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Abstract

Concurrent file systems are pervasive but hard to correctly
implement and formally verify due to nondeterministic in-
terleavings. This paper presents AtomFS, the first formally-
verified, fine-grained, concurrent file system, which provides
linearizable interfaces to applications. The standard way to
prove linearizability requires modeling linearization point
of each operation—the moment when its effect becomes
visible atomically to other threads. We observe that path
inter-dependency, where one operation (like rename) breaks
the path integrity of other operations, makes the lineariza-
tion point external and thus poses a significant challenge to
prove linearizability.

To overcome the above challenge, this paper presents
Concurrent Relational Logic with Helpers (CRL-H), a frame-
work for building verified concurrent file systems. CRL-H is
made powerful through two key contributions: (1) extend-
ing prior approaches using fixed linearization points with
a helper mechanism where one operation of the thread can
logically help other threads linearize their operations; (2)
combining relational specifications and rely/guarantee con-
ditions for relational and compositional reasoning. We have
successfully applied CRL-H to verify the linearizability of
AtomFS directly on C code. All the proofs are mechanized in
Coq. Evaluations show that AtomFS speeds up file system
workloads by utilizing fine-grained, multicore concurrency.
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1 Introduction

Applications rely on file systems to store their data, but even
carefully-written file systems can have bugs, especially con-
currency bugs [9]. Formal methods are the only known way
to guarantee that a system is free of programming errors [46].
Recent efforts (e.g., FSCQ [16], COGENT [5], Yggdrasil [66],
CIO-FSCQ [11]) have demonstrated the feasibility of veri-
fying file systems, but none of them verify concurrent file
systems that run on multicore hardware.

This paper presents AtomFS, the first verified concurrent
file system with fine-grained concurrency. AtomFS leverages
fine-grained locking (i.e., per-inode lock) but can still pro-
vide linearizable (or atomic?) interfaces, which are helpful to
applications for two reasons. First, existing applications rely
on some interfaces implemented atomically by file systems.
For example, 10 of 11 applications (e.g., databases, key-value
stores) expect atomicity of file system updates [63]. Second,
the linearizability of file system interfaces helps to reason
about the correctness of concurrent applications [12].

Proving the linearizability of a concurrent file system
raises three major challenges. First, to prove linearizabil-
ity, the most intuitive approach is to find an instant be-
tween the invocation and the return of the implementation
at which the effect of the operation takes place. The instant
is known as the linearization point (LP) of the operation.
However, it is difficult to apply this idea to verify the lin-
earizability of file systems. Consider two interleaved opera-
tions rename(/a, /e) and mkdir(/a/b/c) (Figure 1). Here, the
fixed LP can only be located in the critical section between
path lookup and return as the inode modification happens
in the section. Suppose the rename completes earlier than
mkdir that has already traversed through /a and both of
them succeed. As rename takes effect earlier, the sequential
history generated through the temporal order of fixed LPs

! “atomic” represents that the operations appear to take effect at a single
discrete point in time. We will formally define atomicity and discuss its
relation with linearizability in §2
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Figure 1. Fixed LP approach fails in the verifica-
tion of linearizability. For the legal, interleaved execu-
tion, the sequential history generated by following tem-
poral order of fixed LPs is (rename(/a, /e),success) —
(mkdir(/a/b/c), success), which is illegal as the mkdir
should return failure.

is (rename(/a, /e),success) — 2(mkdir(/a/b/c), success),
which is illegal under sequential execution. To obtain sequen-
tial, legal history, the rename should help mkdir commit its
effect before it takes effect itself, which causes the LP of
mkdir external (i.e., not located in its own code). We call this
phenomenon path inter-dependency, which widely exists in
concurrent file systems running on Linux, FreeBSD, and xv6.
These practical file systems use fine-grained locks to achieve
scalability on multicores but lead to external LPs, which
make it tough to prove the linearizability of file systems.

Second, a verification framework for concurrent file sys-
tems is desired but still missing. There has been some prior
work that provides compositional reasoning for concurrent
systems. For example, CSPEC [12] uses movers to reduce
interleavings that developers must consider. CertiKOS [34]
eases the burden of verifying concurrent OS kernels by or-
ganizing the system into layers. However, the concurrent
objects these frameworks verify do not have external LPs,
and it is unclear how to extend them to verify a concurrent
file system with external LPs. Though there has been a theo-
retical effort [48] investigating how to verify linearizability
with external LPs, it relies on pen-and-paper proofs for key
theorems and does not consider the unique feature of path
inter-dependency exhibited by concurrent file systems.

Third, it is unknown how to design a linearizable, fine-
grained, concurrent file system, and what invariants (or prop-
erties) are necessary to achieve linearizability in rigorous
proofs. It takes non-trivial efforts to capture all the invari-
ants and precisely specify these invariants. Proving these
invariants to hold at any time needs enormous work, espe-
cially under arbitrary concurrent interference. In contrast,
prior file system verification assumes atomic operations and
sequential execution of file systems.

To tackle these challenges, we first propose a helper
mechanism to overcome challenges of external LPs. Specif-
ically, rename may serve as the helper to logically help
other threads linearize their operations if rename is to break
their path integrity. Our helper mechanism extends prior

2We use — to informally represent orders between threads/operations.
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work [48] that supports reasoning about helping in lock-free
programming with ghost state and linearize-before relation,
so that we can handle file system-specific challenges and
verify the linearizability of file system interfaces.

Second, this paper presents Concurrent Relational Logic
with Helpers (CRL-H) for verifying concurrent file systems.
Compared with existing frameworks, CRL-H is distinguished
by (1) combining relational® specifications and rely/guaran-
tee conditions for relational and compositional reasoning; (2)
implementing the helper mechanism to deal with external
LPs without breaking the existing features of thread-local
verification; and (3) mechanizing all the proofs in the Coq
proof assistant [24] to guarantee the correctness of our veri-
fication procedure.

Furthermore, we successfully build AtomFS and apply
CRL-H to verify the linearizability of AtomFS. The design of
AtompFS follows the non-bypassable criterion to avoid opera-
tion bypasses and leverages lock-coupling [38], which is a
known method for fine-grained concurrency synchroniza-
tion. We capture several global invariants of AtomFS, which
are essential for the proofs. In addition, CRL-H models a
subset of the C programming language, which allows us to
build AtomFS directly using C with low performance loss.

Contributions. In summary, this paper makes the following
contributions:

o The identification of the path inter-dependency phenom-
enon and the resulting challenges of external LPs (§3).

e The Concurrent Relational Logic with Helpers (CRL-H),
which allows programmers to specify and verify the
linearizability of concurrent file systems (§4).

o The first formally-verified, fine-grained, concurrent file
system, called AtomFS, where the linearizability proofs
of AtomFS are mechanized in Coq. AtomFS currently
does not consider crashes (§5 and §6).

e An evaluation showing that AtomFS can speed up un-
modified applications by utilizing multicore concurrency,
and a report of our development experience (§7 and §8).

2 Related Work

Concurrency bugs in file systems. Concurrency bugs are
the second most common, which account for about 20% of all
the bugs, in Linux file systems [53]. Atomicity violations and
deadlock dominate among the concurrency bugs, which may
result in serious consequence. Several approaches [43, 56, 77]
are proposed to detect concurrency bugs for file systems.
Although effective in practice, these approaches can not
promise to detect all the bugs in the file systems.

Formal verification of file systems. In recent years, there
has been significant progress on formal verification of file
systems [5, 11, 14, 16, 41, 66]. FSCQ projects contribute a line

3The terminology “relational” follows from [48] and specifically denotes
the relationship between abstract-concrete state pairs.
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of useful work [11, 14, 16, 41]. FSCQ, DFSCQ, and SFSCQ are
all crash-safe, sequential file systems, verified by extending
traditional Hoare Logic with a crash condition. CIO-FSCQ
reuses the proofs of FSCQ and provides I/O concurrency.
However, all these file systems cannot utilize the benefits of
multicore concurrency.

Concurrent file system specification. Ntzik et al. [59, 60]
propose a specification of concurrent POSIX file systems
and reason about several client examples based on the spec-
ification. Modeling path traversals is a major challenge in
the specification. Each directory lookup can be implemented
atomically with the protection of a fine-grained lock. How-
ever, it is hard to capture the concurrent behavior of the
overall traversal. As POSIX is silent on this matter, they
choose to model the file system operations as sequential
and parallel combinations of atomic actions, which exposes
unnecessary details to the client reasoning. We observe the
helping pattern among file system operations, and it allows
us to verify the linearizability of file system interfaces.

Verified concurrent systems. There are several concurrent
systems [12, 13, 15, 17, 35, 36, 47, 75, 76] which have been
formally verified. CCAL [35] has been used to verify Cer-
tiKOS’s concurrent scheduling queue [34] and MCS lock
implementation [45]. Perennial [13] verifies a concurrent
crash-safe mail server and has a notion of recovery helping
to justify the crash recovery procedure. Although similar
in concept, recovery helping is used to logically fulfill the
operation that has passed its LP prior to a crash and is not for
handling external LPs. In summary, these verified systems do
not have external LPs and their verification approaches have
no notion of concurrency helping to address the challenge.

Atomicity and linearizability. Linearizability [39] is a cor-
rectness condition for concurrent objects, e.g., concurrent
file systems. In this work, we formally define the atomic-
ity of an object as follows. For each operation of an object,
assume there is an atomic specification (e.g., group all state-
ments and execute atomically). For all possible clients, if
every observable event trace generated from invoking the
implementation can also be produced by invoking the corre-
sponding atomic specification (i.e., the implementation has
the same effect as an atomic specification), then the object
is atomic. This property is also formalized as contextual re-
finement. Several researchers have proved that contextual
refinement is equivalent to linearizability when the speci-
fication is atomic [22, 30, 48]. Therefore, atomicity defined
in this work is equivalent to linearizability, and we may use
them interchangeably.

Verifying linearizability. Verifying linearizability of con-
current data structures [18, 23, 26, 31, 44, 48, 70, 71] has
been extensively studied, including the most challenging
ones with external linearization points. A large class of lock-
free algorithms (e.g., elimination backoff stack [37]) let each
thread maintain a descriptor recording all the information
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required to fulfill its intended operation. When a thread A
detects conflicts with another thread B, A may access B’s
descriptor and fulfill B’s intended behavior. So the LP of B
resides in the code of A. Previous work [31, 48, 70] has formal-
ized helping to support reasoning about external LPs in these
algorithms. However, different features in file systems (more
details in §3) make the helping pattern in previous work not
directly applicable to file systems. The helper mechanism of
CRL-H extends prior work [48] with some domain-specific
notions, such as linearize-before relation and roll-back mech-
anism, which enable CRL-H to verify concurrent file systems.

3 Proving File System Atomicity with
Helpers

File system atomicity requires the fine-grained implementa-
tion of a file system operation to have the same effect as an
atomic specification. For a sequential file system, atomicity is
one of the inherent characteristics, while concurrent file sys-
tems with fine-grained locking impose complex interleaving
that impedes verifying the atomicity of file system operations.
In this section, we first introduce how to prove linearizabil-
ity through an intuitive approach—fixed linearization points,
which are statically located in the implementation. Then
we define the path inter-dependency phenomenon, which
leads to external LPs and frustrates the fixed LP approach.
After that, we present the challenges of applying an existing
effort—helping to handle external LPs in file systems and
propose a general approach called helpers to address the
unique helping pattern in file systems. We end this section
with a discussion about how to prove helpers correct.

3.1 Proving Linearizability Using Fixed LPs

Linearizability ensures that each execution history of con-
current objects is consistent with a sequential, legal history.
It allows overlapping operations executed concurrently to
take effect in any order but requires preserving the real-time
order of non-overlapping operations. Simple Hoare Logic
applies well in sequential verification by specifying and ver-
ifying the code with given pre- and post-conditions, but it is
unable to verify the correctness of concurrent file systems,
which requires to specify and verify atomicity under concur-
rent settings. Hence, there have been numerous approaches
proposed for verifying linearizability using a variety of tech-
niques [20, 21, 42, 49, 52, 58, 62].

Among these approaches, an intuitive one is to estab-
lish forward simulation relations [54] between concrete ob-
ject implementation and corresponding atomic specification,
which can derive atomicity by showing the concrete ob-
ject implementation contextually refines its corresponding
atomic specification. We adopt a similar technique to prove
atomicity for concurrent file systems. In the forward simu-
lation relation, abstract state (abstraction) is introduced to
represent the logical layout of concrete data structures and
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1 /*error and corner cases 24 free(node)

2 handling omitted*/ 25 return success;

3 def ins(path, name) 26

4 cur=root; 27 def rename(src,sn,dst,dn)

5 //traverse path from root 28 //traverse path from root
6 29 //get src directory (sdir)
7 lock(cur); 30 //and dst directory (ddir)
8 node=init(); 31

9 insert(cur, name, node); 32 lock(sdir);

10 » intuitive LP: INS « 33 lock(ddir);

11 unlock(cur); 34 dnode=lookup(ddir,dn);

12 return success; 35 snode=1ookup(sdir,sn);

13 36 lock(dnode);

14 def del(path, name) 37 lock(snode);

15 cur=root; 38 delete(ddir,dn);

16 //traverse path from root 39 delete(sdir,sn);

17 - 40 insert(ddir,dn,snode);

18 lock(cur); 41 » intuitive LP: RENAME <«
19 node=lookup(cur, name) 42 unlock(snode);

20 lock(node); 43 unlock(sdir);

21 delete(cur, name); 44 unlock(ddir);

22 » intuitive LP: DEL « 45 free(dnode)

23 unlock(cur); 46 return success;

Figure 2. Pseudocode of a simplified file system. The
detailed optimizations, error handling, path traversal code,
and stat implementation are omitted for simplicity.

a set of abstract operations over the abstract state is used to
specify the corresponding concrete operations. The core of
a simulation proof is an abstraction relation, which relates
the abstract state to the concrete state and is defined as an
invariant over the relational (i.e., abstract-concrete) states.

We use directory operations, a major source of
inter-thread concurrency, to illustrate how LPs can be
used to prove atomicity in file systems. To simplify
the exposition, we only consider six POSIX interfaces,
mknod(path), mkdir(path), rmdir(path), unlink(path),
rename(source, target) and stat(path), and merge
mknod/mkdir into ins and unlink/rmdir into del. The
implementations are shown in Figure 2, which represents a
simplified modern file system with fine-grained locks.

An intuitive selection of LPs in the simplified file system is
marked in the code (i.e., lines 10, 22 and 41 in Figure 2). Take
ins as an example. Its LP is put at line 10 (i.e., before unlock).
This is because the ins will update an inode in the critical
section (lines 7-11) which is protected by a per-inode lock.
Thus, the effect of ins takes place at the LP by atomically
executing the abstract operation.

As shown in the simulation graph (Figure 3(a)), atomic op-
erations INS and RENAME represent the abstract operations
for ins and rename respectively. The abstraction relation al-
ways maintains the consistency between states at two levels.
At the concrete level, each step defined by the semantics of
programming language will make a transition, while each
abstract operation makes a transition at the abstract level
when the concrete code passes its LP. So the abstraction rela-
tion also establishes the correspondence between concrete
operations and atomic operations, which further implies
that ins and rename are atomic. As shown in Figure 4(a),
by following the temporal order of LPs, we can construct a
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Figure 3. Simulation diagrams. The central line is the di-
vision of the abstract level (above) and concrete level (below).
Figure(a) shows the simulation diagram when an operation’s
LP resides in its own implementation. In Figure(b), the LP of
ins is external and resides in rename’s code.

sequential history of abstract operations and results, which
is consistent with the concrete execution and should be legal.

3.2 Path Inter-dependency

Unfortunately, identifying static LPs located in the imple-
mentation code cannot handle all the cases in concurrent file
systems. As Figure 1 and 4(b) indicate, fixed LPs we choose
are incorrect, and in the above legal interleavings we are not
able to obtain a sequential, legal history by serializing the
concurrent operations in terms of the temporal order of LPs.
Digging into these cases, we find that existing implementa-
tions of concurrent file systems often leverage fine-grained
locking to allow concurrent operations on separate inodes.
So the path already traversed by an operation can be modified
by another concurrent operation. Here we introduce a new
concept, path inter-dependency, to illustrate the relationship
between these concrete operations.

Definition 1 (path inter-dependency)

One concrete operation A is said to have path inter-
dependency on an interleaving operation B if B modifies
A’s traversed path.

In definition 1, the abstract operation of A relies on the
integrity of the path as specified in the argument to exe-
cute successfully. Thus, if a concrete operation has path
inter-dependency on a rename, its abstract operation should
happen before RENAME. It gives the reason why the fixed
LP is not sufficient—although the LP is when the effect is
published, the linearization is determined when the path
inter-dependency phenomenon happens, not based on when
the LP executes.

To account for the path inter-dependency, when a rename
is about to pass its LP and release its effects, it should first
check whether it modifies other interleaved operations’ tra-
versed paths, and (if yes) help to commit their effects before
itself. Thus the LPs of those operations should reside in
the code of rename. As shown in Figure 3(b), at the LP of
rename, the abstract level will first execute ins’s abstract op-
eration INS, then execute RENAME. We call this kind of LP
an external linearization point [25], where the LP of one
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t,:rename(/b,c,/b,g)
t,: rename (/a,e,/b/c/d,e)

ty: stat(/ale, f)

(c) Recursive path inter-dependency.
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(b) Sequential history with external LPs.

Figure 4. Cases of interleaving operations. In Figure (a), ins completes earlier than del, and the execution can be linearized
with fixed LPs. Figure (b) presents a more complicated case, where the operations can only be linearized with external LPs in
rename. Figure (c) shows concurrent renames, which introduces recursive dependencies among operations and complicates

helping.

operation resides in the code of another operation. Accord-
ing to POSIX, rename is the only file system interface that
may break other threads’ path integrity and lead to external
LPs. However, the general concept of path inter-dependency
makes it applicable to new file system interfaces [67] that
might introduce path integrity violations.

Generality. We have done an investigation to see how
many file systems allow path inter-dependency relations
among operations. Specifically, we measure nine file sys-
tems, including six Linux (5.2.8) file systems (i.e., ext2 [10],
ext4 [69], Btrfs [55], XFS [68], ReiserFS [2] and Tmpfs [3]),
two FreeBSD (12.0) file systems (i.e., UFS [1] and ZFS [7]) and
one teaching file system (i.e., xv6fs [19]) of xv6 (#b81891).
First, we log at the begin and end of the critical section of
most used, path-based file system operations (i.e., rename,
create, unlink, mkdir, and rmdir). Then, we concurrently exe-
cute test cases of rename and op, where rename will modify
op’s path. It suggests that op has path inter-dependency on
rename if rename finishes while meantime op is in the criti-
cal section. We have tested all combinations of rename + op
(op is one of the five operations). As a result, all combina-
tions show the path inter-dependency phenomenon in all
the considered file systems. Thus, we argue that the path
inter-dependency phenomenon is a generic and fundamental
phenomenon which causes LPs of file systems to be external.

3.3 Challenges in Applying Helping
As introduced in §2, previous work [48] has proposed help-
ing to support reasoning about external LPs in lock-free

algorithms. Specifically, helping allows one thread to help
another thread (e.g., thread t) commit its effect with a primi-
tive lin(t). Here “lin(t)” means executing thread t’s abstract
operation atomically. Applying the helping mechanism in
Figure 4(b), we can change line 41 of rename to

(LP : lin(ty); lin(t,); RENAME)*

Now when rename passes its LP, it will execute the abstract
operations of tq, t, and then its own.

However, there are three aspects that make existing help-
ing not directly applicable to address the external LPs in file
systems. First, helping in those lock-free algorithms is made
explicit with a global array of per-thread information. Filling
in a thread’s structure fulfills the helping process while help-
ing in file systems is implicit. There is no global information
such as thread identifiers and threads’ intended operations,
which are necessary to perform helping. Second, only one
thread is helped at a time in those lock-free algorithms (e.g., a
push only helps one pop in elimination stack), but a rename
may help an unbounded set of threads and should carefully
decide the helping order. Different helping order may lead to
different results. For example, in Figure 4(b), helping t : stat
first would lead to the failure of stat, which is different from
the concrete execution. Moreover, we need to consider the
problem of recursive path inter-dependency, in which two
operations have dependency through more than one path
inter-dependency relations.

“We use angle brackets to represent that the statements in it are executed
atomically and suppose we know ins and stat’s thread identifiers.
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Recursive path inter-dependency. Suppose three threads
hold locks as shown in Figure 4(c), which may be possible
after some execution. Now t; : rename is about to pass the
LP, which will help execute t, : rename as t, has path inter-
dependency on ty. And releasing the effect of t; : rename will
further break t3’s path integrity. Thus, t3 : stat should also
be helped and be ordered before t, : rename. The relation
between t; and t is called recursive path inter-dependency,
which might happen due to interleaving renames. If there are
multiple renames, the chains could extend recursively. Thus,
the helping set should contain not only path-interdependent
operations but also operations with recursive dependencies.

3.4 The Helper Mechanism for File Systems

We propose the helper mechanism for file systems, which
is equipped with ghost state and a linearize-before relation
to handle the above challenges. We introduce a new prim-
itive linothers to implement the helper mechanism for file
systems.

Ghost state. Ghost state [61] (or auxiliary state) is a widely
used technique in verification, which is introduced not in
the concrete programs but in the abstract model to prove
the program’s correctness. They do not affect the system
behavior, and updates to ghost state can be grouped with a
program statement into an atomic block.

In the file system, global information about other threads
is missing, so ghost state is introduced by the helper mech-
anism to record the information. The information should
include at least threads’ identifiers and abstract operations,
so we have a way to help the threads execute their abstract
operations. For example, prior work on helping [48, 70] in-
troduces a thread pool as ghost state, which is a mapping of
thread identifiers to their abstract operations.

Linearize-before relation. The helper needs to find a set
of threads which should be helped (helping set) and decide
the relative order among these threads (helping order). We
introduce linearize-before relation for the purpose, which
refers to the relationship between an operation A and B
if A should be ordered before B in the sequential history.
To define the linearize-before relation, we need the ghost
state to contain other information, which can be used to
judge whether two operations have logical dependencies.
For instance, the ghost state can record execution histories of
each thread, such as the inodes they have traversed through.
So the linearize-before relation can use the information to
know which threads will be influenced by a rename. Also,
the linearize-before relation should include recursive depen-
dencies as in Figure 4(c). We will present the linearize-before
relation we define for AtomFS in §5.2.

Linothers. We introduce a new primitive linothers(t) which
combines the ghost state and linearize-before relation to im-
plement the helper mechanism. The new primitive can be
used to address the external LP issue and file system-specific
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ThreadPool tp : Tid->Descriptor;

def linothers(t):
#find all linearize-before relations in thead pool
lbset=linearizeBeforeSet(tp)
#find all threads that should be linearized before t
helpset=helpSet(t,lbset)
#totorder is a list containing all elements of helpset
#and totorder obeys all linearize-before relations
totorder=totalOrder(helpset,lbset)
#linearize all threads in totorder
for tid in totorder :

lin(tid)

Figure 5. Pseudocode of linothers.

challenges (§3.3) by updating the LP of rename (line 41 in
Figure 2) to:

(LP : linothers(t); RENAME)

We present the pseudocode of linothers in Figure 5.
First, we use the linearize-before relation (implemented as
linearizeBeforeSet) to find a set of thread pairs (Ibset). The
linearize-before relation should take the ghost state (e.g., a
thread pool) as an argument. Then we find all threads that
t should help using Ibset. We put all threads to be helped
in helpset and find a helping order that obeys all linearize-
before requirements.

3.5 Proving Helpers Correct

Helpers allow us to reason about the path inter-dependency
among concrete operations in file systems with extensions
like ghost state and linearize-before relation. However, we
could still fail to finish the simulation proof that establishes
atomicity because helpers have been performed incorrectly
(with wrong helping set or helping order) or the implemen-
tation is not atomic. Extra proof work is required to prove
helpers correct in the simulation proof.

Besides the differences in §3.3, helping in file systems is
also different from the lock-free algorithms in the follow-
ing ways. Traditional helping aims to guarantee the wait-
free property of lock-free algorithms, so threads that make
progress must help less fortunate threads to complete their
operations, and the effect of a helped operation is published
immediately when helping happens. However, helping in file
systems is a logical concept used to coordinate concurrent
operations at the abstract level. When helping happens in file
systems, only abstract operations execute, which is before
when concrete operations could take effect. So the abstract
state might be a few transitions ahead of the concrete state.
This brings about new proof patterns that do not exist in the
previous reasoning. For example, the abstraction relation that
connects the abstract and concrete states is not straightfor-
ward when the two states are different. Also, the simulation
proof requires that the return values match between the two
levels, which obligates us to show that the concrete opera-
tion will compute the same result as abstract operation. The
reasoning about such future executions is closely related to
how helpers are performed. We will elaborate more on how
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to prove helpers correct as we explain the framework (§4)
and the proofs of AtomFS (§5).

4 Concurrent Relational Logic with
Helpers
4.1 Overview

Concurrent Relational Logic with Helpers (CRL-H) builds
on prior work [48, 49] that combines relational specifica-
tions [21] and local rely-guarantee reasoning [27] to rea-
son about concurrency, and thus achieves both expressive
specification and compositional verification. However, the
combination is insufficient to verify file systems with path
inter-dependency, which might cause external LPs. CRL-H
adopts the helper mechanism (§3) to overcome the challenges.
Below we briefly introduce our combination of the local rely-
guarantee reasoning and the relational specifications.

e Local rely-guarantee reasoning (LRG) is an extension
of rely-guarantee reasoning [42] and introduces rely con-
ditions, guarantee conditions and invariants in the specifi-
cation. The rely condition (R) specifies a thread’s expecta-
tions of shared state transitions made by other threads,
while the guarantee condition (G) specifies the shared
state transitions made by the thread itself. The bound-
ary between shared and local states is described through
invariants. Using local rely-guarantee, CRL-H can achieve
compositional verification by proving the rely condition
of each thread is implied by the guarantee conditions of
others.

In addition, CRL-H uses relational specifications for
specifying the relation between concrete state and abstract
state, which are more expressive than Hoare logic [40]
and can prove the simulation relation for verifying atom-
icity. To do so, CRL-H introduces an abstract object (or
abstraction), to specify the logical layout of concrete data
structures and a set of abstract operations (Aops for short)
to specify corresponding concrete operations, and adopts
the abstraction relation [54] to prove that a concrete im-
plementation refines its abstract specification.

CRL-H extends the combination approach with helper
metadata and a roll-back mechanism to support helpers.
Helper metadata is ghost state introduced by CRL-H to pro-
vide global information for users to decide the helping set
and helping order, and reflects the semantics of helper pro-
cess (e.g., which Aops are helped and their effects). Although
an intuitive way to specify the consistency relation between
two levels is to require that each corresponding state (e.g.,
inodes) should have the same content, it does not work in
file systems as the helper will execute helped operations at
the abstract level in advance and thus make the content not
match. We propose a roll-back mechanism to establish the
consistency relation by rolling back a list of applied effects
at the abstract level. CRL-H also builds a logic that allows us
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Definition Inum := Z.
Definition Root := Inum.

Definition FName := string.
Definition Links := Map.t FName Inum.

Inductive Inode :=
| File : list byte -> Inode
| Dir : Links -> Inode.

Definition Imap := Map.t Inum Inode.

Definition AFS := prod Imap Root.

Inductive Args := (* omitted ).

Inductive Ret := Success | Failure (* others omitted x).
Definition Aop := AFS -> Args -> AFS -> Ret -> Prop.

Definition mkdirSpec : Aop :=

fun afs args afs' ret => (mkdirCond afs args /\

afs' = absMkdir(afs, args) /\ ret = Success) \/

(~ mkdirCond afs args /\ afs' = afs /\ ret = Failure).
(* mkdirCond and absMkdir omitted for space reasons *)

Figure 6. Abstraction for concurrent file systems.

to prove our implementation meets the specification using
inference rules. The soundness of CRL-H ensures that the
logic implies linearizability.

4.2 Specifying Concurrent File Systems

To specify concurrent file systems with CRL-H, we need
to formally define abstract operations over the file system
abstraction, rely/guarantee conditions (R/G), and invariants
for specifying interactions among threads.

Abstraction with map spec. As shown in Figure 6, CRL-H
provides a default abstraction for concurrent file systems
which can be easily extended by users for specific needs. The
abstract-level file system (AFS) is defined as the root inode
number (Root) plus a map from inode numbers (Inum) to
Inode. Inode could be either a directory (Dir), which maps
file names to inode numbers, or files, which contain a list of
bytes. Abstract operations (Aops) are defined as the atomic
transitions on AFS, e.g., mkdirSpec in the figure.

Local reasoning is an essential technique to reduce the
proof burden, where a thread could focus on the part of
the memory that it owns and operates on. So the model of
file system should support local reasoning by allowing to
be specified as the focused inodes and the rest. We choose
to model a file system with a map spec, which splits the
description of a set of memory blocks for inodes and the
corresponding shape properties (e.g., tree shape) into sepa-
rate parts. It gives us more flexibility to spell out complex
invariants when focusing on only parts of inodes in the file
system tree. So we can represent a file system state as the
union of focused inodes and a map that includes the rest of
the inodes. We can enforce the shape properties of all inodes
with an invariant. Instead, modeling the file system as a tree
would force us to specify its layout and shape information
globally, thus making it hard to focus on separate inodes
because the shape properties would break.

Invariants. CRL-H supports local reasoning by logically
splitting states into shared states and local state. It provides
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inference rules to reason about operations on local state like
verifying sequential programs and reason about operations
on shared states through a clearly defined protocol, which
is specified using R/G and invariants. The shared states are
formalized as triples of the concrete state (C memory), the
abstract state and ghost state. We use invariants, defined
as relational specifications, to specify the layout of shared
states and constrain their well-formedness. For instance, the
invariant (I) would be defined as:

I(cfs, afs, ghost) = cinv(cfs) * ainv(afs)

* ginv(ghost) A acrel(cfs, afs)...

Here we use separating conjunction = from separation
logic [64] to specify disjointness of file system states. The
cinv describes the data layout of the file system at the con-
crete level (cfs) and should be instantiated according to the
concrete implementation. The abstract-level file system lay-
out is described by ainv, which is specialized for the AFS
abstraction (afs). ainv includes a well-formedness constraint
on afs, e.g., afs always forms a tree. The ginv specifies the
layout of the ghost state. Some other constraints might also
be required for accomplishing the proofs. For instance, an
abstraction relation (acrel) is used to relate the abstract- and
concrete-level states, i.e., afs and cfs. The abstraction relation
will be further explained in §4.4.

Rely and guarantee conditions. CRL-H uses rely and guar-
antee conditions to specify the allowed transitions on shared
states made by environmental threads and itself. To define
the guarantee conditions of thread t, we need to find all pos-
sible transitions that can be performed on shared states by t.
t’s rely conditions are simply defined as the union of guaran-
tee conditions of all other threads. Both rely and guarantee
conditions specify the transitions over shared states consist-
ing of concrete state, abstract state, and ghost state. This
relational reasoning with relational specifications helps us
to prove atomicity, which is stronger than functional correct-
ness proved by pre- and post-conditions over program states.
The concrete code execution (C code) modifies the concrete
state (C memory) while executing abstract atomic operations
updates abstract state. Meanwhile, we can record the neces-
sary information in ghost state. However, we are not allowed
to arbitrarily modify abstract state and ghost state because
the modifications should not violate the invariants.

4.3 Helping with Helper Metadata

Helper metadata. CRL-H instantiates the ghost state pro-
posed in the helper mechanism as helper metadata, which
contains a Helplist and a ThreadPool, which maps thread
IDs to pairs of Aopstate and Descriptor.

An Aopstate could be either (aop, args) which means the
operation aop needs to be executed with args, or (end, ret)
which means the operation has been finished with return
value ret. The Descriptor is provided for users to record all
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the auxiliary information about a thread. For example, in
AtomFS, we use per-inode locks to traverse a path. Thus, we
add a field, LockPath, in the Descriptor, which records the
acquired locks (including those that have been released) of
the current operation. We will explain more about how to
use the Descriptor for verifying file systems in §5.

In addition, Helplist records the execution order (at ab-
stract level) of helped threads, and will be used in relating
concrete state and abstract state (§4.4). Here, helped threads
means their abstract operations are done by other threads but
not themselves, while unhelped threads means their abstract
operations are pending for execution. The helper metadata
is intended to provide global information to decide helping
set and order.

Helper process. As introduced in §3.4, we use a primitive—
linothers to perform helping. First, the linothers will be exe-
cuted at rename’s LP. Second, the user of CRL-H is responsi-
ble for invoking the linothers for helping, which is achieved
by applying an implication-rule (introduced in §4.5) provided
by CRL-H. Third, if the AopState of the current rename is
(aop, args) which means the rename is not helped by others,
we should perform helping. The user should provide an or-
dered list of thread IDs that should be helped , and CRL-H
will perform these threads’ Aops on the abstract file system
and append them at the end of Helplist. We will introduce
how a user can generate the helping set and helping order in
§5.2. If the AopState is (end, ret), which means the rename
has been helped by other operations, we do not need to per-
form helping. The AopState should be carefully maintained,
by initializing it to (aop, args) when an operation begins, set-
ting it to (end, ret) when an operation is helped, and clearing
the entry when an operation passes its LP.

4.4 Abstraction Relation with Roll-back Mechanism

Simulation-based proofs require us to define an abstraction
relation that relates the abstract file system tree to the con-
crete file system tree. An intuitive way to relate the two trees
is to require that each corresponding inode should have the
same content. However, there are two issues that the intu-
itive relation cannot handle. First, concrete-level transitions
inside the critical section could expose intermediate states,
which do not match the abstract state. Second, as helpers will
execute abstract operations, the abstract state could be a few
transitions ahead of the concrete state, which makes the two
states different. To solve the two issues, CRL-H introduces
relaxed consistency mapping and a roll-back mechanism to
help users in writing abstraction relation.

Relaxed consistency mapping. We classify the status of
a inode according to whether the inode has been locked.
We require concrete and abstract inodes be consistent with
each other only when the status is unlocked. If an inode is
locked, it means the inode might be arbitrarily modified, so
we do not have to restrict its content, and the consistency
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of contents between two levels is allowed to be broken in-
side the critical section. When exiting critical sections, the
consistency between the two levels should be reestablished.

Roll-back mechanism. The roll-back mechanism allows
us to establish the abstraction relation by rolling back the
effects of helped Aops on abstract state. To achieve this, CRL-
Hleverages the helper metadata. For instance, we could add a
field, named Effect, in each thread’s Descriptor. If a thread’s
Aop is helped, Effect would records which abstract inodes
are modified and how they are modified by the Aop. With
the metadata, the consistency relation between an abstract
inode (Ino) and concrete inode (ino) with the same inode
number (inum) could be written as:

Feffects, Ino’. Ino’ = rollback(Ino, effects) A match(ino, Ino’)

where effects = search(inum, ThreadPool, Helplist)

The search function will search through all entries in the
thread pool to find related effects on the inum, and the se-
lected effects are arranged in the reverse order of Helplist for
the rollback function (i.e., first roll back the effects applied
last). We choose to roll back the effects on the abstract inode
instead of applying them on the concrete inode because the
abstract state is easier to manipulate. Then the consistency
relation between Ino and ino can be written concisely.

4.5 Proving with Inference Rules

Inference rules are provided to assist proving that
a file system implementation meets its specification.
The judgement of CRL-H is of the form R;G;I +
{P * (aop, args)}C{Q = (end, ret)}, where R, G, I and P/Q
represent rely, guarantee, invariant and pre-/post-conditions.
CRL-H provides two kinds of inference rules, C-statement-
rules and implication-rules. Users can use C-statement-rules
to step through the C code (modeled in Coq) and use
implication-rules to update the abstraction and ghost state.
The C-statement-rules are mostly standard and similar to
rules of LRG [27], e.g., SequenceRule, IfRule, WhileRule,
AtomRule, etc. For instance, the AtomRule is used to step
through a primitive statement of the language (e.g., an assign-
ment). The implication-rules adopt the technique from [50]
and represent the updates to abstraction and ghost state
as assertion-level changes. So auxiliary commands (e.g.,
linothers) are removed in the verified program. For example,
users can invoke an LinothersRule for helping. CRL-H will
perform helping on states as described in §4.3. Then the cur-
rent precondition P will be updated to P’, which reflects the
states after helping. Our approach to verifying fine-grained
concurrency requires reasoning about three aspects that do
not have direct analogs in reasoning about sequential file
systems:

e Shared data protocol. CRL-H requires specifying a pro-
tocol on how threads operate on shared data concurrently.
The protocol is defined through invariants and R/G. There-
fore, a user has to prove that the invariants hold at any
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source code; rounded boxes denote processes. Shaded boxes
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notes executable binary of the file system.
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time during program execution, while guarantee condi-
tions should capture each atomic transition.

o Assertion stability. Thread-local reasoning about shared
data from a thread’s perspective should manifest allowed
modifications that can be made by other threads. Thus,
every thread-local assertion about shared data should be
stable, which means if the assertion holds on the pre-state,
it should hold on the post-state after concurrent inter-
ference. For example, because rename can help threads
execute their Aops, a stable assertion could be written as
(Helped A Pheiped) V (Unhelped A Pynheiped), which means
if the current thread is unhelped, it will satisfy Punnelped
and if helped, it should satisfy the Ppelped assertion.

e Abstraction transition at linearization point. The
AopState in the helper metadata describes the status of an
abstract operation, which is initiated as (aop, args) when
the operation begins and updated to (end, ret) when the
operation passes its LP. This is enforced by describing
the AopState in the pre-/post-conditions. In addition, We
should make the abstract transition using an implication-
rule at a proper time (i.e., at the LP or external LP).

4.6 Defining Correctness

CRL-H intuitively relates the concrete file system code with
its abstract-level specification. As shown in Figure 7, after
proving the implementation meets the specification using
the inference rules, the soundness of the framework proves
our logic implies linearizability. Following [48], we prove an
atomicity theorem as follows.

The proof for the theorem is constructed in the follow-
ing steps. First, a rely guarantee-based simulation between
the concrete code and the abstract operation is defined, and
the simulation is proved to imply contextual refinement
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between the two sides. Then we prove the logic indeed estab-
lishes such a simulation. Thus the logic establishes contextual
refinement. Finally, contextual refinement is proved to be
equivalent to linearizability by prior work [30].

Theorem 1 (File System Atomicity)

Given the implementation and abstraction of a file sys-
tem, if there exist rely/guarantee conditions and an invari-
ant, such that for each operation of the implementation
and corresponding abstract operation, we can prove the
judgment hold w.r.t. the pre-/post-conditions by applying
inference rules, then the file system implementation is
atomic.

5 Proving AtomFS

AtomPFS is a concurrent in-memory file system running on
FUSE. We first introduce the non-bypassable criterion and
how AtomFS uses lock coupling to meet the criterion (§5.1),
then we show how to formalize the helpers (§5.2), the in-
variants of AtomFS (§5.3) and how we handle file descriptor-
based interfaces (§5.4).

5.1 Non-Bypassable Criterion

We present the design considerations of AtomFS before dig-
ging into its proofs. The key feature of AtomFS is leveraging
lock coupling in path traversals because lock coupling can
ensure ‘non-bypass” among concurrent operations. The case
in Figure 8 motivates our choice.

Two threads are executing (rename,del) and ins respec-
tively. One possible interleaving would be first ins traverses
to b and halts. Then rename finishes and del starts. Suppose
ins does not always hold the lock and del can bypass ins by
first holding the lock of c. Here, “A bypasses B” means the
inode accessed by A in the tree is a descendant of the inode
accessed by B. Then the execution would generate results
as shown in the concrete level. However, the results cannot
be matched by any sequential history (or the interleaved
execution is non-linearizable).

If we analyze the case using helpers, rename should first
help ins finish its abstract operation successfully, so a follow-
ing del should fail in the abstract level. However, if del can
bypass ins in the concrete execution, it can delete b’s link to
¢, which causes ins to fail and generates non-linearizable be-
havior. We introduce the following non-bypassable criterion
to ensure linearizability among path-based operations.

The non-bypassable criterion can be expressed as: an
unhelped thread A cannot bypass a helped thread B (un-
helped/helped thread defined in §4.3). Intuitively, when B is
helped by some rename and therefore linearized, its effect is
published based on the current abstract file system state. This
generates the obligation to show the concrete state should
allow B to compute the same result when it takes effect in the
concrete level. However, if an unhelped thread A bypasses
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Figure 8. Non-bypassable criterion violation. The del
bypasses ins and first acquires the lock of c.

B and could modify the concrete state B will use, B may
compute an inconsistent result with its abstract level. Thus,
the criterion can guide us in handling such corner cases and
ensuring linearizability. Here, the non-bypassable criterion
only applies to path-based operations.

Lock coupling. Following the criterion, AtomFS leverages
lock coupling [38] for the path traversal process. Specifically,
AtomFS always acquires the next inode’s lock before it re-
leases the current inode’s lock. So our design satisfies the
non-bypassable criterion and forbids such corner cases. In the
proofs of AtomFS, we propose the non-bypassable invariants
(§5.3) to check the bypass will not happen in AtomFS.

Linux VFS study. Although some existing file systems do
not use lock coupling to forbid the occurrence of the bypass,
they still need an approach (usually much more complicated
than lock coupling) to obey the non-bypassable criterion. For
example, Linux VFS adopts traversal retry [51] to allow oper-
ations to bypass each other when traversing the path. Specif-
ically, an operation will check whether a rename operation
has executed during the path traversal through a revalidation
process. If it finds a rename has executed, it will redo the path
traversal. As a result, rename does not need to help those
threads that have not finished their path lookups. For the
threads that are helped in the critical section, the lock will
protect them from being bypassed. So the non-bypassable
criterion is still obeyed. Compared with our approach, the
traversal retry will increase the difficulty of file systems,
which makes its proofs not as intuitive as lock coupling.

5.2 Formalizing Helpers

To formalize helpers, we introduce how helper metadata and
linearize-before relation are defined and used in AtomFS.

Helper metadata. In AtomFS, the per-thread Descriptor of
helper metadata is instantiated as three fields, including
LockPath, Effect and FutLockPath. Here we focus on the first
field, LockPath, which is a sequence of inode numbers that
the current thread has locked through from the root inode.
It could be either a single path for operations like mkdir
or a pair of paths for rename (i.e., SrcPath and DestPath).
For instance, in Figure 4(b), the SrcPath of t; is (root, a, €)
and the DestPath is (root, b, ¢, d), while the LockPath of t;
is (root, a, e, f).
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Invariant name States specified

Description

Provider

Abstract-concrete-relation ~ Abstract FS and concrete FS  Concrete inode and abstract inode shoud be related using roll-back mechanism. ~ AtomFS

Ghost state
Ghost state
Abstract FS

Helped-non-bypassable
Unhelped-non-bypassable
GoodAFS
Last-locked-lockpath
Helplist-consistency
Future-lockpath-validness
Lockpath-wellformed

Ghost state
Abstract FS and ghost state
Ghost state

A helped Op cannot bypass another Op helped before it. AtomFS
An unhelped Op cannot bypass a helped Op. AtomFS
The abstract FS has tree properties like root reachability. CRL-H
Concrete FS and ghost state  The last inode in the LockPath of thread ¢ is locked by # in concrete FS. AtomFS
An abstract operation is helped iff its thread ID is in the Helplist. AtomFS
Thread t will acquire locks indicated by FutLockPath. AtomFS
The LockPathPrefix relation is acyclic. AtomFS

Table 1. Invariants in AtomFS. Using CRL-H to verify AtomFS requires specifying several invariants. Each invariant (with
invariant name) specifies restrictions between states (i.e., abstract FS, concrete FS and ghost state) as explained in description.

Linearize-before relation. As AtomFS adopts lock coupling,
we can use LockPath to define the linearize-before relation
between threads. We define the SrcPrefix relation to account
for path inter-dependency and LockPathPrefix relation for re-
cursive path inter-dependency. The SrcPrefix relation means
the LockPath of a thread contains the SrcPath of a rename.
The LockPathPrefix relation means that thread t;’s (any)
LockPath is the prefix of thread t;’s (any) LockPath. For ex-
ample, in Figure 4(b) (assuming t, is ready to pass its LP),
thread t3 has SrcPrefix relation on t;, as its LockPath (i.e.,
(root, a, e, f)) contains t,’s SrcPath (i.e., (root, a, €)).

Then we can decide the helping set for a rename re-
cursively. First, we find all the threads which have the
SrcPrefix relation on the rename, and put the threads in a
set named HelpSet (Step-1: Init). Then, we recursively pick
one thread in the HelpSet, find all the new threads having
LockPathPrefix relation on it, and put these new threads
into the HelpSet (Step-2: Recursive search). We repeat
the second step until we cannot add any new threads into
the HelpSet. The helping order is an order of all threads in
the HelpSet that satisfies all LockPathPrefix relations. The
whole process happens atomically at the LP of a rename.

Here, LockPathPrefix and SrcPrefix relations may decide
a linearize-before relation between two commutative opera-
tions, which means our relations are stricter than the ideal
linearize-before relations. However, using stricter relations
in the proofs does not comprise on correctness if the stricter
relations can find a helping order. Specifically, we need to
be careful with rename’s path traversals to ensure deadlock-
freedom. A rename will first traverse to the last common
inode of source and destination path (with hand-over-hand
locking), and only releases the lock of the inode after acquir-
ing the lock of source and destination directory. Then we
can ensure the LockPaths of threads do not form cycles.

5.3 Invariants in AtomFS

As shown in the Table 1, we list eight major invariants used to
specify the global properties of AtomFS. Here, we introduce
the two most important and interesting invariants.

Abstract-concrete relation. The abstract-concrete relation
employs the roll-back mechanism to relate the abstract

state and concrete state. We use the Effect in helper meta-
data to record the effects of a helped operation. Effect may
consist of a set of micro-operations. For instance, OPins
denotes an inode insertion operation and OPcreate de-
notes an inode creation operation. Take INS as an exam-
ple. It inserts a child inode number cinum into a parent
inode with inode number pinum. Its Effect is represented
as (OPins : (pinum, name, cinum), OPcreat : cinum). The ef-
fects are recorded in the inode granularity, so we can search
for all the effects on an inode and arrange the effects in
the reverse order of the Helplist. Then the relation can be
established by the roll-back mechanism.

Non-bypassable invariants. Non-bypassable invariants
(i.e., helped-non-bypassable and unhelped-non-bypassable in
the table) are used to meet the non-bypassable criterion.
We use LockPath and future lockpath (FutLockPath) in the
Descriptor, to formalize the non-bypassable invariants. The
FutLockPath is initiated when an operation is helped, which
records the inode locks it will acquire. For instance, if an
ins(/a/b/c/, d) is helped and the LockPath is (root, a), then
the FutLockPath is (b, ¢) (if the path lookups will succeed).
For a helped operation op, all the operations behind op can
be seen as possible bypassers. Here, the “behind” is defined
through the LockPathPrefix relation. Now, non-bypassable
invariants can be formalized as an originally behind op-
eration (i.e., a bypasser) locking an inode which is in the
FutLockPath of op.

5.4 Tuning FD-based Interfaces for Linearizability

Besides path-based interfaces, file systems also provide file
descriptors (FDs) for locating inodes. However, adopting
the FD-based interfaces will lead to non-linearizability in
AtomFS. Consider the example in Figure 9. A rename helps
ins, and a readdir starts execution after rename finishes.
readdir bypasses ins and finds directory c empty. If we an-
alyze the case using helpers, there is no sequential, legal
history of the concrete execution. As discussed in the non-
bypassable criterion (§5.1), readdir runs into inconsistency
with ins because the state of ¢ at the two levels are dif-
ferent when computations of readdir and READDIR hap-
pen. More generally, every FD-based interface can bypass
a helped, path-based interface. In some cases, this would
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Figure 9. File descriptor-based interfaces. FD-based in-
terface readdir bypasses a helped operation ins, which causes
non-linearizablity.

cause different abstract and concrete states and introduce
non-linearizable behavior. Therefore, AtomFS chooses to tra-
verse a path to locate the target inode for those FD-based
interfaces (e.g., read, write, readdir), which is possible be-
cause the high-level FUSE API provides the path arguments
for all interfaces. AtomFS relies on VFS and FUSE to maintain
the mapping from a file descriptor to the path of an inode
so that AtomFS could support unmodified applications and
still ensure linearizability. Surprisingly, POSIX semantics like
reading/writing to an unlinked file is also supported because
FUSE will create a temporary file for reads/writes after the
file has been removed. However, it also makes VFS and FUSE
as the trusted computing base of AtomFS.

Discussion about support for FDs FD-based interfaces
scale much better than doing a pathname resolution for ev-
ery read and write. To support FDs, several modifications are
needed for AtomFS. First, AtomFS can adopt VFS’s traversal
retry mechanism (§5.1). So in Figure 9, rename will make
ins redo the path lookups. Second, the del operation should
not free the memory of an opened inode. We may introduce
a reference count for each inode to represent that the in-
ode is in use, so later FD-based accesses are still allowed.
In this way, for operations that have not finished traversals
when a rename happens, they will redo path lookups and
helping is not required. For operations that are already in
the critical section when helped, a bypass by an FD-based
operation is harmless because the states they operate on will
not interfere. Also, these FD-based operations have no path
inter-dependency on renames, and therefore do not need to
be helped. They are linearized when they pass their LPs.

6 Prototype Implementation

Coq provides a single language for specifications, implemen-
tations, and proofs, which allows us to build the prototypes
of CRL-H and AtomFS. The development took several re-
searchers about a year and a half, which includes learning
the theories that underlie our framework, building the frame-
work, and developing proofs for AtomFS.

CRL-H. CRL-H is built on an existing open source project,
p#C/OS-1I [76] and several theoretical work [27, 48-50]. CRL-
H follows the logic proposed by Liang et al. [48], which
adopts RGSim [49] (a rely-guarantee based simulation) as

Mo Zou et al.

the meta-theory and provides a logic based on LRG [27].
There are several major differences between CRL-H and
Liang’s framework. First, the framework models a simple
language and only has paper proofs. Second, the framework
also supports future-dependent LPs, which makes the state
model and logic complicated and not easy to implement in
Coq. CRL-H provides a simplified logic, which is enough
to reason about external LPs in file systems. Third, to per-
form helping, the framework introduces auxiliary commands
(e.g., lin(t)) and corresponding semantics of the commands.
CRL-H instead directly models helping as assertion-level
changes [50], which eliminates all auxiliary commands.

There are nearly 100k lines of code for CRL-H, about
half of which are reused from pC/OS-II [76]. The reused
parts include supports for C language (the memory model,
semantics, part of C inference rules and auxiliary lemmas for
inference rules), separation logic automation and libraries for
maps, integers, maths, etc. Many original definitions, lemmas,
and proofs are fixed to fit into the new state model. New
implementations mainly devote to supporting LRG reasoning
of our logic.

AtomFS. AtomFS is a concurrent in-memory file system. It
employs a hash table followed by linked lists for directory
lookups and a fixed-size array of indexes for file data storage.
It provides POSIX-like interfaces at the top level. We have
evaluated AtomFS using xfstests [4], a comprehensive file
system testing suite, and the results show AtomFS can pass
418 cases out of 451 (test cases for tmpfs). All failed cases are
caused by lacked functionality supports instead of bugs, i.e.,
current prototype of AtomFS does not support hard/symbolic
link, permission, etc. Also, AtomFS does not consider crash
safety yet.

Table 2 shows the lines of code for specifications, im-
plementations, and proofs of AtomFS. Unlike previous
work [12, 16] which generates executable code from Coq
to Haskell, CRL-H has already modeled a subset of the C
language, thus allowing the verified AtomFS (written in
C language) to be compiled to binary without extraction.
We run the verified implementation with a small unverified
FUSE [32] driver as a user-level file system. AtomFS can
run unmodified applications; however, it also includes VFS,
the FUSE driver and library as trusted components. Besides
FUSE and VFS, our trusted computing base includes the C
compiler, the C implementation of a lock® and the memory
allocator of glibc. Currently, for some internal functions (190
LOC) inside the critical section, we have only verified their
sequential specifications because these internal functions
will only modify lock-protected states and will not interfere
with environments. We leave completing the formal proofs
of these internal functions as future work.

Limitations. First, AtomFS does not support crash safety.
Prior work [6] has proposed to decouple the in-memory file

SLocks have well-known linearizable implementations [45].
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Component Lines of code/proof
Abstraction and Aops 344
Invariants 1397
R-G conditions 451
Verified code 673
Proof 60,324
Total 63,099

Table 2. Lines of specifications, implementations, and proofs
for AtomFS.

system, which presents simple interfaces to the clients, from
the on-disk file system, which considers crashes. We follow
the same design strategies in this work. In the prototype im-
plementation, we aim to build an in-memory concurrent file
system and prove its atomicity without considering crashes.
To prove crash safety for concurrent file systems, we may
need to extend CRL-H with crash conditions [16] to specify
and verify the recovery procedure.

Second, as discussed in §5.4, AtomFS needs to traverse a
whole path even for FD-based interfaces like read and write
because AtomFS wants to ensure all interfaces are atomic.
Although we can only prove the atomicity for path-based
interfaces, mixed granularity of interfaces is hard to use for
applications. For instance, the verified CMAIL [12] relies on
atomic interfaces of file systems (e.g., read and link). AtomFS
can adopt VFS’s traversal retry mechanism to locate inodes
with file descriptors and still ensure linearizability.

Third, it is hard to ensure our linearizability guarantees
convey to the applications as VFS and FUSE do a lot of track-
ing and caching before passing the control to AtomFS. Or
they could directly serve some read-only operations (e.g.,
read) from the cache without entering AtomFS. Therefore,
the functional correctness relies on that the cache coherence
protocols of VFS and FUSE are correct. To prove that the
syscalls provided by VFS are also atomic, we need to reason
about the syscall-level code, which would be easier because
challenges like external LPs are hidden in the atomic specifi-
cations of AtomFS. In common cases, a syscall is linearized
at the atomic invocation of AtomFS’s interface. A read-only
syscall could also be linearized when the cache hits. We leave
verifying the syscall-level atomicity as our future work.

7 Performance Evaluation
We now focus on the performance evaluation that aims to
answer the following questions:
e Can AtomFS provide reasonable performance for prac-
tical applications? (§7.2)

e Can AtomFS achieve good scalability on a multicore
machine? (§7.3)

7.1 Experimental Setup

We run all of the experiments on a server with an Intel
Xeon 2.30GHz CPU with 16 physical cores and 62GB DRAM
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Figure 10. Application workloads. The figure shows the
running time of different application workloads (i.e., git,
compile, cp, ripgrep). Largefile benchmark will operate on
a big file with 10MB, and the smallfile operates on 10K files
with 1KB size.

running Linux 5.2.8. We compare the performance of AtomFS
with a mature and widely-used disk file system (ext4 [69]), a
formally verified high-performance file system (DFSCQ [14])
and an in-memory file system (tmpfs). All the evaluated file
systems use Ramdisk (i.e., /dev/ram0 in Linux) as the storage.

7.2 Application Performance

AtomFS is complete enough to run many kinds of realistic
software, including Vim [74] and GCC [33]. To evaluate the
application performance, we select two microbenchmarks
and four application workloads: LFS microbenchmark [57,
65], cloning the git repository of xv6-public, compiling the
sources of the xv6 file system with a makefile, copying source
code of gemu and searching a string with a tool called ripgrep.
The application workloads only use a single core.

The results are shown in Figure 10. Compared with
AtomFS, DFSCQ needs more running time for all applica-
tions (from 1.38x to 2.52x). The main reason is that AtomFS
is implemented in C instead of Haskell used in DFSCQ, thus
can avoid the Haskell overhead. The performance of AtomFS
is worse than tmpfs and ext4 for two reasons. First, AtomFS is
implemented with FUSE, which introduces higher overhead
than in-kernel file systems. Second, AtomFS uses simplified
data structures to manage data and metadata. Both issues
can be overcome in future work, and the results reveal that
AtomFS can achieve reasonable performance for practical
applications.

7.3 Multicore Scalability

To evaluate the scalability of AtomFS with lock-coupling
and per-inode locks, we use the two most commonly used
workloads in Filebench [29] (i.e., Fileserver and Webproxy).
We implement a coarse-grained version of AtomFS using
big-lock to precisely measure the speedup achieved by lock-
coupling. In the big-lock version, all file system operations
first acquire a big-lock and do not release the lock until the op-
erations finish. We evaluate the big-lock version of AtomFS,
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Figure 11. Scalability of AtomFS. The overall scalability
of AtomFS is better than the big-lock version of AtomFS

and ext4.

AtomFS, and ext4 with 16 cores and gradually increase the
thread number used in the benchmark. The speedup results
are in Figure 11.

We can mainly draw three conclusions. First, the AtomFS
does not bypass the VFS-level path lookups. The VFS-level
traversals can provide good scalability, as the big-lock ver-
sion of AtomFS still scales when the thread number increases
to 8. Second, lock-coupling contributes to the scalability,
which is confirmed by the better scalability and performance
of AtomFS over the big-lock version of AtomFS. The through-
put of AtomFS is 1.46x higher with 16 threads in Fileserver
than the big-lock version (Figure 11(a)). This is because File-
server concurrently handles more different directories and
files (i.e., 526 different directories and about 10000 files).
The performance of lock-coupling gains less improvement
(1.16x higher throughput with 16 threads) in Webproxy (Fig-
ure 11(b)), as Webproxy involves only two directories, which
cannot leverage the benefit of multicore concurrency. Third,
AtomFS achieves somewhat worse performance than ext4
(6.39x/5.83x lower throughput in Fileserver/Webproxy with
16 cores). This is because the lock-coupling traverse of di-
rectory and file operations becomes the major bottleneck as
the cores increase.

8 Experience

Theory choices. Concurrent separation logic (CSL) [8, 72]
and rely-guarantee (RG) [27, 28, 42, 73] are two mainstream
approaches to verifying concurrent software. We initially
adopted CSL to verify our implementation. CSL has the no-
tion of ownership, where a thread can only access the por-
tions it owns. A thread can do local reasoning by acquiring
the ownership of shared resources. However, transferring
the ownership of shared states would break its connection
with other shared resources, e.g., locking an inode will trans-
fer the inode into private states but will also lose the relation
between the inode and other inodes.

Experience with LRG. Our experience with LRG reasoning
suggests that LRG is powerful for fine-grained reasoning.
The G condition should capture all transitions on shared
states allowed by the program, which could be a big disjunc-
tion of lots of cases for some programs. However, for AtomFS,
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all accesses to shared states are performed in the critical
section. Therefore, by weakening the guarantee conditions,
we can effectively merge all concrete-level operations into
three kinds of transitions, Lock, Unlock and Lockedtrans.
The Lock/Unlock captures the atomic operation of acquir-
ing/releasing an inode lock. The Lockedtrans specifies that
a thread can make arbitrary modifications to an inode that is
locked by the thread, which captures all possible transitions
inside the critical section. Since a thread’s guarantee condi-
tions serve as the rely conditions of other threads, merging
the guarantee conditions reduces the cases to reason about
when proving stability. In some cases, we need to strengthen
rely conditions (i.e., other threads’ guarantee conditions) to
precisely capture environmental interference and pass the
stability check. For example, when specifying the INS transi-
tion, we should not only specify the changes in the abstract
state but also require that the lock of the father inode should
be held. This prevents arbitrary insertions in the abstract
inode, which violates the invariants.

One downside of LRG is that the proof rules have many
side conditions. For each atomic statement, we have to check
that the transition satisfies the G, the invariants hold after the
transition, and the assertion is stable under environmental
interference. Also, it is hard to achieve full automation in
LRG because we need to manually specify the assertions to
represent updates to the abstraction and ghost state.

9 Conclusion

This paper has presented CRL-H, a framework for specifying,
implementing, and verifying concurrent file systems with
atomic interfaces through the helper mechanism. CRL-H
allows developers to precisely specify the expected behavior
of file systems through relational specifications and enables
developers to verify the file systems with thread-local reason-
ing. We have applied CRL-H to specify and verify AtomFS,
the first formally verified, fine-grained, concurrent file sys-
tem. Our experience shows that the proof burden is manage-
able, and the AtomFS can achieve acceptable performance.
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