
Gleipnir: Toward Practical Error Analysis for
Quantum Programs

Runzhou Tao
Columbia University
New York, NY, USA

runzhou.tao@columbia.edu

Yunong Shi∗

The University of Chicago
Chicago, IL, USA

yunong@uchicago.edu

Jianan Yao
Columbia University
New York, NY, USA
jy3022@columbia.edu

John Hui
Columbia University
New York, NY, USA

j-hui@cs.columbia.edu

Frederic T. Chong2

The University of Chicago
Super.tech

Chicago, IL, USA
chong@cs.uchicago.edu

Ronghui Gu
Columbia University
New York, NY, USA

ronghui.gu@columbia.edu

Abstract

Practical error analysis is essential for the design, optimiza-
tion, and evaluation of Noisy Intermediate-Scale Quantum
(NISQ) computing. However, bounding errors in quantum
programs is a grand challenge, because the effects of quan-
tum errors depend on exponentially large quantum states.
In this work, we present Gleipnir, a novel methodology to-
ward practically computing verified error bounds in quantum
programs. Gleipnir introduces the (𝜌, 𝛿)-diamond norm, an
error metric constrained by a quantum predicate consisting
of the approximate state 𝜌 and its distance 𝛿 to the ideal state
𝜌 . This predicate (𝜌, 𝛿) can be computed adaptively using
tensor networks based on Matrix Product States. Gleipnir
features a lightweight logic for reasoning about error bounds
in noisy quantum programs, based on the (𝜌, 𝛿)-diamond
norm metric. Our experimental results show that Gleipnir is
able to efficiently generate tight error bounds for real-world
quantum programs with 10 to 100 qubits, and can be used
to evaluate the error mitigation performance of quantum
compiler transformations.

CCS Concepts: · Theory of computation → Quantum

information theory; Program analysis.

∗Now affiliated with Amazon.
2F. Chong is also Chief Scientist at Super.tech and an advisor to Quantum

Circuits, Inc.

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies

are not made or distributed for profit or commercial advantage and that

copies bear this notice and the full citation on the first page. Copyrights

for components of this work owned by others than the author(s) must

be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific

permission and/or a fee. Request permissions from permissions@acm.org.

PLDI ’21, June 20ś25, 2021, Virtual, Canada

© 2021 Copyright held by the owner/author(s). Publication rights licensed

to ACM.

ACM ISBN 978-1-4503-8391-2/21/06. . . $15.00

https://doi.org/10.1145/3453483.3454029

Keywords: quantum programming, error analysis, approxi-
mate computing

ACM Reference Format:

Runzhou Tao, Yunong Shi, Jianan Yao, John Hui, Frederic T. Chong,

and Ronghui Gu. 2021. Gleipnir: Toward Practical Error Analysis

for Quantum Programs. In Proceedings of the 42nd ACM SIGPLAN In-

ternational Conference on Programming Language Design and Imple-

mentation (PLDI ’21), June 20ś25, 2021, Virtual, Canada. ACM, New

York, NY, USA, 17 pages. https://doi.org/10.1145/3453483.3454029

1 Introduction

Recent quantum supremacy experiments [4] have heralded
theNoisy Intermediate-Scale Quantum (NISQ) era [43], where
noisy quantum computers with 50-100 qubits are used to
achieve tangible performance gains over classical computers.
While this goal is promising, there remains the engineering
challenge of accounting for erroneous quantum operations
on noisy hardware [3]. Compared to classical bits, quantum
bits (qubits) are much more fragile and error-prone. The the-
ory of Quantum Error Correction (QEC) [9, 16, 34, 41, 42] en-
ables fault tolerant computation [7, 16, 40] using redundant
qubits, but full fault tolerance is still prohibitively expensive
for modern noisy devicesÐsome 103 to 104 physical qubits
are required to encode a single logical qubit [13, 28].

To reconcile quantum computation with NISQ computers,
quantum compilers perform transformations for error miti-
gation [58] and noise-adaptive optimization [33]. To evaluate
these compiler transformations, we must compare the error
bounds of the source and compiled quantum programs.
Analyzing the error of quantum programs, however, is

practically challenging. Although one can naively calculate
the łdistance” (i.e., error) between the ideal and noisy out-
puts using their matrix representations [34], this approach is
impractical for real-world quantum programs, whose matrix
representations can be exponentially largeÐfor example, a
20-qubit quantum circuit is represented by a 220×220 matrixÐ
too large to feasibly compute.

48

https://www.acm.org/publications/policies/artifact-review-and-badging-current
https://doi.org/10.1145/3453483.3454029
https://doi.org/10.1145/3453483.3454029

PLDI ’21, June 20ś25, 2021, Virtual, Canada Runzhou Tao, Yunong Shi, Jianan Yao, John Hui, Frederic T. Chong, and Ronghui Gu

Rather than directly calculating the output error using
matrix representations, an alternative approach employs
error metrics, which can be computed more efficiently. A
common error metric for quantum programs is the uncon-
strained diamond norm [1]. However, this metric merely
gives a worst-case error analysis: it is calculated only using
quantum gates’ noise models, without taking into account
any information about the quantum state. In extreme cases,
it overestimates errors by up to two orders of magnitude [59].
A more realistic metric must take the input quantum state
into account, since this also affects the output error.

The logic of quantum robustness (LQR) [24] incorporates
quantum states in the error metrics to compute tighter er-
ror bounds. This work introduces the (𝑄, 𝜆)-diamond norm,
which analyzes the output error given that the input quan-
tum state satisfies some quantum predicate 𝑄 to degree 𝜆.
LQR extends the Quantum Hoare Logic [64] with the (𝑄, 𝜆)-
diamond norm to produce logical judgments of the form

(𝑄, 𝜆) ⊢ 𝑃 ≤ 𝜖 , which deduces the error bound 𝜖 for a noisy

program 𝑃 . While theoretically promising, this work raises
open questions in practice. Consider the following sequence
rule in LQR:

(𝑄1, 𝜆) ⊢ 𝑃1 ≤ 𝜖1 {𝑄1}𝑃1{𝑄2} (𝑄2, 𝜆) ⊢ 𝑃2 ≤ 𝜖2

(𝑄1, 𝜆) ⊢ (𝑃1; 𝑃2) ≤ 𝜖1 + 𝜖2
.

It is unclear how to obtain a quantum predicate 𝑄2 that is
a valid postcondition after executing 𝑃1 while being strong

enough to produce useful error bounds for 𝑃2.
This paper presents Gleipnir, an adaptive error analysis

methodology for quantum programs that addresses the above
practical challenges and answers the following three open
questions: (1) How to compute suitable constraints for the
input quantum state used by the error metrics? (2) How to
reason about error bounds without manually verifying quan-
tum programs with respect to pre- and postconditions? (3)
How practical is it to compute verified error bounds for quan-
tum programs and evaluate the error mitigation performance
of quantum compiler transformations?
First, in prior work, seaching for a non-trivial postcon-

dition (𝑄, 𝜆) for a given quantum program is prohibitively
costly: existing methods either compute postconditions by
fully simulating quantum programs using matrix representa-
tions [64], or reduce this problem to an SDP (Semi-Definite
Programming) problemwhose size is exponential to the num-
ber of qubits used in the quantum program [65]. In practice,
for large quantum programs (≥ 20 qubits), these methods
cannot produce any postconditions other than (𝐼 , 0) (i.e., the
identity matrix 𝐼 to degree 0, analogous to a łtrue” predicate),
reducing the (𝑄, 𝜆)-diamond norm to the unconstrained dia-
mond norm and failing to yield non-trivial error bounds.

To overcome this limitation, Gleipnir introduces the (𝜌, 𝛿)-
diamond norm, a new error metric for input quantum states
whose distance from some approximated quantum state 𝜌

is bounded by 𝛿 . Given a quantum program and a predicate
(𝜌, 𝛿), Gleipnir computes its diamond norm by reducing it
to a constant size SDP problem.
To obtain the predicate (𝜌, 𝛿), Gleipnir uses Matrix Prod-

uct State (MPS) tensor networks [37] to represent and ap-
proximate quantum states. Rather than fully simulating the
quantum program or producing an exponentially complex
SDP problem, our MPS-based approach computes a tensor
network 𝑇𝑁 (𝜌0, 𝑃) that approximates (𝜌, 𝛿) for some input
state 𝜌0 and program 𝑃 . By dropping insignificant singular
values when exceeding the givenMPS size during the approx-
imation,𝑇𝑁 (𝜌0, 𝑃) can be computed in polynomial timewith
respect to the size of the MPS tensor network, the number of
qubits, and the number of quantum gates. In contrast with
prior work, our MPS-based approach is adaptiveÐone may
adjust the approximation precision by varying the size of
the MPS such that tighter error bounds can be computed us-
ing greater computational resources. Gleipnir provides more
flexibility between the tight but inefficient full simulation
and the efficient but unrealistic worst-case analysis.
Second, instead of verifying a predicate using Quantum

Hoare Logic, Gleipnir develops a lightweight logic based on
(𝜌, 𝛿)-diamond norms for reasoning about quantum program
error, using judgments of the form:

(𝜌, 𝛿) ⊢ 𝑃𝜔 ≤ 𝜖.

This judgement states that the error of the noisy program 𝑃𝜔
under the noise model 𝜔 is upper-bounded by 𝜖 when the
input state is constrained by (𝜌, 𝛿). As shown in the sequence
rule of our quantum error logic:

(𝜌, 𝛿) ⊢ 𝑃1𝜔 ≤ 𝜖1 𝑇𝑁 (𝜌, 𝑃1) = (𝜌 ′, 𝛿 ′) (𝜌 ′, 𝛿 + 𝛿 ′) ⊢ 𝑃2𝜔 ≤ 𝜖2

(𝜌, 𝛿) ⊢ 𝑃1𝜔 ; 𝑃2𝜔 ≤ 𝜖1 + 𝜖2
,

the approximated state 𝜌 ′ and its distance 𝛿 ′ are computed

using the MPS tensor network 𝑇𝑁 .
our sequence rule eliminates the cost of searching for and

validating non-trivial postconditions by directly computing
(𝜌, 𝛿). We prove the correctness of 𝑇𝑁 , which ensures that
the resulting state of executing 𝑃1 satisfies the predicate
(𝜌 ′, 𝛿 + 𝛿 ′).
Third, we enable the practical error analysis of quantum

programs and transformations, which was previously only
theoretically possible but infeasible due to the limitations of
prior work. To understand the scalability and limitation of
our error analysis methodology, we conducted case studies
using two classes of quantum programs that are expected to
be most useful in the near-termÐthe Quantum Approximate
Optimization Algorithm [12] and the Ising model [44]Ðwith
qubits ranging from 10 to 100. Our measurements show that,
with 128-wide MPS networks, Gleipnir can always generate
error bounds within 6 minutes. For small programs (≤ 10
qubits), Gleipnir’s error bounds are as precise as the ones
generated using full simulation. For large programs (≥ 20
qubits), Gleipnir’s error bounds are 15% to 30% tighter than

49

Gleipnir: Toward Practical Error Analysis for Quantum Programs PLDI ’21, June 20ś25, 2021, Virtual, Canada

those calculated using unconstrained diamond norms, while
full simulation invariably times out after 24 hours.

We explored Gleipnir’s effectiveness in evaluating the er-
ror mitigation performance of quantum compiler transforma-
tions. We conducted a case study evaluating qubit mapping
protocols [33] and showed that the ranking for different
transformations using the error bounds generated by our
methodology is consistent with the ranking using errors
measured from the real-world experimental data.

Throughout this paper, we address the key practical limi-
tations of error analysis for quantum programs. In summary,
our main contributions are:

• The (𝜌, 𝛿)-diamond norm, a new error metric con-
strained by the input quantum state that can be ef-
ficiently computed using constant-size SDPs.

• An MPS tensor network approach to adaptively com-
pute the quatum predicate (𝜌, 𝛿).

• A lightweight logic for reasoning about quantum error
bounds without the need to verify quantum predicates.

• Case studies using quantum programs and transfor-
mations on real quantum devices, demonstrating the
feasability of adaptive quantum error analysis for com-
puting verified error bounds for quantum programs
and evaluating the error mitigation performance of
quantum compilation.

2 Quantum Programming Background

This section introduces basic notations and terminologies
for quantum programming that will be used throughout the
paper. Please refer to Mueller et al. [32] for more detailed
background knowledge.

Notation. In this paper, we use Dirac notation, or łbra-ket”
notation, to represent quantum states. The łket” notation
|𝜓 ⟩ denotes a column vector, which corresponds to a pure
quantum state. The łbra” notation ⟨𝜓 | denotes its conjugate
transpose, a row vector. ⟨𝜙 |𝜓 ⟩ represents the inner product
of two vectors, and |𝜓 ⟩ ⟨𝜙 | the outer product. We use 𝜌 to
denote a density matrix (defined in Section 2.1), a matrix
that represents a mixed quantum state. 𝑈 usually denotes
a unitary matrix which represents quantum gates, while
𝑈 † denotes its conjugate transpose. Curly letters such as
U denote noisy or ideal quantum operations, represented
by maps between density matrices (superoperators). Upper
case Greek letters such as Φ represent quantum noise as
superoperators.

2.1 Quantum Computing Basics

Quantum states. The simplest quantum state is a quan-
tum bitÐa qubit. Unlike a classical bit, a qubit’s state can
be the superposition of two logical states, |0⟩ and |1⟩, that
correspond to classical logical states 0 and 1. In general, a

𝑋 =

[
0 1

1 0

]
, 𝑍 =

[
1 0

0 −1

]
, 𝐻 =

1√
2

[
1 1

1 −1

]
,𝐶𝑁𝑂𝑇 =



1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0



Figure 1. Matrix representations of common quantum gates. 𝑋

denotes a bit flip, 𝑍 denotes a phase flip, 𝐻 denotes a Hadamard

gate, and 𝐶𝑁𝑂𝑇 denotes a controlled NOT gate.

qubit is a unit vector in the 2-dimensional Hilbert space C2,
with |0⟩ := [1, 0]† and |1⟩ := [0, 1]†. In Dirac’s notation, we
represent a qubit as |𝜓 ⟩ = 𝛼 |0⟩ + 𝛽 |1⟩, where |𝛼 |2 + |𝛽 |2 = 1.

Generally speaking, the state of a quantum program may
comprise many qubits. An 𝑛-qubit state can be represented
by a unit vector in 2𝑛-dimensional Hilbert space C2

𝑛
. For

example, a 3-qubit state can be described by an 8-dimensional
complex vector, which captures a superposition of 8 basis
states, |000⟩, |001⟩, |010⟩, . . ., |111⟩.
Besides the pure quantum states described above, there

are also classically mixed quantum states, i.e., noisy states.
An 𝑛-qubit mixed state can be represented by a 2𝑛 × 2𝑛

density matrix 𝜌 =
∑

𝑖 𝑝𝑖 |𝜙𝑖⟩ ⟨𝜙𝑖 |, which states that the state
has 𝑝𝑖 probability to be |𝜙𝑖⟩. For example, a mixed state
with half probability of |0⟩ and |1⟩ can be represented by
|0⟩ ⟨0 |+ |1⟩ ⟨1 |

2 = 𝐼/2, where 𝐼 is the identity matrix.

Quantum gates. Quantum states are manipulated by the
application of quantum gates, described by unitary matrix
representations [34]. Figure 1 shows the matrix representa-
tions of some common gates. Applying an operator𝑈 to a
quantum state |𝜙⟩ results in the state 𝑈 |𝜙⟩, and applying
it to a density matrix 𝜌 =

∑
𝑖 𝑝𝑖 |𝜙𝑖⟩ ⟨𝜙𝑖 | gives 𝑈𝜌𝑈 †. For

example, the bit flip gate 𝑋 maps |0⟩ to |1⟩ and |1⟩ to |0⟩,
while the Hadamard gate𝐻 maps |0⟩ to |0⟩+ |1⟩√

2
. There are also

multi-qubit gates, such as 𝐶𝑁𝑂𝑇 , which does not change
|00⟩ and |01⟩ but maps |10⟩ and |11⟩ to each other. Applying
a gate on a subset of qubits will not change other qubits. For

example, applying the 𝑋 gate to the first qubit of |00⟩+ |11⟩√
2

will result in |10⟩+ |01⟩√
2

. This can be seen as an extension 𝑋 ⊗ 𝐼

of the matrix to a larger space using a tensor product.

Quantummeasurements. Measurements extract classical
information from quantum states and collapse the quantum
state according to projection matrices 𝑀0 and𝑀1. When we
measure some state 𝜌 , we will obtain the result 0 with col-

lapsed state𝑀0𝜌𝑀
†
0 /𝑝0 and probability 𝑝0 = tr(𝑀0𝜌𝑀

†
0), or

the result 1 with collapsed state𝑀1𝜌𝑀
†
1 /𝑝1 and probability

𝑝1 = tr(𝑀1𝜌𝑀
†
1).

Both quantum gates and quantum measurements act lin-
early on density matrices and can be expressed as superoper-
ators, which are completely positive trace-preserving maps
E ∈ 𝐿(H) : H𝑛 → H𝑚 , where H𝑛 is the density matrix
space of dimension 𝑛 and 𝐿 is the space of linear operators.

50

PLDI ’21, June 20ś25, 2021, Virtual, Canada Runzhou Tao, Yunong Shi, Jianan Yao, John Hui, Frederic T. Chong, and Ronghui Gu

|0⟩
|0⟩

𝐻 |00⟩+ |11⟩√
2

|0⟩
|0⟩
|0⟩

𝐻 |000⟩+ |111⟩√
2

Figure 2. Two quantum circuits, producing the 2-qubit (left) and

3-qubit (right) GHZ states.

2.2 Quantum Programs

Quantum programs comprise a configuration of quantum
gates and measurements, called a quantum circuit. Graph-
ically, qubits are represented as wires, and gates as boxes
joining the wires; CNOT gates are represented by a dot on
the control qubit linked with an ⊕ on the other qubit.

Example 2.1 (GHZ circuit). The GreenbergerśHorneś
Zeilinger (GHZ) state [17] is a class of entangled quantum
states used in many quantum communication protocols [22].
The simplest GHZ state is the 2-qubit GHZ state, which is
|00⟩+ |11⟩√

2
in Dirac notation. Figure 2 shows a typical graphical

representation of a quantum circuit that produces the 2-qubit
GHZ state.

Syntax. The syntax of quantum programs is as follows:

𝑃 ::= skip | 𝑃1; 𝑃2 | 𝑈 (𝑞1, . . . , 𝑞𝑘)
| if 𝑞 = |0⟩ then 𝑃0 else 𝑃1 .

Each component behaves similarly to its classical counter-
part: skip denotes the empty program; 𝑃1; 𝑃2 sequences pro-
grams;𝑈 (𝑞1, . . . , 𝑞𝑘) applies the 𝑘-qubit gate𝑈 to the qubits
𝑞1, . . . , 𝑞𝑘 ; if 𝑞 = |0⟩ then 𝑃0 else 𝑃1 measures the qubit
𝑞, executes 𝑃0 if the result is 0, and executes 𝑃1 otherwise.
The difference between classical and quantum programs is
that the measurement in the if statement will collapse the
state, and the branch is executed on the collapsed state. Us-
ing this syntax, the 2-qubit GHZ state circuit in Figure 2 is
written as:

𝐻 (𝑞0);𝐶𝑁𝑂𝑇 (𝑞0, 𝑞1).
Note that this work currently does not consider advanced
quantum program constructs such as quantum loops, as
these are not likely to be supported on near-term quantum
machines.

Denotational semantics. The denotational semantics of
quantum programs are defined as superoperators acting on
density matrices 𝜌 , shown in Figure 3. An empty program
keeps the state unchanged; a sequence of operations are
applied to the state one by one; a single quantum gate is
directly applied as a superoperator1; a measurement branch
statement maps the state into a classical mix of the two
results from executing the two branches.

1The matrix𝑈 in Figure 3 denotes the gate matrix (like in Figure 1) extended

with identity operator on unaffected qubits.

[[skip]] (𝜌) :=𝜌
[[𝑃1; 𝑃2]] (𝜌) :=[[𝑃2]] ([[𝑃1]] (𝜌))

[[𝑈 (𝑞1, . . . , 𝑞𝑘)]] (𝜌) :=𝑈𝜌𝑈 †

[[if 𝑞 = |0⟩ then 𝑃0 else 𝑃1]] (𝜌) :=[[𝑃0]] (𝑀0𝜌𝑀
†
0) +

[[𝑃1]] (𝑀1𝜌𝑀
†
1)

Figure 3. Denotational semantics of quantum programs.

2.3 Quantum Errors

Quantum programs are always noisy, and that noise may
(undesirably) perturb the quantum state. For example, the
bit flip noise flips the state of a qubit with probability 𝑝 . This
noise can be represented by a superoperator Φ such that:

Φ(𝜌) = (1 − 𝑝)𝜌 + 𝑝𝑋𝜌𝑋,

i.e., the state remains the same with probability 1 − 𝑝 and
changes to 𝑋𝜌𝑋 with probability 𝑝 , where 𝑋 is the matrix
representation of the bit flip gate (see Figure 1). Generally,
all effects from quantum noise can be represented by super-
operators.

Noisy quantum programs. The noise model 𝜔 specifies

the noisy version 𝑈𝜔 of each gate 𝑈 on the target noisy

device, used to specify noisy quantum programs 𝑃𝜔 . The
noisy semantics [[𝑃]]𝜔 of program 𝑃 can be defined as the

semantics [[𝑃𝜔]] of the noisy program 𝑃𝜔 , whose semantics
are similar to that of a noiseless program. The rules of skip,
sequence, and measurement statements remain the same,
while for gate application, the noisy version of each gate is
applied as follows:

[[𝑈 (𝑞1, . . . , 𝑞𝑘)]]𝜔 (𝜌) = [[𝑈𝜔 (𝑞1, . . . , 𝑞𝑘)]] (𝜌) = Ũ𝜔 (𝜌),

where Ũ𝜔 is the superoperator representation of𝑈𝜔 .

Metrics for quantum errors. To quantitatively evaluate
the effect of noise, we need to measure some notion of łdis-
tance” between quantum states. The trace distance ∥𝜌𝑛−𝜌Id∥1
measures the distance between the noisy state 𝜌𝑛 and the
ideal, noiseless state 𝜌Id:

∥𝜌𝑛 − 𝜌Id∥1 = max
𝑃

tr(𝑃 (𝜌𝑛 − 𝜌Id)),

where 𝑃 is a positive semidefinite matrix with trace 1 and tr
denotes the trace of a matrix. The trace distance can be seen
as a special case of the Schatten-𝑝 norm | | · | |𝑝 , defined as:

| | · | |𝑝 :=
(
tr(·†·)

𝑝
2

) 1
𝑝
.

The trace distance measures the maximum statistical dis-
tance over all possible measurements of two quantum states.
Note that trace distance cannot be directly calculatedwithout
complete information of the two quantum states.

51

Gleipnir: Toward Practical Error Analysis for Quantum Programs PLDI ’21, June 20ś25, 2021, Virtual, Canada

The diamond norm metric is typically used to obtain a
worst case error bound. The diamond norm between two
superoperators U and E is defined as:

| |U − E||⋄ = max
𝜌 : tr(𝜌)=1

1

2
∥U ⊗ I(𝜌) − E ⊗ I(𝜌)∥1,

where I is the identity superoperator over some auxiliary
space. Intuitively, this formula calculates the maximum trace
distance between the output state after applying the erro-
neous operation versus applying the noiseless operation, for
any arbitrary input state. Diamond norms can be efficiently
computed by simple Semi-Definite Programs (SDP) [61].
Please refer to Freund [14] for more background on SDP.

However, as shown by the Wallman-Flammia bound [59],
diamond norms may overestimate errors by up to two orders
of magnitude, precluding its application in more precise
analyses of noisy quantum programs. The diamond norm
metric fails to incorporate information about the quantum
state of the circuit that may help tighten the error bound.
For example, a bit flip error (𝑋 gate) does nothing to the

state
√
2
2

(
|0⟩ + |1⟩

)
(the state is unchanged after flipping

|0⟩ and |1⟩), but flips the |1⟩ state to |0⟩. However, both
trace distance and diamond norm are agnostic to the input
state, and thus limit our ability to tightly bound the errors
of quantum circuits.

(𝑄, 𝜆)−diamond norm [24] is a more fine-grained metric:

| |U − E||(𝑄,𝜆) := max
𝜌 : tr(𝜌)=1,tr(𝑄𝜌) ≥𝜆

1

2
∥U ⊗ I(𝜌) − E ⊗ I(𝜌)∥1 .

Unlike the unconstrained diamond norm, the (𝑄, 𝜆)−diamond
norm constrains the input state to satisfy the predicate 𝑄 , a
positive semidefinite and trace-1 matrix, to degree 𝜆; specifi-
cally, the input state 𝜌 must satisfy tr(𝑄𝜌) ≥ 𝜆. The (𝑄, 𝜆)−
diamond norm may produce tighter error bounds than the
unconstrained diamond norm by utilizing quantum state
information, but leaves open the problem of practically com-
puting a non-trivial predicate 𝑄 .

3 Gleipnir Workflow

To use the input quantum state to tighten the computed
error bound, Gleipnir introduces a new constrained diamond

norm, (𝜌, 𝛿)-diamond norm, and a judgment (𝜌, 𝛿) ⊢ 𝑃𝜔 ≤ 𝜖

to reason about the error of quantum circuits. Gleipnir uses
Matrix Product State (MPS) tensor networks to approximate
the quantum state and compute the predicate (𝜌, 𝛿).

Figure 4 illustrates Gleipnir’s workflow for reasoning about
the error bound of some quantum program 𝑃 with input state
𝜌0 and noise model 𝜔 of quantum gates on the target device:

(1) Gleipnir first approximates the quantum state 𝜌 and a
sound overapproximation of its distance 𝛿 to the ideal
state 𝜌 using MPS tensor networks𝑇𝑁 (𝜌0, 𝑃) = (𝜌, 𝛿)
(see Section 5).

Figure 4. Gleipnir workflow.

(2) Gleipnir then uses the constrained (𝜌, 𝛿)-diamond norm
metric to bound errors of noisy quantum gates given
a noise model 𝜔 of the target device. Gleipnir con-
verts the problem of efficiently computing the (𝜌, 𝛿)-
diamond norm to solving a polynomial-size SDP prob-
lem, given (𝜌, 𝛿) computed in Step (1) (see Section 6).

(3) Gleipnir employs a lightweight quantum error logic

to compute the error bound of 𝑃𝜔 using the predicate
(𝜌, 𝛿) computed in Step (1) and the error bounds for
all used quantum gates generated by the SDP solver
in Step (2) (see Section 4).

Throughout this paper, we will return to the GHZ state
circuit (Example 2.1) as our running example. This exam-
ple uses the program 𝐻 (𝑞0);𝐶𝑁𝑂𝑇 (𝑞0, 𝑞1), the input state
|00⟩ ⟨00|, and the noise model 𝜔 , describing the noisy gates

𝐻𝜔 and �𝐶𝑁𝑂𝑇𝜔 . Following the steps described above, we
will use Gleipnir to obtain the final judgment of:

(|00⟩ ⟨00| , 0) ⊢
(
𝐻𝜔 (𝑞0) ; �𝐶𝑁𝑂𝑇𝜔 (𝑞0, 𝑞1)

)
≤ 𝜖,

where 𝜖 is the total error bound of the noisy program.

4 Quantum Error Logic

We first introduce our lightweight logic for reasoning about
the error bounds of quantum programs. In this section, we
treat MPS tensor networks and the algorithm to compute
the (𝜌, 𝛿)-diamond norm as black boxes, deferring their dis-
cussion to Sections 5 and 6, respectively.

The (𝜌, 𝛿)-diamond norm is defined as follows:

∥U − E∥(𝜌,𝛿) := max
𝜌 : tr(𝜌) = 1,
∥𝜌−𝜌 ∥1≤𝛿

1

2

U ⊗ I(𝜌) − E ⊗ I(𝜌)

1
.

52

PLDI ’21, June 20ś25, 2021, Virtual, Canada Runzhou Tao, Yunong Shi, Jianan Yao, John Hui, Frederic T. Chong, and Ronghui Gu

(𝜌, 𝛿) ⊢ 𝑃𝜔 ≤ 0
Skip

∥Ũ𝜔 −U∥(𝜌,𝛿) ≤ 𝜖

(𝜌, 𝛿) ⊢ 𝑈𝜔 (𝑞1, . . .) ≤ 𝜖
Gate

(𝜌, 𝛿) ⊢ 𝑃1𝜔 ≤ 𝜖1 𝑇𝑁 (𝜌, 𝑃1) = (𝜌 ′, 𝛿 ′) (𝜌 ′, 𝛿 + 𝛿 ′) ⊢ 𝑃2𝜔 ≤ 𝜖2

(𝜌, 𝛿) ⊢ 𝑃1𝜔 ; 𝑃2𝜔 ≤ 𝜖1 + 𝜖2
Seq

(𝜌, 𝛿 ′) ⊢ 𝑃𝜔 ≤ 𝜖 ′ 𝜖 ′ ≤ 𝜖 𝛿 ′ ≥ 𝛿

(𝜌, 𝛿) ⊢ 𝑃𝜔 ≤ 𝜖
Weaken

(𝜌0, 𝛿) ⊢ 𝑃0𝜔 ≤ 𝜖 (𝜌1, 𝛿) ⊢ 𝑃1𝜔 ≤ 𝜖

(𝜌, 𝛿) ⊢
(
if 𝑞 = |0⟩ then 𝑃0𝜔 else 𝑃1𝜔

)
≤ (1 − 𝛿)𝜖 + 𝛿

Meas

Figure 5. Inference rules of the quantum error logic.

That is a diamond norm with the additional constraint that
the ideal input densitymatrix of 𝜌 needs to bewithin distance
𝛿 of 𝜌 , i.e., 𝑇 (𝜌, 𝜌) ≤ 𝛿 .

We use the judgment (𝜌, 𝛿) ⊢ 𝑃𝜔 ≤ 𝜖 to convey that when

running the noisy program 𝑃𝜔 on an input state whose trace
distance is at most 𝛿 from 𝜌 , the trace distance between the
noisy and noiseless outputs of program 𝑃 is at most 𝜖 under
the noise model 𝜔 of the underlying device.

Figure 5 presents the five inference rules for our quantum
error logic. The Skip rule states that an empty program does
not produce any noise. The Gate rule states that we can
bound the error of a gate step by calculating the gate’s (𝜌, 𝛿)-
diamond norm under the noise model 𝜔 . TheWeaken rule
states that the same error bound holds when we strengthen
the precondition with a smaller approximation bound 𝛿 ′.
The Seq rule states that the errors of a sequence can be
summed together with the help of the tensor network ap-
proximator 𝑇𝑁 . The Meas rule bounds the error in an if

statement, with 𝛿 probability that the result of measuring
the noisy input differs from measuring state 𝜌 , causing the
wrong branch to be executed. Otherwise, the probability that
the correct branch is executed is 1 − 𝛿 . Given that in both
branches, the error is bounded by a uniform value 𝜖 , we
multiply this probability by the error incurred in the branch,
and add it to the probability of taking the incorrect branch,
to obtain the error incurred by executing a quantum condi-
tional statement. The precondition in each branch is defined

as 𝜌0 = 𝑀0𝜌𝑀
†
0 /tr(𝑀0𝜌𝑀

†
0) and 𝜌1 = 𝑀1𝜌𝑀

†
1 /tr(𝑀1𝜌𝑀

†
1).

Our error logic contains two external components: (1)
𝑇𝑁 (𝜌, 𝑃) = (𝜌, 𝛿), the tensor network approximator used
to approximate [[𝑃]] (𝜌), obtaining 𝜌 and an approximation
error bound 𝛿 ; and (2) ∥ · ∥(𝜌,𝛿) , the (𝜌, 𝛿)-diamond norm
that characterizes the error bound generated by a single gate
under the noise model 𝜔 . The algorithms used to compute
these components are explained in Sections 5 and 6, while the
soundness proof of our inference rules is given in Appendix
A of the extended version of this paper [51].

We demonstrate how these rules can be applied to the
2-qubit GHZ state circuit from Example 2.1 as follows. The

program is𝐻𝜔 (𝑞0); �𝐶𝑁𝑂𝑇𝜔 (𝑞0, 𝑞1) and the input state in the
density matrix form is 𝜌 = |00⟩ ⟨00|. We first compute the

constrained diamond norm 𝜖1 = ∥H̃𝜔 − H∥(𝜌,0) and apply

the Gate rule to obtain:

(𝜌, 0) ⊢ 𝐻𝜔 (𝑞0) ≤ 𝜖1.

Then, we use the tensor network approximator to compute
𝑇𝑁 (𝜌, 𝐻 (𝑞0)), whose result is (𝜌, 𝛿). Using such a predicate,

we compute the (𝜌, 𝛿)-diamond norm 𝜖2 = ∥�CNOT𝜔 −
CNOT ∥(𝜌,𝛿) . Applying the Gate rule again, we obtain:

(𝜌, 𝛿) ⊢ �𝐶𝑁𝑂𝑇𝜔 (𝑞0, 𝑞1) ≤ 𝜖2.

Finally, we apply the Seq rule:

(𝜌, 0) ⊢
(
𝐻𝜔 (𝑞0); �𝐶𝑁𝑂𝑇𝜔 (𝑞0, 𝑞1)

)
≤ 𝜖1 + 𝜖2,

which gives the error bound of the noisy program, 𝜖1 + 𝜖2.

5 Quantum State Approximation

Gleipnir uses tensor networks to adaptively compute the
constraints of the input quantum state using an approximate
state 𝜌 and its distance 𝛿 from the ideal state 𝜌 . We provide
the background on tensor networks in Section 5.1, present
how we use tensor networks to approximate quantum states
in Section 5.2, and give examples in Section 5.3.

5.1 Tensor Network

Tensors. Tensors describe the multilinear relationship be-
tween sets of objects in vector spaces, and can be represented
by multi-dimensional arrays. The rank of a tensor indicates
the dimensionality of its array representation: vectors have
rank 1, matrices rank 2, and superoperators rank 4 (since
they operate over rank 2 density matrices).

Contraction. Tensor contraction generalizes vector inner
products and matrix multiplication. A contraction between
two tensors specifies an index for each tensor, sums over
these indices, and produces a new tensor. The two indices
used to perform contraction must have the same range to
be contracted together. The contraction of two tensors with
ranks 𝑎 and 𝑏 will have rank 𝑎 + 𝑏 − 2; for example, if we
contract the first index in 3-tensor 𝐴 and the second index
in 2-tensor 𝐵, the output will be a 3-tensor:

(𝐴 ×1,2 𝐵) [𝑗𝑘𝑙] =
∑

𝑡

𝐴[𝑡 𝑗𝑘]𝐵 [𝑙𝑡] .

53

Gleipnir: Toward Practical Error Analysis for Quantum Programs PLDI ’21, June 20ś25, 2021, Virtual, Canada

𝜓

(a) Vector

(rank 1)

𝑋

(b)Matrix

(rank 2)

E

(c) Superoperator

(rank 4)

Figure 6. Tensor network representation of various tensors.

𝐴 𝐵

(a)Matrix multiplication 𝐴𝐵

𝜓 𝜓

(b) Outer product |𝜓 ⟩ ⟨𝜓 |

Figure 7. Tensor network representation for two matrix operations.

In general, tensor contractions are represented by linking edges,

and tensor products by juxtaposition.

Tensor product. The tensor product is calculated like an
outer product; if two tensors have ranks 𝑎 and 𝑏 respectively,
their tensor product is a rank 𝑎 + 𝑏 tensor. For example, the
tensor product of 2-tensor 𝐴 and 2-tensor 𝐵 is a 4-tensor:

(𝐴 ⊗ 𝐵) [𝑖 𝑗𝑘𝑙] = 𝐴[𝑖 𝑗]𝐵 [𝑘𝑙] .

Tensor networks. Tensor network (TN) representation is
a graphical calculus for reasoning about tensors, with an
intuitive representation of various quantum objects. Intro-
duced in the 1970s by Penrose [36], this notation is used in
quantum information theory [11, 46, 55ś57, 63], as well as
in other fields such as machine learning [10, 48].

As depicted in Figure 6, tensor networks consist of nodes
and edges2. Each node represents a tensor, and each edge
out of the node represents an index of the tensor. As illus-
trated in Figure 7, the resulting network will itself constitute
a whole tensor, with each open-ended edge representing one
index for the final tensor. The graphical representation of a
quantum program can be directly interpreted as a tensor net-
work. For example, the 2-qubit GHZ state circuit in Figure 2
can be represented by a tensor network in Figure 8.

Transforming tensor networks. To speed up the evalua-
tion of a large tensor network, we can apply reduction rules
to transform and simplify the network structure. In Table 1,
we summarize some common reduction rules we use. The
Gate Contraction rule transforms a vector𝜓 and a matrix
𝑈 connected to it into a new vector 𝜙 that is the product of𝑈
and𝜓 . The Superoperator Application rule transforms a
superoperator E and a matrix 𝜌 connected to it into a matrix
𝜌 that represents the application of the superoperator E to
𝜌 . The Singular Value Decomposition (SVD) rule trans-
forms a matrix 𝑀 into the product of three matrices: 𝑈 , Σ,
and𝑉 †, where Σ is a diagonal matrix whose diagonal entries
are the singular values 𝜎1, . . . , 𝜎𝑛 of𝑀 . This special matrix
Σ =

∑
𝑗 𝜎 𝑗 | 𝑗⟩ ⟨ 𝑗 | is graphically represented by a diamond.

By dropping small singular values in the diagonal matrix

2Note that the shape of the nodes does not have any mathematical meaning;

they are merely used to distinguish different types of tensors.

|0⟩
|0⟩

𝐻

(a) Quantum circuit.

|0⟩
|0⟩

𝐻
𝐶𝑁𝑂𝑇

(b) Tensor network.

Figure 8. The GHZ state, represented as a quantum circuit (a) and

a tensor network (b). When we evaluate the output of the circuit,

we can see that the input state |00⟩ (enclosed in the dashed blue

box), the 𝐻 gate 𝐻 ⊗ 𝐼 (enclosed in the dashed red box), and the

𝐶𝑁𝑂𝑇 gate (enclosed in the dashed brown box). When evaluating

the tensor network in (b), the output is the same as the program

output,
(
|00⟩ + |11⟩

)
/
√
2.

Σ, we can obtain a simpler tensor network which closely
approximates the original one.

5.2 Approximate Quantum States

In this section, we describe our tensor network approxima-
tor algorithm computing 𝑇𝑁 (𝜌, 𝑃) = (𝜌, 𝛿), such that the
trace distance between our approximation 𝜌 and the perfect
output [[𝑃]] (𝜌) satisfies 𝑇

(
𝜌, [[𝑃]] (𝜌)

)
≤ 𝛿 . At each stage

of the algorithm, we use Matrix Product State (MPS) tensor
networks [37] to approximate quantum states. This class
of tensor networks uses 2𝑛 matrices to represent 2𝑛-length
vectors, greatly reducing the computational cost. MPS tensor
networks take a size𝑤 as an argument, which determines the
space of representable states. When𝑤 is not large enough to
represent all possible quantum states, the MPS is an approxi-

mate quantum state whose approximation bound depends
on 𝑤 . The MPS representation with size 𝑤 of a quantum
state𝜓 (represented as a vector) is:

|𝜓 ⟩MPS :=
∑

𝑖1,...,𝑖𝑛

𝐴
(𝑖1)
1 𝐴

(𝑖2)
2 · · ·𝐴 (𝑖𝑛)

𝑛 |𝑖1𝑖2 · · · 𝑖𝑛⟩ ,

where 𝐴
(𝑖1)
1 is a row vector of dimension𝑤 , 𝐴

(𝑖2)
2 , . . . , 𝐴

(𝑖𝑛−1)
𝑛−1

are𝑤×𝑤 matrices, and𝐴
(𝑖𝑛)
𝑛 is a column vector of dimension

𝑤 . We use 𝑖 𝑗 to represent the value of a basis |𝑖1𝑖2 · · · 𝑖𝑛⟩ at
position 𝑗 , which can be 0 or 1. For example, to represent the
3-qubit state

(
|000⟩ + |010⟩ + |001⟩

)
/3 in MPS, we must find

matrices 𝐴
(0)
1 , 𝐴

(1)
1 , 𝐴

(0)
2 , 𝐴

(1)
2 , 𝐴

(0)
3 , 𝐴

(1)
3 such that

𝐴
(0)
1 𝐴

(0)
2 𝐴

(0)
3 = 𝐴

(0)
1 𝐴

(1)
2 𝐴

(0)
3 = 𝐴

(0)
1 𝐴

(0)
2 𝐴

(1)
3 =

1

3
,

while 𝐴
(𝑖1)
1 𝐴

(𝑖2)
2 𝐴

(𝑖3)
3 = 0 for all (𝑖1, 𝑖2, 𝑖3) ≠ (0, 0, 0), (0, 1, 0),

or (0, 0, 1).
𝐴

(0)
𝑖 and 𝐴

(1)
𝑖 can be taken together as a 3-tensor 𝐴𝑖 (𝐴1

and 𝐴𝑛 are 2-tensors) where the superscript is taken as the
third index besides the two indices of the matrix. Overall,

54

PLDI ’21, June 20ś25, 2021, Virtual, Canada Runzhou Tao, Yunong Shi, Jianan Yao, John Hui, Frederic T. Chong, and Ronghui Gu

Table 1. Examples of tensor network transformations for basic quantum operations.

Gate Superoperator Singular Value

Contraction Application Decomposition

Tensor network 𝑈 𝜓 → 𝜙
E
𝜌

→ 𝜌 𝑀 → 𝑈 𝜎 𝑉𝑉 †

Dirac notation 𝑈 |𝜓 ⟩ = |𝜙⟩ E(𝜌) = 𝜌 𝑀 =
∑

𝑗 𝜎 𝑗𝑈 | 𝑗⟩ ⟨ 𝑗 |𝑉 †

Rank 1 2 2

𝐴1 𝐴2 𝐴3 𝐴4 𝐴5 𝐴6

𝑖1 𝑖2 𝑖3 𝑖4 𝑖5 𝑖6

Figure 9. The MPS representation of six qubits.

the MPS representation can be seen as a tensor network, as
shown in Figure 9. 𝐴1, . . . , 𝐴𝑛 are linked together in a line,
while 𝑖1, . . . , 𝑖𝑛 are open wires.

Our approximation algorithm starts by initializing the
MPS to the input state in vector form. Then, for each gate
of the quantum program, we apply it to the MPS to get the
intermediate state at this step and compute the distance
between MPS and the ideal state. Since MPS only needs to

maintain 2𝑛 tensors, i.e.,𝐴
(0)
1 ,𝐴

(1)
1 ,𝐴

(0)
2 ,𝐴

(1)
2 , · · · ,𝐴 (0)

𝑛 ,𝐴
(1)
𝑛 ,

this procedure can be performed efficiently with polynomial
running time. After applying all quantum gates, we obtain
an MPS that approximates the output state of the quantum
program, as well as an approximation bound by summing
together all accumulated approximation errors incurred by
the approximation process. Our approximation algorithm
consists of the following stages.

Initialization. Let |𝑠1𝑠2 · · · 𝑠𝑛⟩ be the input state for an 𝑛-

qubit quantum circuit. For all 𝑘 ∈ [1, 𝑛], we initialize𝐴 (𝑠𝑘)
𝑘

=

𝐸 and 𝐴
(1−𝑠𝑘)
𝑘

= 0, where 𝐸 is the matrix that 𝐸1,1 = 1 and
𝐸𝑖, 𝑗 = 0 for all 𝑖 ≠ 1 or 𝑗 ≠ 1.

Applying 1-qubit gates. Applying a 1-qubit gate on an
MPS always results in an MPS and thus does not incur any
approximation error. For a single-qubit gate𝐺 on qubit 𝑖 , we
update the tensor 𝐴𝑖 to 𝐴

′
𝑖 as follows:

𝐴′ (𝑠)
𝑖 =

∑

𝑠′∈{0,1}
𝐺𝑠𝑠′𝐴

(𝑠′)
𝑖 for 𝑠 = 0 or 1.

In the tensor network representation, such application amounts
to contracting the tensor for the gate with 𝐴𝑖 (see Figure 10).

Applying 2-qubit gates. If we are applying a 2-qubit gate
𝐺 on two adjacent qubits 𝑖 and 𝑖 + 1, we only need to modify
𝐴𝑖 and 𝐴𝑖+1. We first contract 𝐴𝑖 and 𝐴𝑖+1 to get a 2𝑤 × 2𝑤

𝐴𝑖

𝐺

𝐴′
𝑖

Figure 10. Applying a 1-qubit gate to an MPS. We contract the

MPS node for the qubit and the gate (in the dashed box), resulting

in another 3-tensor MPS node.

matrix𝑀 :[
𝐴

(0)
𝑖

𝐴
(1)
𝑖

] [
𝐴

(0)
𝑖+1 𝐴

(1)
𝑖+1

]
=

[
𝑀00 𝑀01

𝑀10 𝑀11

]
= 𝑀.

Then, we apply the 2-qubit gate to it:

𝑀 ′
𝑖 𝑗 =

∑

𝑘,𝑙

𝐺𝑖 𝑗𝑘𝑙𝑀𝑘𝑙 .

We then need to decompose this newmatrix𝑀 ′ back into two
tensors. We first apply the Singular Value Decomposition
rule on the contracted matrix:

𝑀 ′
= 𝑈 Σ𝑉 † .

When 𝑤 is not big enough to represent all possible quan-
tum states, 𝑀 ′ introduces approximation errors and may
not be a contraction of two tensors. Thus, we truncate the
lower half of the singular values in Σ, enabling the tensor
decomposition while reducing the error:

Σ ≈
[
Σ
′ 0
0 0

]
.

Therefore, we arrive at a new MPS whose new tensors 𝐴′
𝑖

and 𝐴′
𝑖+1 are calculated as follows:

[
𝐴

(0)′
𝑖 ∗

𝐴
(1)′
𝑖 ∗

]
= 𝑈 ,

[
𝐴

(0)′
𝑖+1 𝐴

(1)′
𝑖+1

∗ ∗

]
= Σ

′𝑉 ,

where ∗ denotes the part that we truncate. After truncation,
we renormalize the state to a norm-1 vector.

Figure 11 shows the above procedure in tensor network
form by (1) first applying Gate Contracting rule for 𝐴𝑖 ,
𝐴𝑖+1 and 𝐺 , (2) using Singular Value Decomposition rule
to decompose the contracted tensor, (3) truncating the inter-
nal edge to width𝑤 , and finally (4) calculating the updated𝐴′

𝑖

and 𝐴′
𝑖+1. If we want to apply a 2-qubit gate to non-adjacent

55

Gleipnir: Toward Practical Error Analysis for Quantum Programs PLDI ’21, June 20ś25, 2021, Virtual, Canada

𝐴𝑖 𝐴𝑖+1

𝐺

𝑀′ 𝑈 𝑉 † 𝐴′
𝑖 𝐴′

𝑖+1
(i) (ii) (iii)

Figure 11. Applying a 2-qubit gate on two adjacent qubits to the MPS, via (i) node contraction, (ii) singular value decomposition, and (iii)

singular value truncation with re-normalization.

𝐴1 𝐴2 𝐴3 𝐴4 𝐴5 𝐴6

𝐵1 𝐵2 𝐵3 𝐵4 𝐵5 𝐵6

Figure 12. Tensor network representation of the inner product of

two MPSs. An open wire of one MPS is linked with an open wire

of another, which denotes the summation over 𝑖1, . . . , 𝑖𝑛 .

qubits, we add swap gates to move the two qubits together
before applying the gate to the now adjacent pair of qubits.

Bounding approximation errors. When applying 2-qubit
gates, we compute an MPS to approximate the gate applica-
tion. Each time we do so, we must bound the error due to
this approximation. Since the truncated values themselves
comprise an MPS state, we may determine the error by sim-
ply calculating the trace distance between the states before
and after truncation.
The trace distance of two MPS states can be calculated

from the inner product of these two MPS:

𝛿 :=
�� |𝜙⟩ ⟨𝜙 | − |𝜓 ⟩ ⟨𝜓 |

1
= 2

√
1 − | ⟨𝜙 |𝜓 ⟩ |2 .

The inner product of two states |𝜓 ⟩ and |𝜙⟩ (represented
using 𝐴 and 𝐵 in their MPS forms) is defined as follows:

⟨𝜓 |𝜙⟩ =
∑

𝑖1,...,𝑖𝑛

〈
𝐴

(𝑖1)
1 · · ·𝐴 (𝑖𝑛)

𝑛 , 𝐵
(𝑖1)
1 · · ·𝐵 (𝑖𝑛)

𝑛

〉
.

Figure 12 shows its tensor network graphical representation.
In our approximation algorithm, we can iteratively calcu-

late from qubit 1 to qubit 𝑛 the distance by first determining:

𝐷1 = 𝐴
(0)
1 𝐵

(0)†
1 +𝐴

(1)
1 𝐵

(1)†
1 .

Then, we repeatedly apply tensors to the rest of qubits:

𝐷𝑖 = 𝐴
(0)
𝑖 𝐷𝑖−1𝐵

(0)†
𝑖 +𝐴

(1)
𝑖 𝐷𝑖−1𝐵

(1)†
𝑖 ,

leading us to the final result of 𝐷𝑛 = ⟨𝜓 |𝜙⟩. In the tensor
network graphical representation, this algorithm is a left-to-
right contraction, as shown in Figure 13.

Given the calculated distance of each step, we must com-
bine them to obtain the overall approximation error. For some
arbitrary quantum program with 𝑡 2-qubit gates, let the trun-
cation errors be 𝛿1, 𝛿2, . . . , 𝛿𝑡 when applying the 2-qubit gates
𝑔1, 𝑔2, ..., 𝑔𝑡 , the final approximation error is 𝛿 =

∑𝑡
𝑖=1 𝛿𝑖 .

To see why, we consider the approximation of one 2-qubit

gate. Let |𝜓 ⟩ denote some quantum state and |𝜓 ⟩ its approxi-
mation with bounded error 𝛿0. After applying a 2-qubit gate

𝐺 to the approximate MPS state, we obtain the truncated
result |𝜙⟩ with bounded error 𝛿1. We now have:

∥𝐺 |𝜓 ⟩ − |𝜙⟩ ∥ ≤ ∥𝐺 |𝜓 ⟩ −𝐺 |𝜓 ⟩ ∥ + ∥𝐺 |𝜓 ⟩ − |𝜙⟩ ∥
= ∥ |𝜓 ⟩ − |𝜓 ⟩ ∥ + ∥𝐺 |𝜓 ⟩ − |𝜙⟩ ∥
= 𝛿0 + 𝛿1, (1)

where ∥ |𝜓 ⟩ − |𝜙⟩ ∥ = ∥ |𝜓 ⟩ ⟨𝜓 | − |𝜙⟩ ⟨𝜙 | ∥1. The inequality
holds because of the triangular inequality of quantum state
distance and the fact that 𝐺 is unitary, thus preserving the
trace norm. Repeating this for each step, we know that the
total approximation error is bounded by the sum of all ap-
proximation errors.

Supporting branches. Due to the deferred measurement
principle [34], measurements can always be delayed to the
end of the program. Thus, in-program measurements are not
required for quantum program error analysis. Our approach
can also directly support if statements by calculating an
MPS for each branch. When we apply the measurement on
the 𝑖-th qubit, we obtain the collapsed states by simply set-

ting 𝐴
(0)
𝑖 or 𝐴

(1)
𝑖 to the zero matrix, obtaining MPS tensor

networks corresponding to measurements of 0 and 1. Using
these states, we continue to evaluate the subsequent MPS
in each branch separately. We cannot merge the measured
states once they have diverged, so we must duplicate any
code sequenced after the branch and compute the approx-
imated state separately; the number of intermediate MPS
representations we must compute is thus the number of
branches. The overall approximation error is taken to be
the sum of approximation errors incurred on all branches.
Note that the number of branches may be exponential to the
number of if statements.

Complexity analysis. The running time of all the opera-
tions above scales polynomially with respect to the MPS size
𝑤 , number of qubits 𝑛, number of branches 𝑏, and number
of gates𝑚 in the program. To be precise, applying a 1-qubit
gate only requires one matrix addition with a 𝑂 (𝑤2) time
complexity. Applying a 2-qubit gate requires matrix multipli-
cation and SVD with a 𝑂 (𝑤3) time complexity. Computing
inner product of twoMPS (e.g. for contraction) requires𝑂 (𝑛)
of matrix multiplications, incurring an overall running time
of 𝑂 (𝑛𝑤3). Since the algorithm scans all𝑚 gates in the pro-
gram, the overall time complexity is 𝑂 (𝑏𝑚𝑛𝑤3).

56

PLDI ’21, June 20ś25, 2021, Virtual, Canada Runzhou Tao, Yunong Shi, Jianan Yao, John Hui, Frederic T. Chong, and Ronghui Gu

𝐴1 𝐴2 𝐴3 𝐷1 𝐴2 𝐴3 𝐷2 𝐴3 𝐷3

→ → −−−−−−−→
𝑛−3 steps→

· · ·

· · ·

· · ·

· · ·

· · ·

· · ·

· · ·

· · ·𝐵1 𝐵2 𝐵3 𝐵2 𝐵3 𝐵3

𝐷𝑛

Figure 13. Contraction of the inner product of two MPS. We first contract 𝐴1 and 𝐵1 to get 𝐷1. Then contract 𝐷1, 𝐴2 and 𝐵2 to 𝐷2. And

then 𝐷2, 𝐴3 and 𝐵3 to 𝐷3. Repeating this process will result in a single tensor node 𝐷𝑛 , i.e., the final answer.

Although a perfect approximation (i.e., a full simulation)
requires anMPS size that scales exponentially with respect to
the number of qubits (i.e., 2𝑛 sizewhen there are𝑛 qubits), our
approximation algorithm allows Gleipnir to be configured
with smaller MPS sizes, sacrificing some precision in favor
of efficiency and enabling its practical use for real-world
quantum programs.

Correctness. From the quantum program semantics de-
fined in Figure 3, we know that we can compute the output
state by applying all the program’s gates in sequence. Fol-
lowing Equation (1), we know that the total error bound for
our approximation algorithm is bounded by the sum of each
step’s bound. Thus, we can conclude that our algorithm cor-
rectly approximates the output state and correctly bounds
the approximation error in doing so.

Theorem 5.1. Let the output of our approximation algorithm

be (𝜌, 𝛿) = TN(𝜌, 𝑃). The trace distance between the approxi-

mation and perfect output is bound by 𝛿 :

[[𝑃]] (𝜌) − [[𝑃]] (𝜌)

1
≤ 𝛿.

5.3 Example: GHZ Circuit

We revisit the GHZ circuit in Figure 2 to walk through how
we approximate quantum states with MPS tensor networks.
The same technique can be applied to larger and more com-
plex quantum circuits, discussed in Section 7.

Approximation using 2-wide MPS. Since the program
only contains two qubits, an MPS with size𝑤 = 2 can already
perfectly represent all possible quantum states such that no
approximation error will be introduced. Assume the input
state is |00⟩. First, we initialize all the tensors based on the
input state |00⟩:

𝐴
(0)
1 = [1, 0], 𝐴 (1)

1 = [0, 0], 𝐴 (0)
2 = [1, 0]𝑇 , 𝐴 (1)

2 = [0, 0]𝑇 .

Then, we apply the first 𝐻 gate to qubit 1, changing only

𝐴
(0)
1 and 𝐴

(1)
1 :

𝐴
(0)
1 = [1, 0]/

√
2, 𝐴

(1)
1 = [1, 0]/

√
2.

To apply the CNOT gate on qubit 1 and 2, we first compute
matrix𝑀 and𝑀 ′:

𝑀 =

[
1/
√
2 0

1/
√
2 0

]
, 𝑀 ′

=

[
1/
√
2 0

0 1/
√
2

]
.

We then decompose𝑀 ′ using SVD,

𝑈 = 𝑉 †
=

[
1 0
0 1

]
, Σ =

[
1/
√
2 0

0 1/
√
2

]
.

Because there are just 2 non-zero singular values, we do
not need to drop singular values with 2-wide MPS networks
and can compute the new MPS as follows:

𝐴
(0)
1 = [1, 0], 𝐴

(1)
1 = [0, 1],

𝐴
(0)
2 = [1/

√
2, 0]𝑇 , 𝐴

(1)
2 = [0, 1/

√
2]𝑇 .

We can see that the output will be 𝜌 =
|00⟩+ |11⟩√

2
and 𝛿 = 0,

since 𝐴
(0)
1 𝐴

(0)
2 = 𝐴

(1)
1 𝐴

(1)
2 = 1/

√
2 and other values of 𝑖0 and

𝑖1 result 0.

Approximation using 1-wide MPS. To show how we cal-
culate the approximation error, we use the simplest form of

MPS with size𝑤 = 1, while each 𝐴
(𝑗)
𝑖 becomes a number.

We first initialize the MPS to represent |00⟩:

𝐴
(0)
1 = 1, 𝐴

(1)
1 = 0, 𝐴

(0)
2 = 1, 𝐴

(1)
2 = 0.

Then, we apply the 𝐻 gate to qubit 1:

𝐴
(0)
1 = 1/

√
2, 𝐴

(1)
1 = 1/

√
2, 𝐴

(0)
2 = 1, 𝐴

(1)
2 = 0.

After that, we apply the CNOT gate and compute𝑀 and𝑀 ′:

𝑀 =

[
1/
√
2 0

1/
√
2 0

]
, 𝑀 ′

=

[
1/
√
2 0

0 1/
√
2

]
.

We decompose𝑀 ′ using SVD:

𝑈 = 𝑉 †
=

[
1 0
0 1

]
, Σ =

[
1/
√
2 0

0 1/
√
2

]
.

Since there are 2 non-zero singular values, we have to drop
the lower half with 1-wide MPS tensor networks. Finally, we
obtain 𝐴′

1 and 𝐴
′
2:

𝐴
(0)
1 = 1, 𝐴

(1)
1 = 0, 𝐴

(0)
2 = 1/

√
2, 𝐴

(1)
2 = 0.

We renormalize the MPS:

𝐴
(0)
1 = 1, 𝐴

(1)
1 = 0, 𝐴

(0)
2 = 1, 𝐴

(1)
2 = 0.

Thus, the output approximate state is |00⟩.
To calculate the approximation error bound, we represent

the part we drop as an MPS 𝐵:

𝐵
(0)
1 = 0, 𝐵

(1)
1 = 1, 𝐵

(0)
2 = 0, 𝐵

(1)
2 =

√
2.

57

Gleipnir: Toward Practical Error Analysis for Quantum Programs PLDI ’21, June 20ś25, 2021, Virtual, Canada

Let the unnormalized final state be |𝐴⟩ and the dropped state
be |𝐵⟩. Then, the final output is

√
2 |𝐴⟩ and the ideal output

is |𝐴⟩ + |𝐵⟩. The trace distance between the state is

𝛿 = 2

√
1 − | ⟨

√
2𝐴|𝐴 + 𝐵⟩2 | =

√
2.

Therefore, the final output will be 𝜌 = |00⟩ ⟨00| and 𝛿 =

√
2.

6 Computing the (𝜌, 𝛿)-Diamond Norm

Section 4 introduces our quantum error logic using the (𝜌, 𝛿)-
diamond norm, while treating its computation algorithm as
a black box. In this section, we describe how to efficiently
calculate the (𝜌, 𝛿)-diamond norm given (𝜌, 𝛿,U, E), where
U and E are the perfect and the noisy superoperators re-
spectively.

Constrained diamondnorm. In (𝜌, 𝛿)-diamond norm, the
input state 𝜌in is constrained by

∥𝜌 − 𝜌in∥1 ≤ 𝛿.

We first compute the local density matrix (defined later in
this section) 𝜌 ′ of 𝜌 . Then, to compute the (𝜌, 𝛿)-diamond
norm, we extend the result of Watrous [61] by adding the
following constraint:

tr(𝜌 ′𝜌) ≥ ∥𝜌 ′∥𝐹 (∥𝜌 ′∥𝐹 − 𝛿),
where 𝜌 denotes the local density matrix of 𝜌in. Thus, (𝜌, 𝛿)-
diamond norm can be computed by the following semi-
definite program(SDP):

Theorem6.1. The (𝜌, 𝛿)-diamond norm | |Φ| |(𝜌,𝛿) can be solved
by the semi-definite program(SDP) in Equation (2).

maximize tr(𝐽 (Φ)𝑊)
subject to 𝐼 ⊗ 𝜌 ≽𝑊

tr(𝜌 ′𝜌) ≥ ∥𝜌 ′∥𝐹 (∥𝜌 ′∥𝐹 − 𝛿)
𝑊 ≽ 0, 𝜌 ≽ 0, tr(𝜌) = 1,

(2)

where 𝐽 is the Choi-Jamiolkowski isomorphism [8] and Φ =

U − E .

Proof. Given (𝜌, 𝛿), we know that ∥𝜌 − 𝜌in∥1 ≤ 𝛿 , where
𝜌in is the real input state. Let 𝜌

′ and 𝜌 be the local density
operator of 𝜌 and 𝜌in. Because partial trace can only decrease
the trace norm, we know that

∥𝜌 ′ − 𝜌 ∥1 ≤ ∥𝜌 − 𝜌in∥1 ≤ 𝛿.

For a matrix 𝜌 , let ∥𝜌 ∥𝐹 be the Frobenius norm which is
the square root of the sum of the squares of all elements
in a matrix. Because ∥𝜌 ∥𝐹 ≤ ∥𝜌 ∥1 for all 𝜌 , we know that
∥𝜌 ′ − 𝜌 ∥𝐹 ≤ 𝛿 . Then, we have

tr(𝜌 ′𝜌) = tr(𝜌2) + tr((𝜌 ′ − 𝜌)𝜌)
= ∥𝜌 ′∥2𝐹 + tr((𝜌 ′ − 𝜌)𝜌)
≥ ∥𝜌 ′∥2𝐹 − ∥𝜌 ′∥𝐹 ∥𝜌 ′ − 𝜌 ∥𝐹
≥ ∥𝜌 ′∥𝐹 (∥𝜌 ′∥𝐹 − 𝛿),

where the third step holds because of the Cauchy-Schwarz
inequality.
Because the (𝑄, 𝜆)-diamond norm can be solved by the

following SDP by adding a constraint tr(𝑄𝜌) ≥ 𝜆 [24]:

maximize tr(𝐽 (Φ)𝑊)
subject to 𝐼 ⊗ 𝜌 ≽𝑊

tr(𝑄𝜌) ≥ 𝜆

𝑊 ≽ 0, 𝜌 ≽ 0, tr(𝜌) = 1.

(𝜌, 𝛿)-diamond norm can thus be calculated by the SDP (2).
□

Let the solved, optimal value of SDP in Equation (2) be 𝜖 .
We conclude that the (𝜌, 𝛿)-diamond norm must be bounded
by 𝜖 , i.e.,

∥Φ∥(𝜌,𝛿) ≤ 𝜖.

SDP size. The size of the SDP in Equation (2) is exponential
with respect to the maximum number of quantum gates’
input qubits. Since near-term (NISQ) quantum computers
are unlikely to support quantum gates with greater than
two input qubits, we can treat the size of the SDP problem
as a constant, for the purposes of discussing its running
time. Because the running time of solving an SDP scales
polynomially with the size of the SDP, the running time to
calculate (𝜌, 𝛿)-diamond norm can be seen as a constant.

Computing local density matrix. The local density ma-
trix (also known as reduced density matrix [34]) represents
the local information of a quantum state. It is defined using
a partial trace on the (global) density for the part of the state
we want to observe. For example, the local density operator

on the first qubit of |00⟩+ |11⟩√
2

is 1
2

(
1 1
1 1

)
, meaning that the first

qubit of the state is half |0⟩ and half |1⟩.
In Equation (2), we need to compute the local density

matrix 𝜌 ′ of 𝜌 about the qubit(s) that the noise represented
by Φ acts on. 𝜌 is represented by an MPS. The calculation of
a local density operator of an MPS works similarly to how
we calculate inner products, except the wire 𝑖𝑘 where 𝑘 is a
qubit that we want to observe.

7 Evaluation

This section evaluates Gleipnir on a set of realistic near-
term quantum programs. We compare the bounds given by
Gleipnir to the bounds given by other methods, as well as
the error we experimentally measured from an IBM’s real
quantum device. All approximations and full simulations are
performed on an Ubuntu 18.04 server with an Intel Xeon
W-2175 (28 cores @ 4.3 GHz), 62 GB memory, and a 512 GB
Intel SSD Pro 600p.

7.1 Evaluating the Computed Error Bounds

We evaluated Gleipnir on several important quantum pro-
grams, under a sample noise model containing the most

58

PLDI ’21, June 20ś25, 2021, Virtual, Canada Runzhou Tao, Yunong Shi, Jianan Yao, John Hui, Frederic T. Chong, and Ronghui Gu

Table 2. Experimental results of Gleipnir (𝑤 = 128) and the baseline on different quantum programs, showing the bounds given by Gleipnir’s

(𝜌, 𝛿)-diamond norm, the (𝑄, 𝜆)-diamond norm with full simulation, and the worst case bound given by unconstrained diamond norm.

Experiments time out if they run for longer than 24 hours. Note that the worst case bound is directly proportional to the number of gates.

Qubit Gate Gleipnir bound Running LQR [24] with Running Worst-case

Benchmark number count (×10−4) time (s) full simulator (×10−4) time (s) bound (×10−4)
QAOA_line_10 10 27 0.05 2.77 0.05 215.2 27
Isingmodel10 10 480 335.6 31.6 335.6 4701.8 480
QAOARandom20 20 160 136.6 19.8 - (timed out) 160
QAOA4reg_20 20 160 138.8 12.5 - (timed out) 160
QAOA4reg_30 30 240 207.0 25.8 - (timed out) 240
Isingmodel45 45 2265 1739.4 338.0 - (timed out) 2265

QAOA50 50 399 344.1 58.7 - (timed out) 399
QAOA75 75 597 517.2 113.7 - (timed out) 597
QAOA100 100 677 576.7 191.9 - (timed out) 677

common type of quantum noises. We compared the bounds
produced by Gleipnir with the LQR’s (𝑄, 𝜆)-diamond norm
with full simulation and the worse-case bounds given by the
unconstrained diamond norm.

Noise model. In our experiments, our quantum circuits are
configured such that each noisy 1-qubit gate has a bit flip
(𝑋) with probability 𝑝 = 10−4:

Φ(𝜌) = (1 − 𝑝)𝜌 + 𝑝𝑋𝜌𝑋 .

Each 2-qubit gate also has a bit flip on its first qubit.

Framework configuration. For the approximator, we can
adjust the size of the MPS network, depending on available
computational resources; the larger the size, the tighter error
bound. In all experiments, we use an MPS of size 128.

Baseline. To evaluate the error bounds given by Gleip-
nir, we first compared them with the worst-case bounds
calculated using the unconstrained diamond norm (see Sec-
tion 2.3). For each noisy quantum gate, we compute its un-
constrained diamond norm distance to the perfect gate and
obtain the worst-case bound by summing all unconstrained
diamond norms. The unconstrained diamond norm distance
of a bit-flipped gate and a perfect gate is given by:

∥Φ − 𝐼 ∥⋄ = ∥(𝑝𝑋 ◦ 𝑋 + (1 − 𝑝)𝐼) − 𝐼 ∥⋄
= 𝑝 ∥𝑋 ◦ 𝑋 − 𝐼 ∥⋄
= 𝑝,

where𝑋 ◦𝑋 denotes the function that maps 𝜌 to𝑋𝜌𝑋 . There-
fore, the total noise is bounded by 𝑛𝑝 , where 𝑛 is the number
of noisy gates, due to additivity of diamond norms. Because
every gate has a noise, the worst case bound produced by
unconstrained diamond norm is simply proportional to the
number of gates in the program.
We also compare our error bound with what we obtain

from LQR [24] using a full quantum program simulator to
generate best quantum predicate. This approach’s running

1 2 4 8 16 32 64 128
MPS size

1800

1900

2000

2100

2200

er
ro

r b
ou

nd
 (×

10
−4

)

0

50

100

150

200

250

300

350

ru
nt

im
e

(s
)

Figure 14. The error bounds and runtimes of Gleipnir on the pro-

gram Isingmodel45 with different MPS sizes.

time is exponential to the number of qubits and times out
(runs for longer than 24 hours) on programs with ≥ 20 qubits.

Programs. We analyzed two classes of quantum programs
that are expected to be most useful in the near-term, namely:

• The Quantum Approximate Optimization Algorithm

(QAOA) [12] that can be used to solve combinatorial
optimization problems. We use it to find the max-cut
for various graphs with qubit sizes from 10 to 100.

• The Isingmodel [44]Ða thermodynamicmodel formag-
nets widely used in quantum mechanics. We run the
Ising model with sizes 10 and 45.

Evaluation. Table 2 presents the evaluation results. We can
see that Gleipnir’s bounds are 15% ∼ 30% tighter than what
the unconstrained diamond norm gives, on large quantum
circuits with qubit sizes ≥ 20. On small qubit-size circuits,
our bound is as strong as the exponential-time method based
on full simulation.

We also evaluated how MPS size impacts the performance
of Gleipnir. As we can see for the Isingmodel45 program

59

Gleipnir: Toward Practical Error Analysis for Quantum Programs PLDI ’21, June 20ś25, 2021, Virtual, Canada

0 1 2 3 4

5 6 7 8

10 11 12 13

15 16 17 18

9

14

19

0 1 2

3

4

Figure 15. The coupling map of the IBM Boeblingen (left) and Lima

(right) quantum computer, where each node represents a qubit.

Only qubit pairs with a connecting edge can be used to implement

a 2-qubit gate.

|0⟩

|0⟩

|0⟩

𝐻 |0⟩
|0⟩
|0⟩
|0⟩
|0⟩

𝐻

Figure 16. The GHZ-3 circuit (left) and the GHZ-5 circuit (right).

(see Figure 14), largerMPS sizes result in tighter error bounds,
at the cost of longer running times, with marginal returns
beyond a certain size. We found that MPS networks with
a size of 128 performed best for our candidate programs,
though in general, this parameter can be adjusted according
to precision requirements and the availability of computa-
tional resources. As the MPS size grows, floating point errors
become more significant, so higher precision representations
are necessary for larger MPS sizes. Note that one cannot fea-
sibly compute the precise error bound of the Isingmodel45
program, since that requires computing the 245 × 245 matrix
representation of the program’s output.

7.2 Evaluating the Quantum Compilation Error

Mitigation

To demonstrate that Gleipnir can be used to evaluate the
error mitigation performance of quantum compilers for real
quantum computers today, we designed an experiment based
on the noise-adaptive qubit mapping problem [5, 33]. When
executing a quantum program on a real quantum computer,
a quantum compiler must decide which physical qubit each
logical qubit should be mapped to, in accordance with the
quantum computer’s coupling map (e.g., Figure 15). Since
quantum devices do not have uniform noise across qubits, a
quantum compiler’s mapping protocol should aim to map
qubits such that the quantum program is executed with as
little noise as possible.

Experiment design. We compared three different qubit
mappings of the 3-qubit GHZ (GHZ-3) circuit and the 5-qubit

Table 3. Error bounds generated by Gleipnir on different mappings

compared with the errors we measured experimentally using the

IBM Boeblingen 20-qubit device.

Circuit Mapping Gleipnir bound Measured error

GHZ-3 0-1-2 0.211 0.160

GHZ-3 1-2-3 0.128 0.073

GHZ-3 2-3-4 0.162 0.092

GHZ-5 0-1-2-3-4 0.471 0.176

GHZ-5 2-1-0-3-4 0.449 0.171

GHZ circuit (GHZ-5) (see Figure 16): 𝑞0−𝑞1−𝑞2, 𝑞1−𝑞2−𝑞3,
and𝑞2−𝑞3−𝑞4 for GHZ-3, and𝑞0−𝑞1−𝑞2−𝑞3−𝑞4 and𝑞2−𝑞1−
𝑞0 − 𝑞3 − 𝑞4 for GHZ-5, where 𝑞𝑖 represents the 𝑖th physical
qubit. As the baseline, we ran our circuit on a real quantum
computer with each qubit mapping and measured the output
to obtain a classical probability distribution. We computed
the measured error by taking the statistical distance of this
distribution from the distribution of the ideal output state

(|000⟩+ |111⟩)/
√
2 and (|00000⟩+ |11111⟩)/

√
2. We then used

Gleipnir to compute the noise bound for eachmapping, based
on our quantum computer’s noise model. Because the trace
distance represents themaximumpossible statistical distance
of any measurement on two quantum states (see Section 2.3),
the statistical distance we computed should be bounded by
the trace distance computed by Gleipnir.

Experiment setup. We conducted our experiment using
the IBMQuantum Experience[25] platform and ran our quan-
tum programs with the IBM Boeblingen 20-qubit device (see
Figure 15). Because Gleipnir needs a noise model to com-
pute its error bound, we constructed a model for the device
using publicly available data from IBM [25] in addition to
measurements from tests we ran on the device.

Results. Our experimental results are shown in Table 3. We
can see that Gleipnir’s bounds are consistent with the real
noise levels and successfully predict the ranking of noise
levels for different mappings. As for GHZ-3, the 1 − 2 − 3
mapping has the least noise, while 0−1−2 has themost. Gleip-
nir’s bounds are also consistent with the real noise levels
for GHZ-5. This illustrates how Gleipnir can be used to help
guide the design of noise-adaptive mapping protocolsÐusers
can run Gleipnir with different mappings and choose the
best mapping according to error bounds given by Gleipnir. In
contrast, the worst case bounds given by the unconstrained
diamond norm are always 1 for all five different mappings,
which is not helpful for determining the best mapping.

8 Related Work

Error bounding quantum programs. Robust projective
quantum Hoare logic [66] is an extension of Quantum Hoare

60

PLDI ’21, June 20ś25, 2021, Virtual, Canada Runzhou Tao, Yunong Shi, Jianan Yao, John Hui, Frederic T. Chong, and Ronghui Gu

Logic that supports error bounding using the worst-case dia-
mond norm. In contrast, Gleipnir uses the more fine-grained
(𝜌, 𝛿)−diamond norm to provide tighter error bounding.
LQR [24] is a framework for formally reasoning about

quantum program errors, using the (𝑄, 𝜆)-diamond norm as
its error metric. LQR supports the reasoning about quantum
programs with more advanced quantum computing features,
such as quantum loops. However, LQR does not specify any
practical method for obtaining non-trivial quantum predi-
cates. In contrast, Gleipnir, for the first time, introduces a
practical and adaptive method to compute quantum program
predicates, i.e., (𝜌, 𝛿) predicates, using the 𝑇𝑁 algorithm.

As we have shown in Section 6, our (𝜌, 𝛿) predicates can
be reduced to LQR’s (𝑄, 𝜆) predicates. In other words, our
quantum error logic can be understood as a refined imple-
mentation of LQR. (𝜌, 𝛿) predicates computed using Gleipnir
can be used to obtain non-trivial postconditions for the quan-
tum Hoare triples required by LQR’s sequence rule. By the
soundness of our 𝑇𝑁 algorithm, the computed predicates
are guaranteed to be valid postconditions.

Error simulation. Contemporary error simulation meth-
ods can be roughly divided into two classes: (1) direct simula-
tion methods based on solving Schrödinger’s equation or the
master equation [30]Ðneither of which scales beyond a few
qubits [35]Ðand (2) approximate methods, based on either
Clifford circuit approximation [6, 18, 19, 29] or classical sam-
pling methods with Monte-Carlo simulations [31, 45, 52, 54].
These methods are efficient but only work on specific classes
of quantum circuits such as circuits and noises represented
by positive Wigner functions or Clifford gates. In contrast,
Gleipnir can be applied to general quantum circuits and
scales well beyond 20 qubits.

Resource estimation beyond error. Quantum compilers
such as Qiskit Terra [2] and ScaffCC [26] perform entangle-
ment analysis for quantum programs. The QuRE [50] tool-
box provides coarse-grained resource estimation for fault-
tolerant implementations of quantum algorithms. On the
theoretical side, quantum resource theories also consider the
estimation of coherence [49, 62], entanglement [38, 39], and
magic state stability [23, 53, 60]. However, these frameworks
directly use the matrix representation of quantum states and
do not work for quantum programs with more than 20 qubits
that can be handled by Gleipnir.

Verification of quantum compilation. CertiQ [47] is an
automated framework to verify that the quantum compiler
passes and optimizations preseve the semantics of quan-
tum circuits. VOQC [21] is a formally verified optimizer
for quantum circuits. These works focus on quantum com-
pilation correctness and do not consider noise models or
error-mitigation performance. In contrast, Gleipnir focuses
on the error anaylysis of quantum programs and can be used

to evaluate the error-mitigation performance in quantum
compilations.

Tensor networkquantumapproximation. MPS and gen-
eral tensor networks are mostly used in the exact evaluation
of quantum programs. The only application of MPS for ap-
proximating quantum systems is the density matrix renor-
malization group (DMRG) method in quantum chemistry
[20]. Although both DMRG and Gleipnir use MPS to repre-
sent approximate quantum states, the approximation meth-
ods are different. DMRG can only be used to simulate quan-
tum many-body systems, while Gleipnir’s approach works
for general programs and can provide the error bounds of
the approximate states, which are used in the quantum error
logic to compute the error bounds of quantum programs.

Multi-dimensional tensor networks such as PEPS [27] and
MERA [15] may model quantum states more precisely than
MPS. However, they are computationally impractical. Con-
tracting higher-dimensional tensor networks involves ten-
sors with orders greater than four, which are prohibitively
expensive to manipulate.

9 Conclusion

We have presented Gleipnir, a methodology for computing
verified error bounds of quantum programs and evaluat-
ing the error mitigation performance of quantum compiler
transformations. Our experimental results show that Gleip-
nir provides tighter error bounds for quantum circuits with
qubits ranging from 10 to 100, compared with the worst case
bound, and the generated error bounds are consistent with
the noise-levels measured using real quantum devices.

Acknowledgements

We thank our shepherd, Timon Gehr, and the anonymous
reviewers for valuable feedbacks that help improving this
paper. We thank Xupeng Li and Shaokai Lin for conducting
parts of the experiments. We thank members of the VeriGu
Lab at Columbia and anonymous referees for helpful com-
ments and suggestions that improved this paper and the im-
plemented tools. This work is funded in part by NSF grants
CCF-1918400 and CNS-2052947; an Amazon Research Award;
EPiQC, an NSF Expedition in Computing, under grants CCF-
1730449; STAQ under grant NSF Phy-1818914; DOE grants
DE-SC0020289 and DESC0020331; and NSF OMA-2016136
and the Q-NEXT DOE NQI Center. Any opinions, findings,
conclusions, or recommendations that are expressed herein
are those of the authors, and do not necessarily reflect those
of the US Government, NSF, DOE, or Amazon.

References
[1] Dorit Aharonov, Alexei Kitaev, and Noam Nisan. 1998. Quantum

Circuits with Mixed States. In Proceedings of the 30th Annual ACM

Symposium on Theory of Computing (STOC 1998). 20ś30. https://doi.

org/10.1145/276698.276708

61

https://doi.org/10.1145/276698.276708
https://doi.org/10.1145/276698.276708

Gleipnir: Toward Practical Error Analysis for Quantum Programs PLDI ’21, June 20ś25, 2021, Virtual, Canada

[2] Gadi Aleksandrowicz, Thomas Alexander, Panagiotis Barkoutsos, Lu-

ciano Bello, Yael Ben-Haim, David Bucher, Francisco Jose Cabrera-

Hernández, Jorge Carballo-Franquis, Adrian Chen, Chun-Fu Chen,

Jerry M. Chow, Antonio D. Córcoles-Gonzales, Abigail J. Cross, An-

drew Cross, Juan Cruz-Benito, Chris Culver, Salvador De La Puente

González, Enrique De La Torre, Delton Ding, Eugene Dumitrescu, Ivan

Duran, Pieter Eendebak, Mark Everitt, Ismael Faro Sertage, Albert

Frisch, Andreas Fuhrer, Jay Gambetta, Borja Godoy Gago, Juan Gomez-

Mosquera, Donny Greenberg, Ikko Hamamura, Vojtech Havlicek, Joe

Hellmers, Łukasz Herok, Hiroshi Horii, ShaohanHu, Takashi Imamichi,

Toshinari Itoko, Ali Javadi-Abhari, Naoki Kanazawa, Anton Karazeev,

Kevin Krsulich, Peng Liu, Yang Luh, Yunho Maeng, Manoel Marques,

Francisco Jose Martín-Fernández, Douglas T. McClure, David McKay,

Srujan Meesala, Antonio Mezzacapo, Nikolaj Moll, Diego Moreda Ro-

dríguez, Giacomo Nannicini, Paul Nation, Pauline Ollitrault, Lee James

O’Riordan, Hanhee Paik, Jesús Pérez, Anna Phan, Marco Pistoia, Vik-

tor Prutyanov, Max Reuter, Julia Rice, Abdón Rodríguez Davila, Ray-

mond Harry Putra Rudy, Mingi Ryu, Ninad Sathaye, Chris Schnabel,

Eddie Schoute, Kanav Setia, Yunong Shi, Adenilton Silva, Yukio Sir-

aichi, Seyon Sivarajah, John A. Smolin, Mathias Soeken, Hitomi Taka-

hashi, Ivano Tavernelli, Charles Taylor, Pete Taylour, Kenso Trabing,

Matthew Treinish, Wes Turner, Desiree Vogt-Lee, Christophe Vuillot,

Jonathan A. Wildstrom, Jessica Wilson, Erick Winston, Christopher

Wood, Stephen Wood, Stefan Wörner, Ismail Yunus Akhalwaya, and

Christa Zoufal. 2019. Qiskit: An Open-source Framework for Quantum

Computing. https://doi.org/10.5281/zenodo.2562110

[3] Carmen G. Almudéver, Lingling Lao, Xiang Fu, Nader Khammassi,

Imran Ashraf, Dan Iorga, Savvas Varsamopoulos, Christopher Eichler,

Andreas Wallraff, Lotte Geck, Andre Kruth, Joachim Knoch, Hen-

drik Bluhm, and Koen Bertels. 2017. The Engineering Challenges

in Quantum Computing. In Proceedings of 2017 Design, Automation

Test in Europe Conference Exhibition (DATE 2017). 836ś845. https:

//doi.org/10.23919/DATE.2017.7927104

[4] Frank Arute, Kunal Arya, Ryan Babbush, Dave Bacon, Joseph C. Bardin,

Rami Barends, Rupak Biswas, Sergio Boixo, Fernando G. S. L. Bran-

dao, David A. Buell, Brian Burkett, Yu Chen, Zijun Chen, Ben Chiaro,

Roberto Collins, William Courtney, Andrew Dunsworth, Edward Farhi,

Brooks Foxen, Austin Fowler, Craig Gidney, Marissa Giustina, Rob

Graff, Keith Guerin, Steve Habegger, Matthew P. Harrigan, Michael J.

Hartmann, Alan Ho, Markus Hoffmann, Trent Huang, Travis S. Hum-

ble, Sergei V. Isakov, Evan Jeffrey, Zhang Jiang, Dvir Kafri, Kostyan-

tyn Kechedzhi, Julian Kelly, Paul V. Klimov, Sergey Knysh, Alexan-

der Korotkov, Fedor Kostritsa, David Landhuis, Mike Lindmark, Erik

Lucero, Dmitry Lyakh, Salvatore Mandrà, Jarrod R. McClean, Matthew

McEwen, Anthony Megrant, Xiao Mi, Kristel Michielsen, Masoud

Mohseni, Josh Mutus, Ofer Naaman, Matthew Neeley, Charles Neill,

Murphy Yuezhen Niu, Eric Ostby, Andre Petukhov, John C. Platt,

Chris Quintana, Eleanor G. Rieffel, Pedram Roushan, Nicholas C.

Rubin, Daniel Sank, Kevin J. Satzinger, Vadim Smelyanskiy, Kevin J.

Sung, Matthew D. Trevithick, Amit Vainsencher, Benjamin Villalonga,

Theodore White, Z. Jamie Yao, Ping Yeh, Adam Zalcman, Hartmut

Neven, and John M. Martinis. 2019. Quantum Supremacy Using a

Programmable Superconducting Processor. Nature 574, 7779 (2019),

505ś510. https://doi.org/10.1038/s41586-019-1666-5

[5] Debjyoti Bhattacharjee, Abdullah Ash Saki, Mahabubul Alam, Anupam

Chattopadhyay, and Swaroop Ghosh. 2019. MUQUT: Multi-Constraint

Quantum Circuit Mapping on NISQ Computers: Invited Paper. In

Proceedings of the 38th IEEE/ACM International Conference on Computer-

Aided Design (ICCAD 2019). 1ś7. https://doi.org/10.1109/ICCAD45719.

2019.8942132

[6] Sergey Bravyi, Dan Browne, Padraic Calpin, Earl Campbell, David

Gosset, and Mark Howard. 2019. Simulation of Quantum Circuits by

Low-Rank Stabilizer Decompositions. Quantum 3 (2019), 181. https:

//doi.org/10.22331/q-2019-09-02-181

[7] Earl T. Campbell, Barbara M. Terhal, and Christophe Vuillot. 2017.

Roads Towards Fault-Tolerant Universal Quantum Computation. Na-

ture 549, 7671 (2017), 172ś179. https://doi.org/10.1038/nature23460

[8] Man-Duen Choi. 1975. Completely Positive Linear Maps on Complex

Matrices. Linear Algebra Appl. 10, 3 (1975), 285 ś 290. https://doi.org/

10.1016/0024-3795(75)90075-0

[9] Simon J. Devitt, William J. Munro, and Kae Nemoto. 2013. Quantum

Error Correction for Beginners. Reports on Progress in Physics 76, 7

(2013), 076001. https://doi.org/10.1088/0034-4885/76/7/076001

[10] Stavros Efthymiou, Jack Hidary, and Stefan Leichenauer. 2019. Ten-

sorNetwork for Machine Learning. (2019). arXiv:1906.06329 [cs.LG]

[11] Glen Evenbly and Guifré Vidal. 2009. Algorithms for Entanglement

Renormalization. Physical Review B 79, 14 (2009), 144108. https:

//doi.org/10.1103/PhysRevB.79.144108

[12] Edward Farhi, Jeffrey Goldstone, and Sam Gutmann. 2014. A Quantum

Approximate Optimization Algorithm. (2014). arXiv:1411.4028 [quant-

ph]

[13] Austin G. Fowler, Matteo Mariantoni, John M. Martinis, and Andrew N.

Cleland. 2012. Surface Codes: Towards Practical Large-Scale Quantum

Computation. Physical Review A 86, 3 (2012), 032324. https://doi.org/

10.1103/PhysRevA.86.032324

[14] Robert M. Freund. 2004. Introduction to Semidefinite Programming

(SDP). Massachusetts Institute of Technology (2004), 8ś11.

[15] Vittorio Giovannetti, Simone Montangero, and Rosario Fazio. 2008.

Quantum Multiscale Entanglement Renormalization Ansatz Channels.

Physical Review Letters 101, 18 (2008), 180503. https://doi.org/10.1103/

PhysRevLett.101.180503

[16] Daniel Gottesman. 2010. An Introduction to Quantum Error Correction

and Fault-Tolerant Quantum Computation. In Quantum information

science and its contributions to mathematics, Proceedings of Symposia

in Applied Mathematics, Vol. 68. 13ś58.

[17] Daniel M. Greenberger, Michael A. Horne, and Anton Zeilinger. 1989.

Going Beyond Bell’s Theorem. In Bell’s theorem, quantum theory and

conceptions of the universe. 69ś72. https://doi.org/10.1007/978-94-017-

0849-4_10

[18] Mauricio Gutiérrez, Conor Smith, Livia Lulushi, Smitha Janardan, and

Kenneth R. Brown. 2016. Errors and Pseudothresholds for Incoherent

and Coherent Noise. Physical Review A 94, 4 (2016), 042338. https:

//doi.org/10.1103/PhysRevA.94.042338

[19] Mauricio Gutiérrez, Lukas Svec, Alexander Vargo, and Kenneth R.

Brown. 2013. Approximation of Realistic Errors by Clifford Channels

and Pauli Measurements. Physical Review A 87, 3 (2013), 030302. https:

//doi.org/10.1103/PhysRevA.87.030302

[20] Karen A. Hallberg. 2006. New Trends in Density Matrix Renor-

malization. Advances in Physics 55, 5-6 (2006), 477ś526. https:

//doi.org/10.1080/00018730600766432

[21] Kesha Hietala, Robert Rand, Shih-Han Hung, Xiaodi Wu, and Michael

Hicks. 2021. A Verified Optimizer for Quantum Circuits. Proceedings

of the ACM on Programming Languages 5, POPL (2021), 1ś29. https:

//doi.org/10.1145/3434318

[22] Mark Hillery, Vladimír Bužek, and André Berthiaume. 1999. Quantum

Secret Sharing. Physical Review A 59, 3 (1999), 1829. https://doi.org/

10.1103/PhysRevA.59.1829

[23] Mark Howard and Earl Campbell. 2017. Application of a Resource

Theory for Magic States to Fault-Tolerant Quantum Computing. Phys-

ical Review Letters 118, 9 (2017), 090501. https://doi.org/10.1103/

PhysRevLett.118.090501

[24] Shih-Han Hung, Kesha Hietala, Shaopeng Zhu, Mingsheng Ying,

Michael Hicks, and Xiaodi Wu. 2019. Quantitative Robustness Anal-

ysis of Quantum Programs. Proceeding of the ACM on Programming

Languages 3, POPL (2019), 31:1ś31:29. https://doi.org/10.1145/3290344

[25] IBM 2016. IBM-Q Experience. https://www.research.ibm.com/ibm-q/

[26] Ali Javadi-Abhari, Shruti Patil, Daniel Kudrow, Jeff Heckey, Alexey

Lvov, Frederic T. Chong, and Margaret Martonosi. 2015. ScaffCC:

62

https://doi.org/10.5281/zenodo.2562110
https://doi.org/10.23919/DATE.2017.7927104
https://doi.org/10.23919/DATE.2017.7927104
https://doi.org/10.1038/s41586-019-1666-5
https://doi.org/10.1109/ICCAD45719.2019.8942132
https://doi.org/10.1109/ICCAD45719.2019.8942132
https://doi.org/10.22331/q-2019-09-02-181
https://doi.org/10.22331/q-2019-09-02-181
https://doi.org/10.1038/nature23460
https://doi.org/10.1016/0024-3795(75)90075-0
https://doi.org/10.1016/0024-3795(75)90075-0
https://doi.org/10.1088/0034-4885/76/7/076001
https://arxiv.org/abs/1906.06329
https://doi.org/10.1103/PhysRevB.79.144108
https://doi.org/10.1103/PhysRevB.79.144108
https://arxiv.org/abs/1411.4028
https://doi.org/10.1103/PhysRevA.86.032324
https://doi.org/10.1103/PhysRevA.86.032324
https://doi.org/10.1103/PhysRevLett.101.180503
https://doi.org/10.1103/PhysRevLett.101.180503
https://doi.org/10.1007/978-94-017-0849-4_10
https://doi.org/10.1007/978-94-017-0849-4_10
https://doi.org/10.1103/PhysRevA.94.042338
https://doi.org/10.1103/PhysRevA.94.042338
https://doi.org/10.1103/PhysRevA.87.030302
https://doi.org/10.1103/PhysRevA.87.030302
https://doi.org/10.1080/00018730600766432
https://doi.org/10.1080/00018730600766432
https://doi.org/10.1145/3434318
https://doi.org/10.1145/3434318
https://doi.org/10.1103/PhysRevA.59.1829
https://doi.org/10.1103/PhysRevA.59.1829
https://doi.org/10.1103/PhysRevLett.118.090501
https://doi.org/10.1103/PhysRevLett.118.090501
https://doi.org/10.1145/3290344
https://www.research.ibm.com/ibm-q/

PLDI ’21, June 20ś25, 2021, Virtual, Canada Runzhou Tao, Yunong Shi, Jianan Yao, John Hui, Frederic T. Chong, and Ronghui Gu

Scalable Compilation and Analysis of Quantum Programs. Parallel

Comput. 45 (2015), 2ś17. https://doi.org/10.1016/j.parco.2014.12.001

[27] Jacob Jordan, Roman Orús, Guifre Vidal, Frank Verstraete, and J. Igna-

cio Cirac. 2008. Classical Simulation of Infinite-size Quantum Lattice

Systems in Two Spatial Dimensions. Physical Review Letters 101, 25

(2008), 250602. https://doi.org/10.1103/PhysRevLett.101.250602

[28] Emanuel Knill. 2005. Quantum Computing with Realistically Noisy

Devices. Nature 434, 7029 (2005), 39ś44. https://doi.org/10.1038/

nature03350

[29] Easwar Magesan, Daniel Puzzuoli, Christopher E. Granade, and

David G. Cory. 2013. Modeling Quantum Noise for Efficient Test-

ing of Fault-Tolerant Circuits. Physical Review A 87, 1 (2013), 012324.

https://doi.org/10.1103/PhysRevA.87.012324

[30] Nancy Makri and Dmitrii E. Makarov. 1995. Tensor Propagator for

Iterative Quantum Time Evolution of Reduced Density Matrices. I.

Theory. The Journal of Chemical Physics 102, 11 (1995), 4600ś4610.

https://doi.org/10.1063/1.469508

[31] Andrea Mari and Jens Eisert. 2012. Positive Wigner Functions Ren-

der Classical Simulation of Quantum Computation Efficient. Phys-

ical Review Letters 109, 23 (2012), 230503. https://doi.org/10.1103/

PhysRevLett.109.230503

[32] Frank Mueller, Greg Byrd, and Patrick Dreher. 2020. Programming

Quantum Computers: A Primer with IBM Q and D-Wave Exercises.

https://sites.google.com/ncsu.edu/qc-tutorial

[33] Prakash Murali, Jonathan M. Baker, Ali Javadi-Abhari, Frederic T.

Chong, and Margaret Martonosi. 2019. Noise-Adaptive Compiler

Mappings for Noisy Intermediate-Scale Quantum Computers. In Pro-

ceedings of the 24th International Conference on Architectural Support

for Programming Languages and Operating Systems (ASPLOS 2019).

1015ś1029. https://doi.org/10.1145/3297858.3304075

[34] Michael A. Nielsen and Isaac L. Chuang. 2011. Quantum Computa-

tion and Quantum Information: 10th Anniversary Edition. Cambridge

University Press. https://doi.org/10.1017/CBO9780511976667

[35] Hakop Pashayan, Stephen D. Bartlett, and David Gross. 2020. From Es-

timation of Quantum Probabilities to Simulation of Quantum Circuits.

Quantum 4 (2020), 223. https://doi.org/10.22331/q-2020-01-13-223

[36] Roger Penrose. 1971. Applications of Negative Dimensional Tensors.

Combinatorial mathematics and its applications 1 (1971), 221ś244. https:

//doi.org/10.1145/2049706.2049708

[37] David Perez-Garcia, Frank Verstraete, Michael M. Wolf, and J. Ignacio

Cirac. 2007. Matrix Product State Representations. Quantum Informa-

tion & Computation 7, 5 (2007), 401ś430. https://doi.org/10.26421/qic7.

5-6-1

[38] Marco Piani, Michal Horodecki, Pawel Horodecki, and Ryszard

Horodecki. 2006. Properties of Quantum Nonsignaling Boxes. Physical

Review A 74, 1 (2006), 012305. https://doi.org/10.1103/PhysRevA.74.

012305

[39] Martin B. Plbnio and Shashank Virmani. 2007. An Introduction to

Entanglement Measures. Quantum Information & Computation 7, 1

(2007), 1ś51.

[40] John Preskill. 1998. Fault-Tolerant Quantum Computation. In Intro-

duction to Quantum Computation and Information. 213ś269. https:

//doi.org/10.1142/9789812385253_0008

[41] John Preskill. 1998. Lecture Notes for Physics 229: Quantum Infor-

mation and Computation. California Institute of Technology 16 (1998),

10.

[42] John Preskill. 1998. Reliable Quantum Computers. Proceedings of the

Royal Society of London. Series A: Mathematical, Physical and Engineer-

ing Sciences 454, 1969 (1998), 385ś410.

[43] John Preskill. 2018. Quantum Computing in the NISQ Era and Beyond.

Quantum 2 (2018), 79. https://doi.org/10.22331/q-2018-08-06-79

[44] Google AI Quantum et al. 2020. Hartree-Fock on a Superconducting

Qubit Quantum Computer. Science 369, 6507 (2020), 1084ś1089. https:

//doi.org/10.1126/science.abb9811

[45] Robert Raussendorf, Juani Bermejo-Vega, Emily Tyhurst, Cihan Okay,

andMichael Zurel. 2020. Phase-Space-SimulationMethod for Quantum

Computation with Magic States on Qubits. Physical Review A 101, 1

(2020), 012350. https://doi.org/10.1103/PhysRevA.101.012350

[46] Ulrich Schollwöck. 2005. The Density-Matrix Renormalization Group.

Reviews of Modern Physics 77, 1 (2005), 259ś315. https://doi.org/10.

1103/RevModPhys.77.259

[47] Yunong Shi, Runzhou Tao, Xupeng Li, Ali Javadi-Abhari, Andrew W.

Cross, Frederic T. Chong, and Ronghui Gu. 2019. CertiQ: A Mostly-

Automated Verification of a Realistic Quantum Compiler. (2019).

arXiv:1908.08963 [quant-ph]

[48] Edwin Stoudenmire and David J. Schwab. 2016. Supervised Learning

with Tensor Networks. In Advances in Neural Information Processing

Systems. Vol. 29. 4799ś4807.

[49] Alexander Streltsov, Gerardo Adesso, andMartin B. Plenio. 2017. Collo-

quium: Quantum Coherence as a Resource. Reviews of Modern Physics

89, 4 (2017), 041003. https://doi.org/10.1103/RevModPhys.89.041003

[50] Martin Suchara, John Kubiatowicz, Arvin I. Faruque, Frederic T. Chong,

Ching-Yi Lai, and Gerardo Paz. 2013. QuRE: The Quantum Resource

Estimator Toolbox. In Proceedings of the 31st IEEE International Con-

ference on Computer Design (ICCD 2013). 419ś426.

[51] Runzhou Tao, Yunong Shi, Jianan Yao, JohnHui, Frederic T. Chong, and

Ronghui Gu. 2021. Gleipnir: Toward Practical Error Analysis for Quan-

tum Programs (Extended Version). (2021). arXiv:2104.06349 [cs.PL]

[52] Victor Veitch, Christopher Ferrie, David W. Gross, and Joseph Emer-

son. 2012. Negative Quasi-Probability as a Resource for Quantum

Computation. New Journal of Physics 14, 11 (2012), 113011. https:

//doi.org/10.1088/1367-2630/15/3/039502

[53] Victor Veitch, S. A. Hamed Mousavian, Daniel Gottesman, and Joseph

Emerson. 2014. The Resource Theory of Stabilizer Quantum Compu-

tation. New Journal of Physics 16, 1 (2014), 013009. https://doi.org/10.

1088/1367-2630/16/1/013009

[54] Victor Veitch, Nathan Wiebe, Christopher Ferrie, and Joseph Emerson.

2013. Efficient Simulation Scheme for a Class of Quantum Optics

Experiments with Non-Negative Wigner Representation. New Journal

of Physics 15, 1 (2013), 013037. https://doi.org/10.1088/1367-2630/15/

1/013037

[55] Frank Verstraete, Valentin Murg, and J. Ignacio Cirac. 2008. Ma-

trix Product States, Projected Entangled Pair States, and Variational

Renormalization Group Methods for Quantum Spin Systems. Ad-

vances in Physics 57, 2 (2008), 143ś224. https://doi.org/10.1080/

14789940801912366

[56] Guifré Vidal. 2003. Efficient Classical Simulation of Slightly Entangled

Quantum Computations. Physical Review Letters 91, 14 (2003), 147902.

https://doi.org/10.1103/PhysRevLett.91.147902

[57] Guifré Vidal. 2008. Class of Quantum Many-Body States That Can Be

Efficiently Simulated. Physical Review Letters 101, 11 (2008), 110501.

https://doi.org/10.1103/PhysRevLett.101.110501

[58] Joel J. Wallman and Joseph Emerson. 2016. Noise Tailoring for Scalable

Quantum Computation via Randomized Compiling. Physical Review

A 94, 5 (2016), 052325. https://doi.org/10.1103/PhysRevA.94.052325

[59] Joel J. Wallman and Steven T. Flammia. 2014. Randomized Benchmark-

ing with Confidence. New Journal of Physics 16, 10 (2014), 103032.

https://doi.org/10.1088/1367-2630/18/7/079501

[60] Xin Wang, Mark M. Wilde, and Yuan Su. 2019. Quantifying the Magic

of Quantum Channels. New Journal of Physics 21, 10 (2019), 103002.

https://doi.org/10.1088/1367-2630/ab451d

[61] John Watrous. 2013. Simpler Semidefinite Programs for Completely

Bounded Norms. Chicago Journal OF Theoretical Computer Science 8

(2013), 1ś19. https://doi.org/10.4086/cjtcs.2013.008

[62] Andreas J. Winter and Dong Yuan Yang. 2016. Operational Resource

Theory of Coherence. Physical Review Letters 116, 12 (2016), 120404.

https://doi.org/10.1103/PhysRevLett.116.120404

63

https://doi.org/10.1016/j.parco.2014.12.001
https://doi.org/10.1103/PhysRevLett.101.250602
https://doi.org/10.1038/nature03350
https://doi.org/10.1038/nature03350
https://doi.org/10.1103/PhysRevA.87.012324
https://doi.org/10.1063/1.469508
https://doi.org/10.1103/PhysRevLett.109.230503
https://doi.org/10.1103/PhysRevLett.109.230503
https://sites.google.com/ncsu.edu/qc-tutorial
https://doi.org/10.1145/3297858.3304075
https://doi.org/10.1017/CBO9780511976667
https://doi.org/10.22331/q-2020-01-13-223
https://doi.org/10.1145/2049706.2049708
https://doi.org/10.1145/2049706.2049708
https://doi.org/10.26421/qic7.5-6-1
https://doi.org/10.26421/qic7.5-6-1
https://doi.org/10.1103/PhysRevA.74.012305
https://doi.org/10.1103/PhysRevA.74.012305
https://doi.org/10.1142/9789812385253_0008
https://doi.org/10.1142/9789812385253_0008
https://doi.org/10.22331/q-2018-08-06-79
https://doi.org/10.1126/science.abb9811
https://doi.org/10.1126/science.abb9811
https://doi.org/10.1103/PhysRevA.101.012350
https://doi.org/10.1103/RevModPhys.77.259
https://doi.org/10.1103/RevModPhys.77.259
https://arxiv.org/abs/1908.08963
https://doi.org/10.1103/RevModPhys.89.041003
https://arxiv.org/abs/2104.06349
https://doi.org/10.1088/1367-2630/15/3/039502
https://doi.org/10.1088/1367-2630/15/3/039502
https://doi.org/10.1088/1367-2630/16/1/013009
https://doi.org/10.1088/1367-2630/16/1/013009
https://doi.org/10.1088/1367-2630/15/1/013037
https://doi.org/10.1088/1367-2630/15/1/013037
https://doi.org/10.1080/14789940801912366
https://doi.org/10.1080/14789940801912366
https://doi.org/10.1103/PhysRevLett.91.147902
https://doi.org/10.1103/PhysRevLett.101.110501
https://doi.org/10.1103/PhysRevA.94.052325
https://doi.org/10.1088/1367-2630/18/7/079501
https://doi.org/10.1088/1367-2630/ab451d
https://doi.org/10.4086/cjtcs.2013.008
https://doi.org/10.1103/PhysRevLett.116.120404

Gleipnir: Toward Practical Error Analysis for Quantum Programs PLDI ’21, June 20ś25, 2021, Virtual, Canada

[63] Christopher J. Wood, Jacob D. Biamonte, and David G. Cory. 2011.

Tensor Networks and Graphical Calculus for Open Quantum Systems.

(2011). arXiv:1111.6950 [quant-ph]

[64] Mingsheng Ying. 2016. Foundations of Quantum Programming. Morgan

Kaufmann. https://doi.org/10.1016/c2014-0-02660-3

[65] Mingsheng Ying, Shenggang Ying, and Xiaodi Wu. 2017. Invariants of

Quantum Programs: Characterisations and Generation. ACM SIGPLAN

Notices 52, 1 (2017), 818ś832. https://doi.org/doi.org/10.1145/3093333.

3009840

[66] Li Zhou, Nengkun Yu, and Mingsheng Ying. 2019. An Applied Quan-

tum Hoare Logic. In Proceedings of the 40th ACM SIGPLAN Conference

on Programming Language Design and Implementation (PLDI 2019).

1149ś1162. https://doi.org/10.1145/3314221.3314584

64

https://arxiv.org/abs/1111.6950
https://doi.org/10.1016/c2014-0-02660-3
https://doi.org/doi.org/10.1145/3093333.3009840
https://doi.org/doi.org/10.1145/3093333.3009840
https://doi.org/10.1145/3314221.3314584

	Abstract
	1 Introduction
	2 Quantum Programming Background
	2.1 Quantum Computing Basics
	2.2 Quantum Programs
	2.3 Quantum Errors

	3 Gleipnir Workflow
	4 Quantum Error Logic
	5 Quantum State Approximation
	5.1 Tensor Network
	5.2 Approximate Quantum States
	5.3 Example: GHZ Circuit

	6 Computing the (,)-Diamond Norm
	7 Evaluation
	7.1 Evaluating the Computed Error Bounds
	7.2 Evaluating the Quantum Compilation Error Mitigation

	8 Related Work
	9 Conclusion
	References

