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Abstract
System software is often large and complex, resulting in

many vulnerabilities that can potentially be exploited to com-
promise the security of a system. Formal verification offers
a potential solution to creating bug-free software, but a key
impediment to its adoption remains proof cost. We present
Spoq, a highly automated verification framework to construct
machine-checkable proofs in Coq for system software with
much less proof cost. Spoq introduces a novel program struc-
ture reconstruction technique to leverage LLVM to trans-
late C code into Coq, supporting full C semantics, including
C macros, inline assembly, and compiler directives, so that
source code no longer has to be manually modified to be veri-
fied. Spoq leverages a layering proof strategy and introduces
novel Coq tactics and transformation rules to automatically
generate layer specifications and refinement proofs to sim-
plify verification of concurrent system software. Spoq also
supports easy integration of manually written layer specifica-
tions and refinement proofs. We use Spoq to verify a multipro-
cessor KVM hypervisor implementation. Verification using
Spoq required 70% less proof effort than the manually written
specifications and proofs to verify an older implementation.
Furthermore, the proofs using Spoq hold for the unmodified
implementation that is directly compiled and executed.

1 Introduction

System software such as operating systems and hypervi-
sors [7] forms the software foundations of our computing
infrastructure. However, modern system software is large,
complex, and imperfect, with vulnerabilities that can be
exploited to compromise the security of a system. Formal
verification offers a potential solution to this problem by
mathematically proving that system software can provide
critical security guarantees. This typically involves veri-
fying that the software implementation satisfies a formal
high-level specification of its behavior, then proving that the
specification guarantees the desired security properties.

The former, referred to as functional correctness, is gen-
erally the most challenging part to do, given the complexity
of system software implementations. Implementations are
commonly written in C, which has complex semantics and
language features, many unsupported by verification tools.
Verification tools powerful enough to verify real-world
system software are difficult and tedious to use to write
specifications and proofs. Furthermore, a high-level spec-
ification that is useful for verifying higher-level properties
such as security often has a significant semantic gap from
the implementation, requiring substantial manual proof effort
to bridge this gap. However, without functional correctness
to ensure that the proofs hold on the actual implementation,
formally verified guarantees can be meaningless in practice.

We introduce Spoq (Scaling Proofs in Coq), a new verifica-
tion framework to reduce proof costs for machine-checkable
verification of system software. Spoq focuses on simplifying
formal verification of functional correctness to reduce proof
costs while ensuring that all proofs are machine-checkable
by a theorem prover and verified down to the actual software
implementation. It operates on widely used unmodified C
code and leverages the Coq proof assistant [55] to enable
machine-checkable verification of complex systems. Its
key feature is making Coq easier to use by automating
many aspects of writing Coq specifications and proofs. This
reduces the amount of Coq code that needs to be manually
written, which significantly reduces the time to conduct
machine-checkable verification.

Spoq is the first system that can automatically translate
unmodified C systems code, such as found in the Linux kernel,
into a Coq representation so that it can be verified. Previous
approaches such as CompCert’s ClightGen [35] only support
a subset of the C language. Systems that use ClightGen such
as CertiKOS [18, 20] require significant manual effort to
retrofit the systems implementation before it can be verified,
extra effort to develop and maintain the retrofitted version,
and still cannot provide any verified guarantees on the actual
running version. Spoq address this problem by leveraging the
widely used Clang compiler front end to parse C code into
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LLVM’s language-independent intermediate representation
(IR). Because LLVM IR represents functions as control flow
graphs, Spoq introduces a novel program reconstruction
technique that translates control flow graphs back into a Coq
representation using program-style functions with if-then-else
and loop statements that is more amenable to verification.
This approach enables Spoq to support full C language
semantics, including GNU C-specific extensions and inline
assembly code, yet work with an IR with clean semantics de-
signed for automated translation into another representation.

Spoq then leverages a layering proof strategy based on
Concurrent Certified Abstraction Layers (CCAL) [19, 21]
to modularize and decompose verification into smaller steps
to make each verification step easier. This involves defining
the layer structure of the implementation, where each layer
consists of a group of functions that define the layer’s in-
terface. Higher layers can call the functions exposed by a
lower layer’s interface, but not the other way around. The top
layer is a high-level specification of the behavior of the entire
implementation, while the bottom layer is a machine model
whose interface is designed to support LLVM IR semantics.
Verification involves proving that the layers compositionally
refine the top layer specification of the entire implementation.
While layering makes each verification step easier to accom-
plish, if done manually, it has the disadvantage of requiring
a user to construct additional layer specifications, including
both low-level and high-level specifications, and refinement
proofs for each layer, which can involve tediously writing
thousands of lines of additional Coq code. That code then has
to be manually rewritten each time the program implementa-
tion is updated, imposing significant, time-consuming proof
costs. Spoq instead takes advantage of layering and the easier
verification steps it affords to make it possible to automati-
cally generate the Coq layer specifications and mechanized
refinement proofs from the layer structure definition. It is the
first system that can automate the generation of layered spec-
ifications and proofs in Coq for concurrent system software.

Spoq constructs a machine-checkable proof object for each
layer showing its implementation built on top of a lower layer
interface refines its own layer interface. It decomposes the
proof for a layer into two tasks. The first task is to prove that
the layer’s implementation, namely its Coq abstract syntax
tree (AST) representation, refines a low-level specification
that is closer to the source code and independent of the state
of the machine model. The second task is to prove that the
low-level specification, built on top of a lower layer interface,
refines a high-level specification that defines the layer’s
interface and is self-contained. By self-contained, we mean
that the specification does not contain any calls to functions
in any other layer other than the bottom layer machine model.
Making the high-level specification self-contained simplifies
verification because refinement proofs of any layers built on
top of this layer can effectively ignore any layers below it.

Spoq introduces a library of Coq tactics to automatically

generate low-level specifications and refinement proofs
between the implementation and low-level specification.
Functions with loops are synthesized into Coq recursive
specifications, then refined to their specifications using an
induction proof template. To generate the specification for
a function with loops, a ranking function is provided for each
loop, which is monotonically decreasing and non-negative
during loop iterations. Spoq leverages the ranking functions
to generate loop termination proofs.

Spoq introduces transformation rules to automatically
generate high-level specifications and refinement proofs
between low-level and high-level specifications. Trans-
formation rules include unfolding function definitions,
syntactically reorganizing program structures, eliminating
pre-determined branches and assertions, and performing
mathematical simplification. Refinement proofs are done
by introducing automatically generated annotations to track
how transformations are applied, then using Coq tactics to
prove the sequence of transformations preserves specification
semantics. Automatic generation of specifications and proofs
is only done for high-level specifications that do not introduce
data abstractions to hide low-level data representation details,
such as abstracting an array into a Coq Map. High-level
specifications that introduce data abstractions or have
very complex functions require manual assistance from
the user to complete the specifications and proofs. Our
experience indicates that the vast majority of functions can
be automatically specified and refined without manual effort.

Spoq reduces the trusted computing base (TCB) for per-
forming source code-level mechanized verification. There is
no need to trust Spoq for generating specifications or proofs.
Incorrect specifications will be rejected during refinement
proofs, and incorrect proofs will be rejected by the Coq proof
checker. Although Spoq relies on Clang which is not verified,
most system software already needs to trust either widely used
Clang or unverified alternatives such as the GNU C compiler
to generate the executable code that actually runs. Using a ver-
ified compiler such as CompCert [35] is not viable in practice
since it cannot even compile C code such as Linux kernel code.
The only part of Spoq that is unverified yet needs to be trusted
is its translator from LLVM IR to Coq, which is minimal by de-
sign. This TCB is much smaller than CompCert’s ClightGen,
which is larger and more complex since it has to directly parse
and translate C code, a more difficult and involved process.

We have implemented Spoq and evaluated its effectiveness
on commodity system software. We show that Spoq
automatically translates over 99% of functions in unmodified
C systems code into Coq representations, including the
source code for the Linux kernel, while ClightGen fails to
translate the vast majority of functions, including almost
complete failure on the Linux kernel. We use Spoq to verify
a multiprocessor KVM hypervisor implementation. Although
an older version of the hypervisor was previously verified
in Coq without Spoq, the proofs no longer work with the
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Figure 1: Spoq workflow.

updated version that supports additional hardware platforms.
Previously, using ClightGen to translate the C implementation
into a Coq representation required modifications to the source
code, creating a gap between the verified and running code.
Verifying the updated hypervisor using Spoq required much
less proof effort, reducing the amount of manually written
Coq code by over 70% compared to the verification of the
older implementation. The proofs using Spoq are done on
the unmodified source code of the hypervisor that is directly
compiled and executed. Spoq even automatically generates
the top layer specification, which we then use to verify the
overall security properties of the hypervisor hold on the
actual running software implementation.

2 Spoq Usage Model

To use Spoq, a user compiles the source code into LLVM
IR and writes a layer configuration file defining the layer
structure for the proof. The layer structure is defined to
modularize the proof, with the additional constraint that a
layer can only call functions in lower layers. For example,
if the source code has three functions A, B and C such that
A calls B and B calls C, at least three layers must be used.
The configuration file specifies the name of each layer, the
name of each function in each layer, the path to the source
IR code, and the path to the Coq project. The configuration
file should include the bottom layer abstract machine model,
including its machine state definition. Spoq then generates
the Coq project, including all specifications and proofs for
each layer. If the source code or layer structure are changed,
the user can rerun Spoq to update the Coq project. Spoq will
regenerate the specifications and proofs for the parts affected
by the changes, while other parts will remain unchanged.

Spoq guarantees that all generated specifications have
exactly the same behavior as their source code implemen-
tations, but some generated high-level specifications may
be too complex to be useful, and some refinement proofs
may fail. Spoq makes it easy to integrate manually written
specifications and proofs, which are simply annotated in
the layer configuration file so that Spoq uses the provided
specifications or proofs instead of generating them directly.
If Spoq generates a high-level specification for a layer that is
not concise enough, especially in how it updates the machine

state, the user can manually write the specification and rerun
Spoq with the provided high-level specification. If Spoq fails
in generating refinement proofs for a layer, the user will see
the resulting compilation errors of the generated Coq project
identifying the specific functions with errors. If the error
occurs for a generated specification, it is most likely due to
a failed loop termination proof. The user can manually write
the loop termination proof that failed and rerun Spoq with the
provided termination proof. If the error occurs for a manually
written specification, the user can check if there is an error
in the specification or if the refinement proof also needs to
be manually written, then rerun Spoq again.

Spoq is useful for both verifying functional correctness as
well as higher-level system properties such as security. In ver-
ifying functional correctness, Spoq can generate the top-level
specification, which will be guaranteed to have exactly the
same behavior as the source code implementation. This no-
tion of functional correctness ensures that the implementation
satisfies the specification, but not necessarily that the code has
no bugs. If the code is buggy, the generated top-level specifi-
cation will still have the same behavior, including any buggy
behavior. To provide a stronger notion of correctness, a user
can use the generated top-level specification to verify higher-
level properties such as security, which will identify bugs in
the specification. Alternatively, a user can manually write the
top-level specification and leverage Spoq to generate interme-
diate layer specifications and refinement proofs to verify that
the implementation is functionally correct with respect to a
manually written specification, though such a specification
can also have bugs. The key benefit of Spoq is ensuring that
whatever verification is done holds not just for a specification,
but all the way down to the source code implementation.

3 Spoq Workflow

Figure 1 shows the workflow of Spoq. We use the example
in Figure 2 to explain each step in the workflow and show
how Spoq scales machine-checkable verification for systems
code. This example contains a simplified C function alloc to
allocate a free page by scanning the array of page descriptors
page. The main computation is implemented as a statement
expression in a macro definition ALLOC, in which we use a
loop to iterate all elements of page and set the page status of
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// Layer interface L1
uint page[MAX_PAGE];
uint get_page (uint i) { return page[i] }
void set_page (uint i, uint s) { page[i] = s; }
// Layer interface L2
#define ALLOC() ({ \
uint i; \
for (i = 0; i < MAX_PAGE; i++){ \
if (get_page(i) == 0) { \
set_page(i, 1); \
break; \

} \
} \
i;})

uint alloc() { return ALLOC(); }

Figure 2: A running example to allocate a free page.

the first free page to 1. The accesses to page are encapsulated
into functions get_page and set_page. This coding style is
quite common in systems software such as Linux kernel code.
Generating Coq representations. To conduct mechanized
verification, the first step is to translate the implementation
into a representation in theorem provers, which is challenging
even for simple and common C systems code like alloc;
ClightGen cannot parse this simple example. Spoq leverages
the Clang compiler front end to parse C into LLVM IR, and
provides a code analyzer to parse LLVM IR code into an AST
representation defined in Coq (Step 1 in Figure 1). We use
LLVM IR because it is language- and machine-independent,
supports full C language semantics and most extensions of
C, can be easily integrated with assembly code semantics,
and is much simpler and more rigorously defined than C.
However, LLVM IR does not keep program structures, such
as if-then-else and loop statements, making it hard to conduct
proofs in a structural and inductive manner. Spoq resolves
this issue by analyzing the control flow graphs of the LLVM
IR code and reconstructing program structures. For example,
Spoq reconstructs the loop, branch, and break statements in
the Coq representation for the LLVM IR generated from the
alloc function in Figure 2:

Definition f_alloc :=
{| fname := "alloc"; rettype := ...; fargs := ...;

fbody := ... ::
(ILoop (... :: (IIf ... IBreak) :: ...))... |}.

Spoq also models the semantics of Armv8 instructions [4]
and parses assembly code into a list of assembly instructions
in their Coq representations.
Defining layer structure. Spoq takes as input a layer
configuration file which it uses to scale constructing
mechanized proofs using CCALs. Using CCALs, we can
construct a machine-checkable proof object “M@L ⊑R L′,”
showing that the implementation M, built on top of a lower
layer interface L, refines the interface L′ with the refinement
relation R. The file defines the layers and at which layer each
function should be verified (Step 2 in Figure 1). For example,
the layer configuration for the running example in Figure 2
defines that get/set_page should be verified on top of layer
L0, while alloc should be verified on top of layer L1.

The layer structure presumes a bottom layer machine
model, which Spoq automatically generates in part by identify-
ing each global memory object in the source code and generat-
ing a corresponding machine state in Coq. Spoq also generates
memory load/store primitives for each element in the state.
The primitives take a memory pointer as an argument and cal-
culate based on offset the array indices and structure elements
to be accessed. Index boundary and data range checks are
also included. The initial generated machine model does not
include concurrency-related structures, such as an event log
and oracle [40], which need to be manually added to complete
the model to support CPU-local concurrency reasoning.

Given the layer configuration file, Spoq will automate gen-
erating the CCALs. It will build a CCAL “Mpage@L0 ⊑R1 L1”
to abstract the page array into a Coq Map object from natural
numbers to integers, such that its elements can only be
accessed through getter and setter methods, get_page and
set_page, respectively, rather than arbitrary memory opera-
tions which may lead to unexpected behavior. The refinement
relation R1 defines how the page array is abstracted into the
Map object. It will then build a CCAL “Malloc@L1 ⊑id L2”
to verify the alloc function on top of L1 using the Map object
without the need to worry about concrete implementation
details of page. Here, id is an identical refinement relation
since no data abstraction is needed when verifying alloc.

To make building CCALs easier, Spoq decomposes the
required proofs into an identical refinement and a lifting
refinement. The identical refinement refines M to a low-level
specification Slow that is closer to the code and does not
introduce any data abstraction, i.e., “M@L ⊑id Slow.” The
lifting refinement refines the low-level specification to a
high-level specification L′, i.e., “Slow ⊑R L′.” The high-level
specification is self-contained and may introduce abstractions
to some data in lower layers.

Synthesizing identical refinements. Spoq generates
low-level specifications and identical refinement proofs
for each layer. The low-level specification of a function
aggregates the small-step transition of each instruction in
the function into a big-step transition of the entire function
while preserving the semantics. For assembly code and C
code without loops, generating the specifications and proofs
is straightforward (Step 3 in Figure 1). Spoq provides a Coq
tactic library to generate the identical refinement proofs;
a tactic is a pre-defined decision procedure to generate
proof scripts in Coq. Neither the specification generator nor
tactic library needs to be trusted, since incorrect low-level
specifications will be rejected by refinement proofs, and
incorrect proofs will be rejected by the Coq proof checker.

For C code with loops, Spoq requires the user to provide
a ranking function for each loop, which is non-negative and
monotonically decreasing during the loop iterations. This is
necessary because a termination proof is needed for each loop
to prove refinement, and automating such termination proofs
without user input is generally undecidable. With the input
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Definition rank (i: nat) := MAX_PAGE - i.(*user input*)
Fixpoint alloc_loop_low (r i: nat) (st: ST) :=
match r with
| O => Some (MAX_PAGE, st)
| S r’ =>
match get_page_high i st with (* spec from L1 *)
| Some 0 => match set_page_high i 1 st with

| Some st’ => Some (i, st’)
| None => None
end

| Some _ => alloc_loop_low r’ (i+1) st
| _ => None
end

end.
Definition alloc_low (st: ST) :=
let r := rank 0 in alloc_loop_low r 0 st.

Figure 3: Low-level specification for the alloc function.

ranking function, Spoq automatically synthesizes a recursive
function as the low-level specification using the Fixpoint

construction in Coq, which requires an argument that de-
creases for each recursive call. For example, Figure 3 shows a
recursive function alloc_loop_low synthesized for the loop
in the alloc function with a user-provided ranking function
(MAX_PAGE-i) as the decreasing argument for the Fixpoint

construction. Note that the low-level specification of alloc is
not self-contained and depends on functions get_page_high
and set_page_high provided by the high-level specification
at a lower layer. Spoq generates the refinement proof using
a uniform induction-proof template (Step 4 in Figure 1).
Synthesizing lifting refinements. Spoq generates high-level
specifications and lifting refinement proofs for each layer.
This is done automatically when data abstractions are not
used to hide low-level data representation details to simplify
proofs at higher layers. If data abstractions are needed, users
need to formulate the refinement relations, define abstract
operations, and conduct the refinement proofs manually.

For example, the layer L1 abstracts the array page into a
Coq Map st.page, and transforms the memory operations
load_mem and store_mem—offered by the bottom layer
L0’s machine model—into Map operations (st.page#i and
st.page#i<-s) with boundary checks:

(* Low-level specifications *)
Definition get_page_low (i: nat) (st: ST) :=
load_mem st ("page", i * 4) u32.

Definition set_page_low (i s: nat) (st: ST) :=
store_mem st ("page", i * 4) s u32.

(* High-level specifications in L1 *)
Definition get_page_high (i: nat) (st: ST) :=
if 0 <=i< MAX_PAGE then Some st.page#i else None.

Definition set_page_high (i s: nat) (st: ST) :=
if 0 <=i< MAX_PAGE then Some st.page#i<-s else None.

Because of the data abstraction, the lifting refinement proof
for layer L1 is not automated and has to be provided manually.

On the other hand, the layer L2 does not use data abstrac-
tions. For layer L2, Spoq automatically generates the high-
level specification of alloc from its low-level specification by
applying a sequence of transformation rules, including unfold-
ing definitions, merging near-duplicate sub-expressions, elim-
inating pre-determined branches and assertions, and perform-
ing mathematical simplification. The latter two rules are ap-

Fixpoint alloc_loop_high (r i: nat) (st: ST) :=
match r with
| O => (MAX_PAGE, st) (* no need of Some anymore *)
| S r’ => if st.page#i =? 0 then (i, st.page#i<-1)

else alloc_loop_high r’ (i + 1) st’
end.

Figure 4: High-level specification for the alloc function.

plied by using the Z3 SMT solver [16]. For alloc_loop_low
in Figure 3, Spoq first unfolds the definitions provided by L1
and simplifies the representation as shown below:

Fixpoint alloc_loop_low’ (r i: nat) (st: ST) :=
match r with
| O => Some (MAX_PAGE, st)
| S r’ =>
if 0 <= i < MAX_PAGE then (* <- always true *)
if st.page#i =? 0 then
if 0 <= i < MAX_PAGE then (* <- redundant *)
Some (i, st.page#i<-1)

else None
else alloc_loop_low’ r’ (i + 1) st’

else None
end.

Spoq then applies rules to eliminate an inner if statement
which is redundant and eliminate the outer if statement by
inferring that i is always within the range, resulting in the
high-level specification in L2 shown in Figure 4. Unlike the
low-level specification, the high-level specification in L2 is
self-contained and does not refer to anything from L1. Thus,
any modules depending on L2 can be reasoned about using
L2 alone without the need to look at lower layers. Otherwise,
after building dozens of layers, the specification at a higher
layer may wrap many levels of definitions from various lower
layers, making the verification non-modular and much harder.

Spoq automatically generates refinement proofs to verify
the transformations that are applied to transform low-level
into high-level specifications (Steps 5-6 in Figure 1). Since
all specifications are guarded by machine-checkable proofs in
Coq, there is no need to trust Spoq’s specification generation
algorithms or any Z3 results.

4 Generating Coq Representations
Spoq uses Clang to compile C code to LLVM IR, enabling it
to support full C semantics and various extensions, including
arbitrary type casting, integer-pointer conversion, inline as-
sembly code, C macros that use GNU C extensions, and GNU
C compiler directives. Spoq then translates LLVM IR code
into an AST defined in Coq. IR code consists of structs, global
variables, and functions. Spoq literally translates IR structs,
similar to C structs, and global variables into their Coq rep-
resentations, but does additional program reconstruction for
IR functions. An IR function can be viewed as a control flow
graph (CFG) over a set of basic blocks with an entry point. All
instructions in a basic block are sequentially executed, and the
last instruction either jumps to another block or returns from
the function. Since systems code may contain goto statements
and IR code is compiled with optimizations enabled, the CFG
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Figure 5: Rewrite rules for program CFGs without loops.

can be very complex and hard to reason about directly.
Spoq introduces a novel algorithm to merge each function’s

CFG of basic blocks into one code block and reconstruct
program structure using if-then-else, loop, continue, break,
and return statements. Spoq only uses these statements to
construct a program structure that is amenable to proof decom-
position, which may not be the same as the program structure
of the original source code. For example, any goto statements
in the original source code will be eliminated. The algorithm
reconstructs program structure by repeatedly applying a set
of rewrite rules to reduce the size of the CFG by merging
blocks and deleting edges. Spoq performs the reconstruction
in IR. No attempt is made to reconstruct the original C code,
which would bloat an otherwise minimal implementation.

Reconstructing programs without loops. For programs
without loops, Spoq uses four rewrite rules to reconstruct
programs from CFGs, shown in Figure 5. Each node denotes a
code block and each edge denotes a change in control flow. A,
P, and S in the nodes denote the instructions inside the respec-
tive blocks. c1, c2, and c3 at the beginning of edges denote
the conditions to jump through the respective edges. Unlike
regular CFGs, e, e1, and e2 denote instructions attached to
edges which will be executed when jumping through the
respective edges. A blue edge ending with a rhombus denotes
an edge without a destination, whose attached instructions
must end with a continue, break, or return statement.

The CFG of a function without loops has no cycles, so
Spoq can repeatedly apply the rewrite rules to reduce the
graph to a single node. Rule R1 deletes a dangling node,
a node with only one incoming edge e and no outgoing
edge, and moves its instructions A to its incoming edge,
which becomes an edge without a destination and has
instructions “e;A.” Rule R2 deletes a bridge node A, a node
with exactly one incoming edge e1 and one outgoing edge e2,
and redirects the incoming edge from its predecessor node P
to its successor node S with instructions “e1;A;e2.” If all the
outgoing edges of a node A either point to the same node S or
do not have destinations, rule R3 merges all the edges into one
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𝐶𝑡(𝐴)

𝐴

A. 𝑏 = 𝐴. 𝑐 = 𝑓𝑎𝑙𝑠𝑒

𝐶𝑡(𝐶)

𝐵𝑘(𝐶, 𝐹)

𝐹

𝐹 = 𝑖𝑓 𝐴. 𝑏 𝐵𝑘 𝐴, 𝐸
𝑒𝑙𝑖𝑓 𝐴. 𝑐 𝐶𝑡 𝐴
𝑒𝑙𝑠𝑒 𝑔𝑜𝑡𝑜 𝐷

𝐶;
𝑖𝑓 . . 𝐵𝑘 𝐶, 𝐹
𝑒𝑙𝑠𝑒 𝐶𝑡(𝐶)

𝐹

𝐿𝑜𝑜𝑝(𝐶; 𝑖𝑓 . . 𝐵𝑘)

𝐹

𝑅8

Figure 6: Rewrite rules for program CFGs with loops.

edge with branch statements. Since only the last instruction
in a node changes the control flow, when a node has more
than one outgoing edge, each edge must have a condition c.
If a node has multiple incoming edges but only one outgoing
edge, rule R4 deletes the node and redirects all incoming
edges to its successor node S with aggregated instructions.
Rule R′

4 is logically the same as R4, but shows the case when
the only outgoing edge does not have a destination.

The reconstruction algorithm prioritizes applying the first
three rules and only applies R4 to the farthest valid node from
the entry point if no other rules are applicable. We prove that
this algorithm can rewrite any CFGs without loops into a
single code block. The following example shows a sequence
of rewrites to reconstruct the program structure from its CFG:

	𝑃

	𝐴 	𝐵

S

𝑅!
	𝑃

	𝐴

	𝑆

𝐵
	𝑃

	𝐴

	𝑆

𝐵
𝐵 𝑖𝑓 …

	𝑃

	𝑆

𝐵
𝐴; 𝑖𝑓 …

𝑅" 𝑅# 𝑅"
	𝑃

	𝑆

𝑖𝑓 …
𝑅$

	𝑃

𝑖𝑓 … ; 𝑆

Reconstructing programs with loops. Loops introduce
cycles into CFGs. For CFGs with cycles, Spoq computes
the strongly connected components (SCCs). An SCC is the
largest set of nodes in which every node is reachable from
every other node. One node with self-pointed edges can
also be an SCC. Spoq then uses four additional rewrite rules
shown in Figure 6 to convert SCCs (marked by dotted orange
circles) into loop-related statements.

Rule R5 breaks cycles in an SCC which only has one
incoming edge (pointing to node A in the SCC), and all its
outgoing edges point to the same destination (node E outside
SCC). It redirects any edge to A in the SCC to having no
destination, and appends Ct(A) (a continue statement for the
loop A) to the edge. It also redirects any edge to E in the
SCC to having no destination, and appends Bk(A,E) (a break
statement from the loop A to E) to the edge. After the rewrite,
there is no longer a cycle back to node A and the size of the
SCC becomes smaller. When an SCC has incoming edges
from more than one node, rule R6 duplicates the SCC for
each node with incoming edges so that each SCC has only
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one incoming edge. For nested loops in which the inner loop
may directly jump out of the outer one, rule R7 converts such
an SCC into one in which the jump target remains within the
outer loop. Rule R7 inserts a new node F , and all outgoing
edges from the inner loop are redirected via break statements
to F . Flags are also appended to the outgoing edges. Node
F contains instructions to jump to different destinations
depending on the flag. Flag A.b means breaking the outer
loop A, A.c means going back to the beginning of the outer
loop A, and no flag means breaking the inner loop. Once
cycles are removed, rule R8 converts a node’s instructions into
a single Loop statement, and re-establishes the edge from the
loop node to its successor indicated by the break statement.

Assembly code. Spoq also handles assembly code, repre-
senting assembly instructions as parameterized inductive
types in Coq. Each instruction corresponds to one construct
with the operand as the parameter. Since assembly is not a
structured language, Spoq simply translates each assembly
procedure or inline assembly statement into a list of assembly
instructions in their Coq representation. For inline assembly,
LLVM IR already encapsulates it as a function. Spoq extracts
the assembly code into a separate assembly procedure, and
replaces the original function body with a call to the assembly
procedure, decoupling the inline assembly from the LLVM
IR in the Coq representation. The current implementation
only handles Armv8 assembly code.

Semantics of Coq representations. Once LLVM IR and
assembly code is translated to its Coq representation, it can
then be verified. This requires defining the semantics of
LLVM IR and assembly instructions in Coq, to specify the
behavior of the Coq representation. Semantics are defined
with respect to a layer interface for a bottom layer machine
model. The interface contains a machine state st and getter
and setter methods that access objects in the machine state
through object pointers. An object pointer is a pair (base,
ofs), where base specifies the object and ofs specifies the
field or offset within the object. In other words, the semantics
of LLVM IR and assembly instructions define how those
instructions use the getter and setter methods and how they
update the underlying machine state. The machine state
contains memory blocks and registers, as discussed below.

LLVM IR semantics only depend on memory objects,
each of which is a set of disjoint memory blocks that can be
accessed using load_mem and store_mem methods through
object pointers with boundary checks. A memory block is
contiguous and its size is defined by the type of the respective
structure or global variable. For example, the page array
in Figure 2 is a memory block with (MAX_PAGE× 4) bytes
and can be accessed using an object pointer ("page", i),
where 0 ≤ i < MAX_PAGE× 4. The layer interface contains
a variable environment providing a one-to-one mapping of
variable names to corresponding addresses in memory.

For assembly code, Spoq models the semantics of the

Armv8 instructions based on not only memory block objects,
but also register objects. For example, the register objects
model that clearing the VM bit in HCR_EL2 register will disable
the stage-2 translation for EL1 and EL0. Since an assembly
procedure is just a list of assembly instructions, the semantics
of an assembly procedure is defined as applying the semantics
for each assembly instruction in the list one after the other.

Based on CCALs, Spoq uses CPU-local reasoning and
distinguishes memory objects as CPU-private memory, lock-
synchronized memory, and lock-free memory. Each CPU-
private memory object belongs to and can only be accessed
by a particular CPU. Each lock-synchronized memory object
is associated with a lock. When accessing a lock-synchronized
memory object, Spoq checks that the corresponding lock is
held by the local CPU. Accessing a lock-free memory ob-
ject generates an event appended to a global log, and an event
oracle is queried to simulate other CPUs’ behavior before gen-
erating each event. Correct concurrent behavior is guaranteed
in the same way as previous work using CCALs [38,40]. This
event-based machine model assumes sequential consistency
(SC). To propagate proof results for a system to Arm’s relaxed
memory hardware, users can follow the methods introduced
by VRM [54] to verify that the system satisfies six weak-data-
race-free conditions. This implies that the system exhibits no
more behaviors when running on Arm relaxed memory hard-
ware versus an SC model. Thus, any guarantees proven using
the SC model still hold on Arm’s relaxed memory hardware.

5 Synthesizing Identical Refinements

Low-level specifications without loops. Spoq recursively
aggregates the small-step semantics of every IR statement
in a function and generates a Coq definition to reflect the
entire transition as the low-level specification of the function.
Leveraging the reconstructed program structure, Spoq simply
scans through the Coq AST representation, conducts case
analysis starting with the first statement, and generates the
corresponding Coq definition as a string based on the defined
LLVM IR semantics. A small piece of Python pseudocode
for assignment and branch statements is shown below:

def spec_gen (ast, spec):
for n in range(len(ast)):
i = ast[n]
if isinstance(i, IAssign): # Assignment case
s = f"let {coq_name(i.asg)} := {val(i.v)} in"
spec.append(s)

elif isinstance(i, IIf): # Branch case
spec.append(f"if {coq_name(i.cond)} then")
spec_gen(i.true_body + ast[n+1:], spec)
spec.append(f"else")
spec_gen(i.false_body + ast[n+1:], spec)

...

For an IAssign statement, which assigns a value to a
temporary variable, Spoq generates a let binding in
Coq. For an IIf statement, Spoq recursively invokes its
specification generator spec_gen for each branch in the code
and concatenates the branch body with the rest of the AST.
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Identical refinements without loops. Spoq automatically
generates identical refinement proofs by using a Coq tactic
lrefine. The idea is to do case analysis for each conditional
by recursively decomposing each conditional into two
sub-proofs, one for when the conditional is true and another
for when it is false. Once a branch body is reached with no
further conditionals, the proof can simply show that if the
low-level specification transforms the machine state from st

to st’, then the small-step semantics of the Coq AST also
transforms the machine state from st to st’. Spoq aggregates
the sub-proofs for all the branch cases to form the overall
refinement proof. Take the following pseudo-specification
generated from an if statement as an example:

Definition foo_low (st: ST) :=
if cond then foo_true_low st else foo_false_low st

The lrefine tactic will conduct case analysis over cond,
which generates two sub-proof goals. The first goal is to
prove that the AST transfers st to “foo_true_low st” with
an additional hypothesis “H0: cond = true.” The lrefine

tactic then executes the semantics of AST for one step by
showing that the branch condition will be evaluated to true

when H0 holds and finally invokes lrefine recursively to
prove that the first branch implementation will transfer st
to “foo_true_low st,” a specification generated using the
first branch. The second goal can be proved similarly.
Low-level specifications for loops. Spoq generates low-level
specifications for loops using a recursive Fixpoint construc-
tion in Coq. A Fixpoint definition requires a decreasing
argument, which has the type nat and decreases for each re-
cursive call of the function. Spoq requires the user to provide
a ranking function for each loop as the decreasing argument.
It then generates low-level specifications for loops by filling
in the parts marked with {{ }} in the template below:

1 Fixpoint _loop (n: nat) (bk rt: bool) {{Vi Vo}} st:=
2 match n with
3 | O => Some (bk, rt, {{Vo}}, st)
4 | S n’ =>
5 match _loop n’ bk rt {{Vi Vo}} st with
6 | Some (bk’, rt’, {{Vo’}}, st’) =>
7 if bk’ then Some (bk’, rt’, {{Vo’}}, st’)
8 else if rt’ then Some (bk’, rt’, {{Vo’}}, st’)
9 else {{low-level spec of the loop body}}

10 | _ => None
11 end
12 end.
13 Definition _low {{args}} (st: ST):=
14 {{low-level spec before the loop}}
15 let n := {{rank i_Vi}} in
16 match _loop n false false {{i_Vi i_Vo}} st with
17 | Some (bk, rt, {{Vo}}, st’) =>
18 if rt then Some ({{Vo}}, st’)
19 else {{low-level spec after the loop}}
20 | _ => None
21 end.

For the loop, Spoq generates a Fixpoint construction
such that one recursive call of the Fixpoint construction
corresponds to one iteration of the loop, so its body is
the low-level specification of the loop body (line 9). Five
Fixpoint arguments track the state of the loop (line 1). Vi are

the input variables initialized before the loop and accessed by
the loop body; they have initial values i_Vi. Vo are the output
variables accessed after the loop that were also accessed in
the loop body; they have initial values i_Vo. For example,
the loop in alloc in Figure 2 simply has i for both Vi and
Vo, with initial values 0 and MAX_PAGE, respectively. Spoq
determines input and output variables and their initial values
from syntactic analysis of the IR code. n is the decreasing
argument, which is a natural number that is determined by the
user-provided ranking function, which takes as input all the
input variables of the loop. n is initialized using the ranking
function over the initial value of input variables i_Vi, which
sets the maximum number of “loop iterations” (line 15), and
decreases by one for each “loop iteration” (line 4). Flags bk
and rt indicate whether the loop has already been terminated
by a break or return statement. The loop body (line 9) sets
bk to true when executing a break statement or exiting when
the loop condition becomes false, and sets rt to true when
executing a return statement. Fixpoint will not make further
changes once bk or rt is set to true (lines 7 and 8).

For the function containing the loop, Spoq generates
low-level specifications for the code before the loop (line 14);
invokes the Fixpoint with the initial values of the ranking
function, flags, and variables (line 16); skips the rest of
the function if rt is true (line 18); and generates low-level
specifications for the code after the loop if not returned
(line 19). Spoq will syntactically analyze the IR code and
produce Vi, Vo, and their initial values i_Vi and i_Vo. Note
that Figure 3 shows a simplified low-level specification that
omits the bk and rt flags and uses a tail recursion style.

Identical refinement proofs for loops. Spoq proves
identical refinements for loops using induction. The base
case is trivial because the input machine states are the same.
Spoq only needs to prove that the initial ranking function is
non-negative. This is automated using a tactic xlia, extended
from Coq’s tactic lia, a decision procedure for arithmetic.
The induction step is to show that when the input machine
states for the low-level specification and Coq AST are the
same after the i-th iteration and both bk and rt are false, the
output machine states are still the same after the (i+ 1)-st
iteration. The (i + 1)-st iteration may have one of three
outcomes: 1) continue to the next iteration, 2) break the loop
due to a break statement or the loop condition becoming
false), and 3) return from the function. For all three outcomes,
Spoq first proves that the loop body and Fixpoint body have
the same semantics by recursively invoking lrefine. Spoq
then proves additional properties for each outcome. For the
first outcome, Spoq proves that the ranking function decreases
by at least one and is still greater than zero using xlia. This
guarantees that the loop must terminate after at most the
number of iterations indicated by the initial ranking function.
For the second outcome, Spoq proves that bk is true after the
iteration, and the ranking function is still non-negative when
the loop condition becomes false using xlia. For the third
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outcome, Spoq proves that rt is true after the iteration. Note
that the Fixpoint function continues the iteration after bk
or rt is true but will not make any changes to the state.

Spoq automatically generates the identical refinement proof
for a loop if the loop is not contained within a conditional
in the function. However, if the loop is contained within a
conditional, or a series of conditionals, this results in the loop
being used in multiple branches of execution, which Spoq
currently does not automatically handle. In this case, the user
will see that the loop termination proof failed in one or more
branches, and needs to copy and paste the induction proof
template into the other branches of execution with possible
minor modifications; this is generally straightforward to do.

Assembly code. Spoq generates low-level specifications
for assembly code by evaluating the assembly instruction
list. The current implementation only supports automatic
generation of low-level specifications for assembly code
without jumps. Spoq simply evaluates instructions sequen-
tially and outputs the machine state of the last instruction.
If the destination of a call instruction is a C function, Spoq
uses registers according to the Procedure Call Standard for
the Arm 64-bit Architecture (AAPCS64) [5]. Spoq sets the
arguments to the values in the argument registers according
to AAPCS64. After the function call, Spoq checks the linker
register of the machine state and evaluates the assembly
instruction from where the linker register points. After
returning from the function call to assembly code, Spoq sets
the value of the caller-saved registers to UNKNOWN because the
caller cannot assume any value in the caller-saved registers
according to AAPCS64. Spoq disallows reads from any
register with value UNKNOWN; assembly code must write to
the caller-saved register first before it can be read. This helps
prevent unexpected information leakage from registers.

By using the AAPCS64 calling conventions for assembly
code functions so that arguments and return values are
treated the same as C code functions, Spoq provides a unified
approach to generating low-level specifications for assembly
and C code. This includes using the same type value used
in the IR semantics for assembly code. This unified approach
makes it possible to link the proofs for assembly and C code.

Spoq generates low-level specifications for inline assembly
in the same manner as other assembly code, since it already
extracts the inline assembly into a separate assembly code
procedure. However, Spoq requires that the operands used in
inline assembly are C variables specified in the input or output
operand list, system registers, and constants. Directly reading
or writing general-purpose registers is disallowed to ensure
proof correctness when linking inline assembly and C code,
as the compiler may use them for temporary variables [40].

Spoq automatically generates identical refinement proofs
for assembly code, which is straightforward without jumps
as there are also no loops. The proof simply shows that
the low-level specification and assembly instruction list
transform the machine state in the same way.

6 Synthesizing Lifting Refinements

High-level specifications. Spoq generates high-level
specifications by applying a set of transformation rules to
low-level specifications to make them self-contained and
simple. Spoq uses 12 transformation rules shown in Figure 7,
though additional rules can easily be added. Spoq uses the Z3
SMT solver to apply rules involving symbolic execution or
mathematical simplification. The goal of the transformation
rules is to simplify the required control flow and eliminate
as much as possible unnecessary operations.

T1 unfolds a function’s definition in an expression. Func-
tions defined in lower layers that are called in the low-level
specification are generally unfolded as part of the high-level
specification to make it self-contained. Unfolding may also
provide opportunities to apply other transformation rules to
eliminate unnecessary operations to further simplify the spec-
ification. T2 eliminates a let assignment by substituting the
variable with its value, which helps find opportunities for
simplifying expressions. T3 eliminates an if branch if both
branches are the same. T4 eliminates a match statement by syn-
tactically determining which pattern matches the source value.
T5 eliminates a match statement if both the source and return
values are of Option type, and if the source value is None, the
return value is None. It eliminates the match by making body

the return value for all source values that are not None. T6 trans-
forms a match statement in which the source value matches
the pattern and is used in the return value by substituting the
pattern in the return value. This can provide more opportu-
nities for simplification since patterns are more specific. T7
moves the control flow of the source value to the outside of
the match statement. Spoq tries to simplify the source value
of match statements to make it easier to determine matching
patterns. T8 moves the control flow within an expression to the
outside of the expression to aggregate computations within
the expression, which helps find opportunities for simplifying
expressions. T9 does various simplifications for getter and set-
ter methods. Here i and j indicate different fields. Whether i
equals j can be determined syntactically (if they are structure
names), or by Z3 (if they are integer indices). T10 performs
symbolic execution using Z3 to identify whether the assertion
of a rely is valid or invalid. If the assertion is always true,
then rely is redundant and can be removed. If the assertion
is always false, the statement can simply return None. T10 will
do nothing if Z3 cannot decide if the assertion is true or false.
T11 performs symbolic execution using Z3 to simplify if

statements. T12 simplifies math expressions using Z3. For ex-
ample, Spoq applies T1, T2, and T11 to generate the high-level
specification in Figure 4 from its low-level specification.

While the transformation rules can be applied in different
orders to yield the same result, the order in which the rules are
applied can have a significant impact on the execution time
required. Spoq reduces execution time by applying the rules
in stages. In the first stage, it applies rules T2 - T8 and the T9
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𝑇𝑇1 def F a b := a + b
…
F (x+1) (y+1)

let a := x + 1 in
let b := y + 1 in
a + b

𝑇𝑇2 let a := x + y in
a + b (x + y) + b

𝑇𝑇5 match
(if c then

Some (a+1, b) 
else None) 

with
| Some (x, y) => body
| None => None
end

if c then
let x := a+1 in
let y := b in
body

else
None

𝑇𝑇3 if c then X else X X

𝑇𝑇7 match
(if c then A 
else B)

with
| … 
end

if c then
match A with
| … 
end

else
match B with

| … 
end

𝑇𝑇6 match V with
| P1 => … V …
| P2 => … V …
end

match V with
| P1 => … P1 …
| P2 => … P2 …
end

𝑇𝑇4
match
(e1 :: e2 :: L) 

with
| [] => X
| e :: lst => Y
end

let e := e1 in
let lst := e2 :: L in
Y

𝑇𝑇8 (if c then x
else y) + a

if c then x + a
else y + a

𝑇𝑇9 (st # i  v) # j st # j
(st # i  v) # i

(st # i  u) # i # j  v
(st # i # j  u) # i  v

(st # i  u) # j  v
(st # i  (st # i))

v

st

(st # j  v) # i  u

st # i  (u # j  v)

st # i  v

𝑇𝑇10 rely (p); body bodyP is true

rely (p); body NoneP is false

𝑇𝑇11 if c then A else B Ac is true

if c then A else B Bc is false

𝑇𝑇12 A + 2 * 3 + 4 A + 10

Figure 7: Transformation rules for high-level specifications.

syntactic transformations. In the second stage, it applies rule
T1, then repeats applying the rules from the first stage. Spoq
unfolds only one function, and only when no other syntactic
rules can apply, because unfolding multiple functions too
early can cause extra work. In the extreme case, unfolding
all functions first will cause the size of the specification
to explode and result in many unnecessary tests on each
expression in each unfolded function body. In the third stage,
it applies rules that use Z3, specifically rules T9 - T12, then
repeats applying the rules from the first and second stages.
Spoq applies syntactic rules first to simplify the specification
as much as possible before applying Z3 rules because Z3 rules
take much longer to process. To avoid long Z3 processing
times, Spoq enforces a short timeout on Z3 operations, which
is set to half a second by default. Essentially, Spoq repeatedly
applies all rules until the high-level specification converges,
meaning the rules no longer change the specification.

Using transformation rules to make the high-level
specification of each layer self-contained generally results
in the high-level specification being of larger size than its
corresponding low-level specification. However, this size
increase is outweighed by the ability to use the self-contained
specification to simplify reasoning for higher layers, espe-
cially with regard to reasoning about higher-level properties
based on the top layer high-level specification.

Lifting refinement proofs. Spoq automatically generates
lifting refinement proofs to prove that the low-level spec-
ification refines the high-level specification generated by
the transformation rules. This will necessarily be the case
for transformation rules done in Coq, so the task reduces to
reconstructing the proofs in Coq for all transformations done
by Z3; there is no need to trust any results from Z3. Spoq
uses a Coq tactic library to enable the proof automation.

Spoq simplifies the construction of refinement proofs
by introducing annotated high-level specifications, which
are the same as high-level specifications except that they
have additional annotations that encapsulate the results
of all of the Z3 transformations applied. For example, if
T11 is applied, there will be an annotation showing that
A+2∗3+4 = A+10, which serves as a hint for constructing
proofs. Spoq generates the annotations as it is generating the
high-level specification. Spoq then uses the annotations to
tell Coq what step-by-step syntactic substitutions it should
perform to prove the low-level specification refines the an-
notated high-level specification. Because the annotations tell
Spoq what transformations to do, it only has to validate them
in Coq, which is much easier than automatically discovering
the transformations in Coq; that would be difficult without
Z3. Spoq finally trivially proves that the annotated high-level
specification refines the high-level specification by showing
that removing the annotations does not change the machine
behavior. The two-part refinement proof shows that the
low-level specification refines the high-level specification.

Spoq introduces a Coq tactic hrefine to automate the
core part of the proof, namely proving that the low-level
specification is equivalent to the annotated high-level
specification. The strategy of hrefine is similar to the one
for lrefine used for the identical refinement proof discussed
in Section 5. The hrefine tactic analyzes the structure of
the annotated high-level specification, decomposes it into all
possible branches of state transitions, and conducts the proof
for each branch. For each branch, all match, if, and rely are
eliminated because the branch corresponds to a specific set of
values for their conditions. Each branch therefore has a list of
conditions and annotations. Spoq uses those conditions and
annotations to simplify the low-level specification and prove
that the low-level specification has the same behavior as the
high-level one for that branch. It then repeats this process to
prove the refinement for each branch.

Section 7 shows that Spoq was able to automatically gener-
ate all lifting refinement proofs involving Z3 transformations
in verifying a multiprocessor KVM hypervisor. However, it
is theoretically possible for there to be Z3 transformations for
which Spoq is not able to generate lifting refinement proofs, in
which case the user needs to manually complete those proofs.

Spoq also uses Coq tactics to automatically generate lifting
refinement proofs for Fixpoint constructions, which are used
in high-level and low-level specifications for functions with
loops. The proofs use induction and are straightforward to
generate because they only involve Fixpoint constructions,
which are guaranteed to terminate. The hard part of refining
loops to Fixpoint constructions and completing termination
proofs has already been done in the low-level specifications.

Using Spoq provides significant advantages in terms of
proof modularity over previous approaches that required
users to manually write high-level specifications and
proofs [20, 38, 40]. Because creating a self-contained
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high-level specification often involves unfolding function def-
initions from lower layers, any change to an implementation
at a lower layer can require rewriting the high-level specifica-
tions for all higher layers, which also requires rewriting their
refinement proofs. This makes it difficult to port specifications
and proofs as a software implementation evolves over time if
high-level specifications and refinement proofs are manually
written, as many of them may have to be manually rewritten.
With Spoq, the impact of an implementation change can be
localized to its respective layer, even if that layer requires
writing high-level specifications or proofs manually, since
high-level specifications and proofs for higher layers can be
automatically generated. This makes it much easier to port
specifications and proofs across software updates.

Assembly code. Spoq generates high-level specifications and
lifting refinement proofs for assembly code without jumps in
the same manner as for C code. The current implementation
leaves it to the user to write specifications and refinement
proofs for assembly code with jumps.

7 Evaluation

We have implemented a Spoq prototype, which consists of
three components: the translator from systems code into Coq,
the specification and proof generator, and the Coq libraries
for LLVM IR and assembly semantics and tactics. The three
components are implemented using 4K lines of code (LoC)
in C++ and Python, 6K LoC in Python, and 5K LoC in Coq,
respectively. We evaluated Spoq’s effectiveness in translating
C systems code into Coq for various widely used open-source
software, and verifying a KVM hypervisor implementation.

7.1 Translating system software into Coq

Since the first step in verification is to translate systems
code into Coq, we evaluated Spoq’s ability to do so for the
applications, libraries, and Linux kernel version listed in
Figure 8. We used the Makefile for the source code tree of
each application, library, and kernel to build the source code
using the default configuration, but output LLVM IR (.ll)
files, in some cases by modifying the Makefiles by replacing
the -o compilation option to output an executable with the
-S -emit-llvm option to output LLVM IR files, which are
then read by Spoq to translate them into Coq. The Linux
kernel uses a more complex KBuild system [29], but no
modifications were needed since it already accepts the -S

-emit-llvm option to output LLVM IR files.
For comparison, we also tried to use ClightGen to translate

the systems code into Coq. This required much more effort
to the build source code trees because many of the compiler
flags are not accepted by ClightGen. Instead, for most
cases, we ran the existing Makefiles to get the compilation
commands executed and saved them to a file, then used a
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Figure 8: Translating C code into Coq. Each bar shows how many
of the total number of C functions are successfully translated.

script to filter options not supported by ClightGen, then reran
the filtered compilation commands using ClightGen instead.

Figure 8 shows the results for translating C systems code
into Coq using Spoq versus CompCert’s ClightGen. Across
all of the applications, libraries, and the Linux kernel, Spoq
successfully translates over 99% of the functions in the
source code into their Coq representations. The failures
were caused by currently unsupported LLVM instructions,
mainly advanced branching instructions (e.g. callbr, invoke,
resume). Support for them is left for future work.

Spoq performs significantly better than ClightGen, which
fails almost entirely on the Linux kernel and only translates
roughly 50% of the functions in the source code into their
Coq representations for most cases. Its best performance
is on OpenSSL, for which it is still able to only translate
less than 80% of the functions in the source code into
Coq representations. ClightGen fails due to numerous
unsupported C features, including variable-sized arrays,
function parameters or return values with union/struct,
additional keywords, C statements, and other unsupported
inline assembly features. Furthermore, for the Linux kernel,
GNU C directives are ubiquitous in almost all header files
included by source code files and prevent ClightGen from
translating the kernel source code into Coq.

Not only does Spoq perform far better than ClightGen
in translating systems code into Coq representation, but it
has a much smaller implementation. The module in Spoq
responsible for translating systems code into Coq consists
of 2.7K LoC in Python and 1.3K LoC in C++, the latter to
make use of the official LLVM library to parse LLVM IR
files. Its minimal implementation avoids bloating the TCB.
In contrast, ClightGen is enormous, consisting of at least tens
of thousands of lines of unverified OCaml code. ClightGen
performs worse than Spoq and increases the TCB size much
more significantly than Spoq as well.

7.2 Verifying a KVM hypervisor
We evaluated Spoq’s ability to reduce proof costs by
verifying SeKVM, a retrofitted version of the KVM/Arm
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#define __hyp_text __section(.hyp.text) notrace
u32 __hyp_text mem_region_search(u64 addr)

(a) Unsupported compiler directive.

/* Orignal source code:
* inline assembly and macro of a C statement */
u32 __raw_readl(const volatile void __iomem *addr){
u32 val;
asm volatile("ldr %w0, [%1]\r\nldar %w0, [%1]",)
: "=r" (val) : "r" (addr));
return val;}

#define readl_relaxed(c) \
({ u32 __r = \

le32_to_cpu((__force __le32)__raw_readl(c)); \
__r;})

/* Verified source code:
* original source code replaced with only C function
* declaration so it can be parsed by ClightGen. */
u32 readl_relaxed(u64 addr);

(* Specification modeling the behavior of
* readl_relaxed; implementation unverified. *)
Definition readl_relaxed_spec (addr: Z) (st: ST) :=
(ZMap.get st.(mem) addr, st).

(b) Unsupported GNU Inline Assembly and C statement.

Figure 9: Example SeKVM changes required to use ClightGen.

hypervisor [13–15, 37] that was previously verified in
Coq [38, 39, 54]; only its trusted core needed to be verified to
guarantee the security properties of the entire multiprocessor
hypervisor. We updated SeKVM to run on additional hard-
ware, specifically the Raspberry Pi 4, which involved modest
changes to its previously verified codebase. However, this
required updating the proofs, so we used Spoq to verify the
updated version, and compare the proof effort to the manually
written Coq proofs for the earlier version of SeKVM.

Generating Coq representations. We first used Spoq to
automatically translate the source code of the trusted core of
the updated hypervisor version into Coq. Spoq successfully
translated all of the 3.8K LoC of C and Arm assembly code
into Coq. The same code that is compiled to execute is used
for verification; there is no difference, ensuring that the proofs
hold at the source code level for the code that is executed.
This is in contrast to the previous work to verify SeKVM,
which used ClightGen to translate its implementation
into Coq. This required further retrofitting of the source
code because of its use of many features unsupported by
ClightGen, including removing all header files with versions
that were amenable to translation by ClightGen.

Figure 9 shows examples of the retrofitting required to
use ClightGen. Figure 9a shows a GNU C compiler directive
__section which tells the linker to link the function into a spe-
cial text section that SeKVM later isolates and protects from
the rest of the kernel. ClightGen does not support such GNU C
compiler directives, which are heavily used in systems code to
control compilation and linking behavior. To use ClightGen,
we first need to remove those GNU C compiler directives from
all functions. Figure 9b shows a C macro readl_relaxed with
inline assembly. ClightGen does not support such C macros or
inline assembly. To use ClightGen, we need to either rewrite

all such macros into standard C functions, or model them as
abstract functions whose implementations are not verified
and must be included in the TCB. Figure 9b shows the latter
approach. The macro is replaced with just a function declara-
tion so it can be translated by ClightGen, and a specification
is written for the function, but the function implementation
cannot be verified. There are over a hundred such functions
in the original source code. These required changes result in
a gap between the code that is verified versus the code that
is compiled and executed. Unfortunately, without supporting
features such as GNU C compiler directives, the verified code
cannot be directly compiled and executed.

Generating specifications and proofs. We then used Spoq to
generate the top-level specification for SeKVM, including all
layer specifications and refinement proofs. Table 1 shows the
manual proof effort required to verify SeKVM’s functional
correctness using Spoq, as measured by the LoC in Coq that
still needed to be manually written to complete the verifica-
tion. We also propagated the proofs to Arm’s relaxed memory
hardware, but omit details as it is similar to VRM’s proof [54].

We wrote less than 100 LoC to provide the layer structure
in a layer configuration file consisting of the same 34 layers
as the original proofs for SeKVM; the changes in the updated
version of SeKVM were minor enough that no changes in the
layer structure were needed. We wrote 0.5K LoC for the bot-
tom layer machine model for concurrency-related structures.

For C code without loops and Arm assembly code without
jumps, Spoq automatically generated all low-level specifica-
tions and identical refinement proofs. For C code with loops,
Spoq automatically generated all low-level specifications
given a ranking function for each loop, each requiring 2 LoC.
For C code with loops within conditionals, we wrote 0.8K
LoC for identical refinement proofs that could not be auto-
mated by the current Spoq prototype, much of which involved
copying and pasting of Coq code for termination proofs when
multiple conditional branches used the same loop.

For C code and Arm assembly code without jumps, Spoq
automatically generated all high-level specifications and
lifting refinement proofs that do not use data abstractions. No
manual proofs were required to verify Z3 transformations.
For assembly code with jumps, we wrote 0.3K LoC for speci-
fications and 0.1K LoC for refinement proofs, without decom-
posing specifications and proofs into low-level and high-level
ones. For layers using data abstractions, one for locks and
three for page tables, we manually wrote high-level specifi-
cations and lifting refinement proofs. For high-level specifica-
tions, we wrote 1.0K LoC for layers using data abstractions.
For lifting refinement proofs, we wrote 0.8K LoC for locks,
2.5K LoC to show multi-level page tables refine a single-level
page mapping, and 0.9K LoC to show data structures tracking
ownership of physical pages refine an abstract map.

Reducing manual proof effort. Table 1 compares the proof
effort to verify SeKVM using Spoq versus the manually writ-
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LoC in Coq Original Spoq Reduction
Layer configuration — 0.1K —
Machine model 1.8K 0.5K 72%
Low-level specifications for C 5.6K 0 100%
Ranking function — 26 —
High-level specifications for C 5.5K 1.0K 82%
Specifications for Asm 0.5K 0.3K 40%
Identical refinement proofs for C 3.6K 0.8K 78%
Lifting refinement proofs for C 14.7K 4.2K 71%
Refinement proofs for Asm 1.8K 0.1K 94%
Security proof 4.8K 3.0K 38%
Total for functional correctness 33.5K 7.0K 79%
Total w/security 38.3K 10.0K 74%

Table 1: Manual proof effort to verify SeKVM.

ten proofs for the original version of SeKVM. The original
manual proof effort required writing more than 3 times as
many lines of specification and 5 times as many lines of proof
as verified source code. Spoq only required writing a third
as many lines of specification and roughly 1.4 times as many
lines of proof as verified source code. In terms of LoC, Spoq
reduced the overall manual proof effort by more than 70%
compared to the original manually written proofs. The largest
reductions in proof effort were for writing the specifications
themselves. Spoq reduced manual effort for writing speci-
fications by more than 90% overall, including eliminating
the cost for specifications without data abstractions. Spoq
reduced manual effort for refinement proofs by more than
70% overall, including eliminating the cost for C code without
loops or data abstractions. Spoq reduced manual effort for
refinement proofs for assembly code by more than 90% and
linked them together with the proofs for C code, in contrast to
the original assembly code proofs for SeKVM. Spoq largely
eliminated the cost of using intermediate layers to modularize
proofs, a substantial cost in the original manually written
proofs, as the vast majority of those layer specifications and
refinement proofs were automatically generated by Spoq.

Spoq also reduced the manual effort in defining the bottom
layer machine model by roughly 70% due to three reasons.
First, Spoq automatically derived many aspects of the abstract
machine model from the source code. In contrast, the machine
model for the original manually written proofs did not have
such a correspondence with the source code and had to be
manually written. Second, Spoq can use a simpler machine
model because it does not need data oracles [38], which were
introduced in the original manually written proofs to verify
security properties. We discuss below how we verify security
properties in a different manner, making data oracles unnec-
essary. Finally, Spoq does not need to include various getter
and setter functions in the bottom layer, which were required
in the original manually written proofs. These getters and
setters, written using various Linux macros, previously had to
be manually specified as part of the bottom layer specification
because they could not be translated by ClightGen into Coq
and hence could not be verified. In contrast, Spoq automati-

cally translated these getters and setters into Coq and verified
them, eliminating them from the bottom layer specification.

We compared the Coq code generated by Spoq versus the
original manually written proofs for SeKVM to provide a mea-
sure of the quality of the generated specifications and proofs
versus what would be produced by humans. Spoq generated
2.5K, 6.6K, 4.2K, 6.9K, and 17.5K LoC in Coq for the ma-
chine model, low-level specifications for C code, high-level
specifications for C code, identical refinement proofs for C
code, and lifting refinement proofs for C code, respectively. In
most cases, the generated Coq code was only modestly larger
than what was produced by a human writing hand-tuned Coq
specifications and proofs. In fact, Spoq generated tighter high-
level intermediate layer specifications than the original man-
ually written specifications. The top-level specification gen-
erated by Spoq was 1.6K LoC in Coq. This is essentially the
same size as the original manually written top-level specifica-
tion, though it is quite different as it is based on a different ma-
chine model derived from the source code for the bottom layer.
The quality and complexity of the top-level specification is
especially important since it should be simple enough that it
can be used to prove higher-level properties of the system.

Proving security properties. To demonstrate the usefulness
and correctness of the top-level specification generated by
Spoq, we used it to verify the security properties of SeKVM,
specifically that it protects the confidentiality and integrity
of virtual machine (VM) data. The original manually writ-
ten proofs used noninterference to prove the security proper-
ties along with data oracles for declassification. We instead
leverage the ideal/real paradigm to prove security properties,
introduced in our recent work on verifying the firmware for
the Arm Confidential Compute Architecture [40]. We define
an ideal machine model that guarantees the security of each
VM’s private data regardless of the behavior of the hypervisor.
The ideal machine defines for each VM a logically isolated
memory space and register set, and directs all memory and
register accesses from VMs to the logical state unless data de-
classification is defined. To account for data declassification
in SeKVM in which a VM can make requests to dynamically
start and stop sharing a piece of memory with the hypervisor,
the ideal machine moves data from the VM’s logical memory
to shared memory and vice versa. The VM accesses its private
data from its logical memory space, and accesses the shared
data from the shared physical memory. By definition, the per-
VM isolated state is only accessible by the VM itself, so the
confidentiality and integrity of VM data is naturally guaran-
teed in the ideal machine. We then prove the top-level specifi-
cation refines the ideal machine, which verifies that SeKVM
indeed protects the confidentiality and integrity of VM data.

The security proof provides three key advantages compared
to the original security proofs based on noninterference. First,
it does not require incorporating data oracles in the machine
model and in various layer specifications, decoupling the
security proof from verifying functional correctness. Second,
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Name Description
Apache Apache server v2.4.41 handling 100 concurrent

requests via TLS/SSL from remote ApacheBench [2]
v2.3 client, serving index.html of the GCC 7.5 manual.

Kernbench Compilation of the Linux kernel v4.18 using
allnoconfig for Arm with GCC 9.3.0.

Memcached Memcached v1.5.22 handling requests from a remote
memtier [49] v1.2.11 client with default parameters.

MongoDB MongoDB server v3.6.8 handling requests from
a remote YCSB [10] v0.17.0 client running
workload A with 16 concurrent threads and opera-
tioncount=500000.

MySQL MySQL v8.0.31 running sysbench v1.0.11 with 32
concurrent threads and TLS encryption.

Table 2: Application benchmarks.

the proof itself is simpler, reducing manual proof effort.
Table 1 shows the manual proof effort for the security proof
using this approach is 38% less than the original security
proof using noninterference, though this reduction in proof ef-
fort is unrelated to using Spoq. Finally, and most importantly,
the security proof only needs to trust the specification of a
small idealized secure machine model, which is roughly 200
LoC; the much larger specification of the real system does
not need to be trusted. The trusted specification defines how
VMs load and store private data to their logical isolated space
and specifies the data declassification policy for moving data
between the logical isolated and shared machine states.

Performance of verified implementation. We directly
compiled the Spoq-verified SeKVM source code into a binary
image, and executed it on a Raspberry Pi 4B with 8 GB
RAM, 64 GB SanDisk SD card, and a built-in 1 Gbps NIC.
We measured its performance by running the application
workloads listed in Table 2 in a VM using SeKVM. For
comparison, we also ran the workloads in a VM using
vanilla KVM and natively on the hardware. Each VM was
configured with 2 vCPUs and 4 GB RAM. vCPUs were
pinned to individual physical cores, VHOST networking
was used, and virtual block storage devices were configured
with cache=none [12, 24, 33, 52]. When running natively, we
restricted the workloads to use 2 CPUs and 4 GB RAM to pro-
vide a fair comparison. VMs used a vanilla Linux v5.4 kernel
as their guest OS. The VM on SeKVM included modified vir-
tio drivers in its guest OS to support SeKVM. The Raspberry
Pi ran a proprietary Linux v5.4.55 kernel [45]. It lacks support
for virtio front-end drivers so could not be used as a guest OS.
For client-server applications, clients ran on an x86 machine
with 10-core Intel Xeon CPU E5-2640 2.4 Ghz CPU, 48 GB
RAM and a NetXtreme BCM5719 1 Gbps NIC, connected
to the Raspberry Pi via a Netgear GS308 1 Gbps switch.

Figure 10 shows application workload performance when
using VMs with vanilla KVM and SeKVM. Performance
was normalized to native execution; lower is better. The
performance results are consistent with those previously
reported for SeKVM [54], with worst case overhead being
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Figure 10: Application benchmark performance.

less than 15% compared to vanilla KVM. I/O intensive
application workloads incurred higher overhead because
the hypervisor cannot access VM memory unless the virtio
front-end driver makes explicit hypercalls to request memory
pages used for I/O be temporarily accessible to the hypervisor
to pass the I/O data to the back-end driver in the host.

8 Limitations

Spoq’s TCB includes the Clang and LLVM toolchains, Spoq’s
translator, and Spoq’s semantic definitions for LLVM IR and
assembly. The translator is currently unverified and supports
a subset of LLVR IR and Arm assembly, so it may fail to
translate some source code into Coq. Spoq’s specification and
proof generator are not part of its TCB. Enhancing their sup-
port for assembly code with jumps is an area of future work.

The Z3 solver is currently the bottleneck in Spoq’s runtime
performance. Synthesizing high-level specifications for
relatively large functions can take over 30 minutes because
it may involve thousands of Z3 queries. Nevertheless,
automatically generating specifications and proofs for
SeKVM only takes two hours on an AWS machine with an
8-core 2.3 GHz Intel Xeon CPU E5-2686 v4 and 32 GB
RAM, an insignificant amount of time compared to the time
it takes to manually write specifications and proofs.

Spoq currently relies on users to complete all data abstrac-
tion proofs. Developing a library of commonly used data ab-
straction proofs for proof automation is an area of future work.

9 Related Work

Verified systems in C. seL4 [31] presents the first machine-
checked functional correctness proof of an OS kernel. It
used an unverified parser to translate C into Isabelle/HOL,
and is manually proved with simplified C semantics. For
example, pointers to local variables are disallowed by the
simplified C semantics. Assembly code is also unverified.
AtomFS [61] used a verification framework [56] that does
not support assembly code or full C semantics. Many verified
systems [3, 8, 11, 20, 30, 32, 38–41, 54] used ClightGen. For
code that can be parsed by ClightGen and compiled by
CompCert, the CompCert toolchain can guarantee proofs
hold at the assembly level. However, CompCert cannot make
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any guarantees regarding concurrent code even if it can
compile, and our results show that ClightGen cannot support
verification of most real-world unmodified systems code.

Modeling and verifying LLVM IR. VeLLVM [59] includes
formal semantics and tools to verify LLVM IR code in Coq.
VeLLVM adopts CompCert’s sequential machine memory
model, so it cannot verify concurrent systems. It directly
models small-step semantics of IR instructions in CFGs,
making it problematic to use for systems with complex
control flows. CreLLVM [28] extends VeLLVM to verify
compiler optimization passes, but shares the same limitations
of VeLLVM. VIR [48] also models small-step semantics
of IR instructions in CFGs, suffering the same problems as
VeLLVM. K-LLVM [36] defines LLVM IR operational se-
mantics in the K framework, but cannot be used for deductive
reasoning. SeaHorn [22] statically checks assertions in C
programs by translating them to LLVM IR, then using the
IR with an SMT solver and abstraction interpretation. Such
automated verification tools cannot verify the functional
correctness of a complex system. It is difficult to define
program specifications using just assertions, and SMT solvers
and abstract interpretation cannot prove complex proof goals.

Automating systems verification. AutoCorres [17] synthe-
sizes specifications from C programs based on a fixed and
simplistic machine model, which cannot be used to verify con-
current systems. It only supports an even more limited subset
of C than ClightGen and does not support assembly code. The
specifications generated are low level yet machine dependent,
making them difficult to use to verify higher-level properties.

Push-button verification is a fully automated verification
technique that has been used to verifying a file system [50],
compiler [53], and OS kernel [43, 44, 51]. Users only need to
write specifications in addition to the system implementation,
and the verification framework automatically completes the
proofs. However, implementations have restrictive constraints,
such as uniprocessor only and constant bounds for loops
so SMT solvers can be used. Unlike Spoq, verification
requires manually defined specifications, does not hold for
concurrent systems, and lacks machine-checkable proofs, as
the unverified SMT solver provides no proof of its answer
or any way to express a proof that can be machine checked.

Verification-aware programming languages such as
Dafny [34] and F* [47] have been used to implement
verified storage systems [25, 26] and crypto libraries [46, 60].
Developers write code, specifications, and proofs all together
in the same language. A compiler validates users’ proofs,
in part using an SMT solver, and generates source code in
familiar programming languages, which can in turn be further
compiled and executed. Building on Dafny, Armada [42] uses
a set of pre-built proof strategies to generate refinement proofs
between levels of intermediate specifications, which users
are expected to write to bridge the semantic gap between
an implementation and its high-level specification. Unlike

Spoq, layers are not supported and systems written in C and
assembly code cannot be verified without being rewritten.

Decompilation. Decompilation techniques recover a pro-
gram’s source code given only its binary [1,6,9,23,27,57,58],
though the recovered and original source code generally do
not match. Some techniques do not reconstruct program struc-
ture [1, 58], some do so with goto statements [6], and some
only do so with various restrictions on program CFGs [57].
More recent work can reconstruct program structure for arbi-
trary CFGs [23] without using goto statements, but requires a
much more complex algorithm than used by Spoq. In contrast,
Spoq employs a simpler algorithm to reconstruct program
structure for arbitrary CFGs, and keeps the original LLVM IR
instructions, which are much simpler and more rigorously de-
fined than C, instead of trying to recover source code. To sup-
port proof decomposition and simplify specification synthesis,
Spoq intentionally does not employ a richer variety of source
code primitives such as goto or switch statements. Its result-
ing representation is more amenable to verification. Its design
and implementation is far simpler than previous approaches
to keep its TCB small, which is important for verification.

10 Conclusions

Spoq is the first system that can automate the generation of
Coq representations, specifications, and proofs for C systems
code to enable machine-checkable verification of concurrent
system software. Spoq translates C systems code compiled
into LLVM IR directly into Coq, converting IR control flow
graphs into structured program functions to simplify veri-
fication while supporting full C semantics, including GNU
C extensions and inline assembly. Using a layering proof
strategy, Spoq introduces novel Coq tactics and transforma-
tion rules to automatically synthesize layer specifications and
refinement proofs, even for functions with loops. Users can in-
teract with Spoq to further refine the generated specifications
and proofs at any layer. We used Spoq on commodity system
software, such as the Linux kernel, to translate over 99%
of their source code directly into Coq for verification. We
also used Spoq to verify a multiprocessor KVM hypervisor
implementation, showing that it reduces manual proof effort
by over 70% while ensuring that the proofs hold for the
unmodified implementation that is compiled and executed.
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