocol for prediction, privacy-preserving model selection is secure in the sense of
Statement 2.

A sketch of the proof is shown. In the protocol of Fig. 3, privacy-preserving subproto-
cols are composed in a way that randomized outputs of a subprotocol are taken as inputs
of the next subprotocol. A composition theorem [6] guarantees that if subprotocols in-
voked at intermediate steps are privacy-preserving, then the resulting composition is
privacy-preserving, too. Based on this fact, the proof of this theorem is readily derived
via Lemma 1 and the security of SFE [13, 4].

Assuming (αA
i j ,α

B
i j ) are privately shared classifiers trained from datasets with dif-

ferent attribute sets, the protocol in Fig. 3 is readily available for attribute selection
in privacy-preserving classification. Exactly the same security proof is valid for this
privacy-preserving attribute selection.

4 Model Selection in Privacy-Preserving Support Vector Machine

4.1 Privacy-preserving Support Vector Machines

This section demonstrates the application of our model selection protocol to privacy-
preserving SVMs with polynomial kernels.

Let (xi , yi)1≤i≤n be a set of training examples wherexi ∈ Rd andyi ∈ {1,−1}. Max-
imal margin classifiers of SVMs are trained in a high dimensional feature space. We
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– Alice’s input: test exampleXA
ts, privately shared classifierαA

i j (i = 1, ..., ℓ, j = 1, ..., k)
– Bob’s input: test exampleXB

ts, privately shared classifierαB
i j (i = 1, ..., ℓ, j = 1, ..., k)

– Alice’s output: privately shared classifier with the lowest generalization errorαA
i∗ j

– Bob’s output: privately shared classifier with the lowest generalization errorαB
i∗ j

1. (Evaluation) Fori = 1, ..., ℓ, j = 1, ..., k, Alice and Bob jointly execute privacy-preserving
evaluation of shared prediction by taking (XA

ts, j ,α
A
i j ) and (XB

ts, j ,α
B
i j ) as inputs, respectively.

After the execution of the protocol, Alice and Bob obtain a vector of prediction sharesŷA
i j

and ŷB
i j , respectively.

2. (Prediction) Fori = 1, ..., ℓ, j = 1, ..., k, Alice and Bob jointly run Hamming distance pro-
tocol by taking (yA

ts,i , ŷ
A
i j ) and (yB

ts,i , ŷ
B
i j ), respectively. After the execution of the protocol,

Alice and Bob obtain random sharessA
i j andsB

i j whereH(yA
ts,i + yB

ts,i , ŷ
A
i j + ŷB

i j ) = (sA
i j + sB

i j )
modN

3. (Model selection) Alice and Bob jointly run secure function evaluation for

i∗ ← arg min
i

k∑
j=1

(sA
i j + sB

i j mod N).

Alice and Bob respectively obtain shares of classifiers (αA
i∗ j) and (αB

i∗ j) which achieve the
lowest generalization error

Fig. 3.Privacy-preserving model selection

substituteϕ(xi) for eachxi whereϕ : X 7→ F andF is a high-dimensional feature
space. When featuresϕ(x) only occurs in the form of dot products, Mercer kernelsk for
dot products,ϕ(xi) · ϕ(x) = k(xi , x), can be substituted.

SVMs take advantage of this trick to alleviate computation in the high-dimensional
feature space. The linear maximal margin classifier is given as

h(x) = sgn

 n∑
i=1

αiϕ(xi) · ϕ(x)

 = sgn

 n∑
i=1

αik(xi , x)

 , (2)

which is obtained by solving a convex quadratic programming with respect toα [9].
Laur et al. have proposed a cryptographically private SVM of polynomial kernels for

vertically partitioned private datasets [5]. In order to alleviate solving convex quadratic
programming with satisfying privacy enforcement, their protocol adopts kernel adatron
as the base algorithm.

4.2 Model Selection in Privacy-preserving Support Vector Machines

SVM with polynomial kernels includes polynomial dimensionp and margin parameter
c as model parameters. In this section, we demonstrate our model selection protocol by
taking Laur et. al.’s privacy-preserving SVM as the base classifier algorithm.

As we addressed in Theorem 1, our protocol is designed assuming that the predic-
tion protocol is privacy preserving—that is, nothing but prediction results are leaked
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from the execution of the prediction protocol. Laur et. al.’s prediction protocol is de-
signed assuming thatx · xi ∈ Z∗N holds3 while this does not always necessarily hold. It
follows that the security of the prediction protocol might be compromised ifx · xi < Z∗N.
In order for our model selection protocol to be secure in the sense of Statement 2,
we introduce power-of-sum protocol as a new building block for prediction, which is
privacy-preserving for anyx, xi ∈ ZM if (2M)p < N, and then present a new prediction
protocol for polynomial kernels using power-of-sum.

Power-of-Sum Protocol In the prediction function of SVM, degree-p polynomi-
als need to be privately evaluated. As a building block for prediction, we introduce a
protocol, power-of-sum. Let (2M)p < N. Let Alice and Bob havex ∈ ZM andy ∈ ZM

as private inputs, respectively. Power-of-sum protocol allows two parties to compute
random shares ofrA + rB = (x + y)p modN without sharing their private inputs. We
assume that degreep is publicly known throughout the paper. Note that the knowledge
of p does not violate any private information possessed by parties.

The protocol is shown in Fig. 4. By binomial theorem, (x + y)p =
∑p

i=0

(
p
i

)
xiyp−i

holds. So, the computation of Step 2 corresponds to

cB← epk(−rB) ·
p∏

i=0

(ci)yp−i
= epk

−rB +

p∑
i=0

(
p
i

)
xiyp−i

 = epk((x+ y)p − rB). (3)

Thus, Alice obtainssA = −sB+ (x+y)p and Bob obtainssB, which are random shares of
(x+ y)p. Note that bothx andy are positive integers s.t. (x+ y)p ≤ (2M)p < N. Without
this, numbers may be wrapped around in the computation of step 2, which does not
induce desired outputs.

We show an intuitive explanation of the security. Messages received by Alice are
randomized by Bob. Messages received by Bob are encrypted and the private key is
possessed only by Alice. Thus, both learn nothing but the final result.

Private Prediction for Degree-p Polynomial Kernels
Our new prediction protocol is shown in Fig. 5. In the protocol, random shares

sA + sB =

n∑
i=1

αik(xi , x) =
n∑

i=1

αi(xi · x)p mod N (4)

are privately evaluated in Step 3 and then the random shares of the prediction are ob-
tained in Step 4 ashA(x) + hB(x) = sgn(sA + sB) mod N . Eq. 4 is derived as follows.
Regardless of partitioning models,xi = xA

i + xB
i andx = xA + xB hold. So, the scalar

product of these is expanded as

x · xi = (xA + xB) · (xA
i + xB

i ) = xA · xA
i + xA · xB

i + xB · xA
i + xB · xB

i mod N. (5)

In Step 2-a, random shares of scalar productsxB · xA
i and xA · xB

i are privately com-
puted by scalar product protocol [3]. Note that the other two scalar products are locally
computed. Thus, random shares ofx · xi are obtained by Alice and Bob in the form of
x · xi = (sA1 + sA2 + xA

i · xA) + (sB1 + sB2 + xB
i · xB) mod N. By taking these random

3 integers less thanN and coprime toN
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shares as inputs of power-of-sum in Step 2-b, random shares ofk(x, xi) are obtained
(eq. 7). Since eq. 8 of Step 3-b can be rewritten as

c←
n∏

i=1

(
epk(α

A
i kA(xi , x)) · epk(α

B
i kB(xi , x)) · epk(α

A
i )kB(xi ,x) · epk(k

A(xi , x))α
B
i

)
· epk(−sB)

=

n∏
i=1

epk

(
αA

i kA(xi , x) + αB
i kB(xi , x) + αA

i kB(xi , x) + αB
i kA(xi , x) − sB

)

=

n∏
i=1

epk

(
αik(xi , x) − sB

)
= epk

( n∑
i=1

(
αik(xi , x)

)
− sB

)
,

Alice obtainssA =
∑n

i=1αik(xi , x) − sB by decryptingc in Step 3-c. Finally, privately
shared prediction with polynomial kernels is obtained by means of secure function eval-
uation in Step 4. Note that Step 2-a can be skipped in the vertically partitioned model
becausexA · xB

i = xB · xA
i = 0 holds.

Model SelectionUsing private prediction for polynomial kernels (Fig. 5) in the
first step of the model selection protocol in Fig. 3, privacy-preserving model selection
is readily achieved.

4.3 Experiments

Our privacy-preserving model selection produces the same final output as model se-
lection without privacy preservation. Therefore, objectives of experiments are (1) to
demonstrate the usability of our protocol in privacy-preserving classification with rela-
tively large-size datasets and (2) to investigate the computational cost.

Setting.Two datasets (ionosphere and breast-cancer) were taken from the UCI ma-
chine learning repository [1].

We tuned two model parameters: polynomial degreep = 1,2, 3,4 and margin pa-
rameterc = 2−8,2−6, ..., 26. In total, generalization errors of classifiers trained in 32
settings were evaluated as candidates using 10-fold cross validation. Two kinds of pri-
vate information models are considered. In “type-I”, training examples are not private
but test examples are private. In this case, scalar product (Fig. 5, step 2-a) does not have
to be performed privately. In “type-II”, both training and test examples are private; Step
2-a must be done privately. Given privately shared classifiers, we measured the compu-
tational time spent for following five steps included in the model selection phase (the
first three items are included in Step 1 of Fig. 3).

1. kernel sharing: scalar product and power-of-sum protocol (Step 2 of Fig. 5)
2. evaluation ofh(x): private prediction by polynomial kernels (Step 3 of Fig. 5)
3. prediction: secure function evaluation of comparison (Step 4 of Fig. 5)
4. evaluation of gen. err.: hamming distance protocol (HDP) or SFE (Step 2 Fig. 3)
5. model selection: secure function evaluation of argmin (Step 3 of Fig. 3)

Results.Fig 6 (left and right) illustrates generalization errors of SVM evaluated by
10-fold cross validation. As shown, the generalization error is significantly improved
when model parameters are appropriately chosen. Note that these results are not re-
vealed to the participants by the protocol, but only the parameters which achieves the
lowest generalization error is revealed in privacy-preserving settings.
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– Alice’s input: x ∈ ZM, a valid key pair (pk, sk)
– Bob’s input:y ∈ ZM, Alice’s public keypk
– Alice’s output: random sharesA

– Bobs output: random sharesB wheresA + sB = (x+ y)p modN

1. Alice sendsci ← epk

((
p
i

)
xi

)
to Bob for i = 0, ..., p.

2. Bob sendscB ← epk(−sB) ·∏p
i=0(c

i)yp−i
, wheresB ∈r ZN. Then, Bob sends this to Alice

3. Alice outputssA ← dA(cB). Bob outputssB.

Fig. 4.Private sharing of degree-d polynomial kernels

– Alice’s input: test examplexA, training examples (xA
1 , ..., x

A
n ), share of classifierαA and a

valid key pair (pk, sk)
– Bob’s input: test examplexB, training examples (xB

1 , ..., x
B
n ), share of classifierαB and a

public keypk
– Alice’s output: shared predictionhA(x)
– Bob’s output: shared predictionhB(x) whereh(x) = hA(x) + hB(x) modN

1. For i = 1, ...,n, Alice sendsepk(αA
i ) to Bob. Then Bob computesepk(αi)← epk(αA

i )·epk(αB
i ).

2. Kernel sharing:

(a) For i = 1, ...,n, Alice and Bob jointly do scalar product protocol to have shares

sA1 + sB1 = xA
i · xB modN, sA2 + sB2 = xB

i · xA modN (6)

where Alice obtainssA1, sA2 and Bob obtainssB1, sB2 as outputs
(b) Alice and Bob jointly do power-of-sum protocol to have shares of kernels

kA(x, xi) + kB(x, xi) = k(x, xi) = (x · xi)
p modN (7)

where Alice’s input issA1 + sA2 + xA
i · xA and Bob’s input issB1 + sB2 + xB

i · xB.

3. Evaluation:
(a) For i = 1, ...,n, Alice sendsepk(kA(xi , x)) andepk(αA

i kA(xi , x)) to Bob.
(b) Bob generatessB ∈r ZN, computesc as follows and sendsc to Alice

c←
n∏

i=1

(
epk(α

A
i kA(xi , x)) · epk(α

B
i kB(xi , x)) · epk(α

A
i )kB(xi ,x) · epk(k

A(xi , x))α
B
i

)
· epk(−sB) (8)

(c) Alice: ComputesA ← dA(c)
4. Prediction: Alice and Bob jointly computehA(x)+hB(x) = sgn(sA+ sB) mod N by secure

function evaluation

Fig. 5.Private prediction by polynomial kernels
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Fig. 6. Generalization error of SVM classifiers with varying polynomial-degree and margin pa-
rameter (left: ionosphere, right: breast cancer).

The computation time is summarized in Table 2. The number of steps including
cryptographic operations in the first three steps, kernel sharing, evaluation and predic-
tion, areO(n2d+np), O(n2ℓk), andO(nℓk) in type-II. In type-I, the number of steps with
cryptographic operations of kernel sharing is decreased toO(np). Private evaluation of
f (x) is the most time consuming because it includes large numbers of multiplication
and exponentiation of ciphers. The computation complexity of private prediction is not
large but this includes SFE. Therefore, the computation time of these steps takes a large
portion of the entire computation, too. The complexity of Hamming distance protocol
(gen. err.) and argmin by SFE (model sel.) isO(nℓk) andO(k). The number of iterations
of Hamming distance protocol is not small; however this protocol does not include SFE.
The model selection step includes SFE; however the number of iterationk is usually not
very large (in our case,k = 32). Thus, these are not time-consuming.

The computation time of SFE is 20 times more than that of Hamming distance
protocol. However, kernel sharing, evaluation, and prediction take a large portion of the
entire computation time. Therefore, the improvement in computation time by making
use of Hamming distance protocol in this work is no more than 12 % in Type-I and 9 %
in Type-II. From these, we can conclude that our Hamming distance protocol actually
reduces the computation time of model selection while speeding up of the evaluation of
the prediction function is essential to reduce the total amount of the computation time
in this privacy-preserving classification.

5 Privacy-preserving Attribute Selection in Naive Bayes
Classification

As another application of our protocol, privacy-preserving attribute selection in naive
Bayes classification is demonstrated in this section. Vaidya et. al. have presented privacy-
preserving naive Bayes classifiers in both horizontally and vertically partitioned datasets
of nominal and numerical attributes [11]. Although our protocol can be combined with
any possible variations of Vaidya et. al.’s classifiers, here we restrict our attention to
vertically partitioned naive Bayes classifiers of nominal attribute, in which privately
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Table 2. Computational time (second) consumed at each step of model selection in privacy-
preserving SVM. In the generalization error evaluation step, computation time of Hamming dis-
tance protocol (HDP) and SFE are compared.

dataset ionopshere

computation type-I/HDP type-II/HDP type-I/SFEtype-II/SFE
d = 2 2195 13574 2195 13574

kernel k(xi , x j) d = 3 2217 13596 2217 13596
sharing d = 4 2273 13652 2273 13652
eval. f (x j) 52158
pred. ŷj =sgn (f (x j)) 30576

gen. err. ϵ =
∑

j [yj , ŷj ] 89.9 16643
model sel. ℓ∗ = minℓ ϵℓ 127.6

total 89996 140686 106189 157239

dataset breast-cancer

computation type-I/HDP type-II/HDP type-I/SFEtype-II/SFE
d = 2 4264 42693 4264 42693

kernel k(xi , x j) d = 3 4308 47001 4308 47001
sharing d = 4 4417 51418 4417 51418
eval. f (x j) 195840
pred. ŷj =sgn (f (x j)) 59404

gen. err. ϵ =
∑

j [yj , ŷj ] 125.1 32473.6
model sel. ℓ∗ = minℓ ϵℓ 127.6

total 268485 396878 300833 429227

shred predictions are returned to parties. See [11] for details of their training protocols
and prediction protocol.

Setting.Two datasets (lenses and breast-cancer) were taken from the UCI machine
learning repository [1]. The lenses dataset has three classes and the breast-cancer dataset
has two classes. Since the lenses dataset is not binary classification, label vectors were
transformed into binary vectors using indicator variables. For attribute selection, we
enumerated subsets of attributes exhaustively and trained naive Bayes classifiers for
each attribute subset. Lenses and breast-cancer dataset have four and nine attribute val-
ues, respectively, So we evaluated

∑4
i=1

(
4
i

)
= 15 and

∑9
i=1

(
9
i

)
= 511 attribute subsets in

lenses and breast-cancer, respectively. The generalization error of the classifier trained
is evaluated by 10-fold cross validation in each setting.

Given privately shared naive Bayes classifiers after the training phase, we measured
the computational time spent for (1) evaluation and prediction (Step 1 of Fig. 3), (2)
evaluation of generalization error (Hamming distance protocol or SFE, Step 2 of Fig. 3),
(3) attribute selection (Step 3 of Fig. 3).

Results.The number of correctly classified examples (accuracy) was 70.83% in
lenses dataset and 71.67% in breast-cancer dataset without attribute selection. With
attribute selection, the accuracy was improved as 87.50% in lenses dataset (two of five
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dataset lenses breast-cancer

computation w/ SFEw/ HD ptcl. w/ SFEw/ HD ptcl.
eval. and pred. 179.27 43345

gen.err. 58.35 3.0324 18329 136.47
att. sel. 5.981 203.76

total 243.6 188.3 61877 43685

Table 3. Computational time (second) consumed at each step of attribute selection in privacy-
preserving naive Bayes. In the generalization error step, computation time of Hamming distance
protocol (HD ptcl.) and that of SFE was compared.

attributes were selected) and 75.17% in breast-cancer dataset (two of nine attributes
were selected).

The computation time spent in each step is shown in Table 3. Again, we measured
the time of computation in which SFE or Hamming distance protocol is used for the
privacy-preserving evaluation of generalized errors. From the results, the computation
time is reduced 23% in lenses dataset and 30% in breast-cancer dataset by making use
of Hamming distance protocol for the evaluation of generalization error.

6 Conclusion

In this paper, we presented solutions for generalization error evaluation in privacy-
preserving classification. We consider both vertically partitioned and horizontally par-
titioned data. In addition, our solutions can work with both regular prediction and pri-
vately shared prediction. Privacy-preserving classification can be designed (and have
been designed by other researchers) for various combinations of these partitioning mod-
els and representations are possible. In this paper, we introduced a new Hamming dis-
tance protocol for generalized error evaluation that works with any of these representa-
tions and any data partitioning models.

To show the universal applicability of our protocol, we experimentally demonstrated
our protocol with model selection in support vector machine and attribute selection in
naive Bayes classification. The result showed that our privacy-preserving model selec-
tion and attribute selection could successfully improve the classification accuracy in
privacy-preserving naive Bayes and in privacy-preserving SVM. Furthermore, the com-
putation time for Hamming distance computation was reduced to nearly one-fiftieth by
making use of our Hamming distance protocol in comparison with that of SFE, while
the reduction rate of the total computation time in privacy-preserving classifiers includ-
ing model/attribute selection with real-world datasets was around 10%–30%. This is
because there is a computation bottleneck not only in the evaluation of generalization
errors but also in the evaluation of the prediction function. From these observations, we
conclude that speeding up of the evaluation of the prediction function is essential to fur-
ther reducing the total amount of computation time in privacy-preserving classification.
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