
Design and Verification of the Arm Confidential Compute Architecture
Xupeng Li

Columbia University
Xuheng Li

Columbia University
Christoffer Dall

Arm Ltd
Ronghui Gu

Columbia University

Jason Nieh
Columbia University

Yousuf Sait
Arm Ltd

Gareth Stockwell
Arm Ltd

Abstract
The increasing use of sensitive private data in computing is
matched by a growing concern regarding data privacy. System
software such as hypervisors and operating systems are sup-
posed to protect and isolate applications and their private data,
but their large codebases contain many vulnerabilities that can
risk data confidentiality and integrity. We introduce Realms, a
new abstraction for confidential computing to protect the data
confidentiality and integrity of virtual machines. Hardware
creates and enforces Realm world, a new physical address
space for Realms. Firmware controls the hardware to secure
Realms and handles requests from untrusted system software
to manage Realms, including creating and running them.
Untrusted system software retains control of the dynamic
allocation of memory to Realms, but cannot access Realm
memory contents, even if run at a higher privileged level. To
guarantee the security of Realms, we verified the firmware,
introducing novel verification techniques that enable us to
prove, for the first time, the security and correctness of concur-
rent software with hand-over-hand locking and dynamically
allocated shared page tables, data races in kernel code running
on relaxed memory hardware, integrated C and Arm assembly
code calling one another, and untrusted software being in full
control of allocating system resources. Realms are included
in the Arm Confidential Compute Architecture.

1 Introduction

The use of sensitive private data in many applications from ad-
vertising to healthcare, often in the context of machine learning
models, has raised concerns regarding the privacy of data in
computing. These applications increasingly run on commodity
cloud providers. For example, data and computation may
be contained in virtual machines (VMs) running on shared
hardware in the cloud, relying on a hypervisor to preserve VM
isolation to protect applications and their data in VMs.

Software stacks generally require applications to trust
system software which they rely on, such as hypervisors and
operating systems (OSes). Although hypervisors and OSes
are supposed to protect applications and their private data,
their large codebases contain vulnerabilities that can risk
data confidentiality and integrity. Vulnerable system software
running at more privileged levels that can access application
data is a significant security issue.

To address this problem, we introduce the Arm Confidential
Compute Architecture (Arm CCA). CCA provides Realms,
secure execution environments that are completely opaque
to privileged, untrusted system software such as OSes and
hypervisors. CCA retains the ability of existing system
software to manage hardware resources for Realms while
preventing it from violating Realm confidentiality and
integrity. For example, a hypervisor should retain its ability to
dynamically allocate memory to or free memory from a Realm
VM, but must never be allowed to access the protected memory
contents of a Realm VM. CCA guarantees the confidentiality
and integrity of Realm code and data in use, that is data in CPU
registers and memory, but makes no guarantees regarding
their availability. Confidentiality means that any change that
a Realm makes to its private data cannot be observed by other
Realms or untrusted system software. Integrity means that a
Realm will not observe any changes to its private data that it
did not make. Because CCA does not guarantee availability,
a Realm data access is allowed to halt Realm execution.

CCA avoids hardware complexity by only introducing core
hardware mechanisms for attestation and basic address space
protection, then relying on firmware to manage the use of those
mechanisms. Specifically, CCA introduces Realm world, a new
physical address space for Realms orthogonal to privilege lev-
els and separate from the existing Non-Secure (NS) world used
today for running software stacks. Within each world, the nor-
mal privilege levels apply and instructions retain their existing
semantics, but software in NS world cannot access CPU state
and memory used by software in Realm world. CCA introduces
a new Realm Management Monitor (RMM), firmware which
runs in Realm world at a higher privilege level than Realms.
Untrusted system software such as a hypervisor running in
NS world can then make requests to RMM to manage Realms,
including creating and running Realms. RMM protects the
confidentiality and integrity of Realms while handling such
requests. System software in NS world is expected to retain
full control of the dynamic allocation of hardware resources
to Realms, including memory allocation and CPU scheduling.

Because any compromise of RMM could violate the security
guarantees of Realms, it is crucial to formally verify its
security and functional correctness. However, verifying RMM
poses at least four significant challenges. First, RMM employs
fine-grained synchronization mechanisms such as hand-over-
hand locking to improve performance. Second, RMM has data
races and runs on Arm multiprocessor hardware with relaxed

memory behavior. Third, RMM contains both C and Arm as-
sembly code integrated together which call one another freely.
Finally, RMM must protect the confidentiality and integrity of
Realms even though untrusted system software has full control
over the dynamic allocation of Realm resources. Previous
verification approaches have not been able to verify system
software with these properties [10, 11, 13, 26, 42, 43, 50, 62]

To verify RMM, we introduce VIA (Verification Infras-
tructure for Armv9-A), which supports four key verification
techniques. First, VIA introduces mover oracle queries to com-
bine a local CPU model with mover types [44]. These queries
encapsulate how operations on other CPUs are interleaved
with local CPU operations and can be reordered using mover
types to group local CPU operations together. Along with the
local CPU model, this allows easier sequential reasoning and
modular verification. This makes it possible for the first time
to verify hand-over-hand locking with dynamically allocated
shared multi-level page tables in system software.

Second, VIA decomposes concurrent code into data
race free (DRF) and not-DRF components, then introduces
permutation conditions for the latter such that proofs on a
sequentially consistent memory model will hold on relaxed
memory hardware for all concurrent code. Instead of having
to verify all of the code directly on relaxed memory hardware,
all that is required is to prove that the code satisfies the
permutation conditions, which ensure equivalent behavior on
sequentially consistent and relaxed memory hardware. VIA
allows any permutation conditions to be defined, supporting
verification of a broad class of programs.

Third, VIA bridges incompatibilities between C and
assembly code due to CPU register state being hidden by the
former but explicitly used by the latter. To accomplish this
without dependencies on a specific compiler, VIA introduces
a register accounting mechanism to correctly verify integrated
C and Arm assembly code. It leverages the machine-level
procedure call standard for the Arm instruction set to specify
how registers are potentially used when assembly code calls
a C function or is called by a C function. VIA tracks CPU
register state across invocations of both C and assembly code
primitives, capturing any information flow through CPU
registers even if hidden by C semantics.

Finally, VIA introduces an ideal/real paradigm for verifying
security properties that can be applied to Realms, even though
untrusted system software is in full control of system resources
and can reclaim system resources such as memory without
Realm permission, breaking noninterference. VIA defines an
idealized secure machine model that supports declassification.
Realm private data is stored in physically isolated memory
and CPU registers. Data channels, governed by security
policies, are used to exchange information between Realms
and untrusted software. We can then prove the security
guarantees of Realms by verifying that the implementation
refines its specification and the real system captured by the
specification simulates the idealized secure machine model.

This approach allows us to prove, for the first time, the integrity
and confidentiality of Realms. A key feature of the proof is that
it only needs to trust the specification of the small idealized
secure machine model; the much larger specification of the
real system does not need to be trusted.

We implemented, evaluated, and verified an early prototype
of CCA firmware. Although CCA hardware is not yet available,
we demonstrated CCA on a functionally accurate Arm Fast
Model with CCA support. We modified the Linux KVM hy-
pervisor [19–21] to run on CCA and manage Realm VMs, and
ran various VM workloads on the model. We also ported CCA
firmware to current Arm hardware to obtain preliminary data
on CCA performance, which shows that KVM on CCA incurs
modest overhead versus vanilla KVM on real application
workloads. We verified the correctness of both the C and Arm
assembly CCA firmware implementation, including RMM,
proving its implementation refines its specification through
43 abstraction layers. We then proved the specification is
equivalent to the behavior of the idealized secure machine
model to verify the confidentiality and integrity guarantees of
Realms. The proof only needs to trust roughly 200 lines of Coq
specification, making the formal security guarantees easy to
read and understand. This is the first proof of the security guar-
antees of a confidential computing architecture. Realms will be
included in Armv9-A, the next version of the Arm architecture.

2 Threat Model

We consider an attacker without physical access to the
machine and assume the attacker’s goal is to compromise the
confidentiality and integrity of VM data. Confidentiality and
integrity attacks in scope include compromising the hypervisor
or any other software to read or modify private VM memory or
register state, including by controlling DMA-capable devices,
or via memory remapping and aliasing attacks. We assume a
VM does not voluntarily reveal its own private data whether on
purpose or by accident, but attacks from other compromised
VMs, including confidentiality and integrity attacks, are in
scope. Availability attacks by a compromised hypervisor are
out of scope. Protection against known software error injection
attacks and side-channel attacks require appropriate usage
of architectural mitigations and are beyond the scope of this
paper. DRAM attacks, such as cold boot attacks, live probing,
or replay, require additional hardware and are outside of the
scope of the threat model.

3 CCA Design

A key challenge with introducing Realms is how to provide
backwards compatibility with a widely-used existing archi-
tecture that, like other CPU architectures, was designed based
on the fundamental assumption that more privileged levels
have greater control and access than less privileged levels of

Secure

Normal

Hypervisor

Host OS

App App

Realm

RMM

Guest OS

App App

RMI

Monitor

VM

RSI

EL3

EL2

EL1

EL0

Figure 1: Arm Confidential Compute Architecture.

software. One issue is understanding the potential interactions
of Realms with all the features in the Arm architecture. For
example, debug registers defined in the Arm architecture are
explicitly designed to allow hypervisors to peer into VM state,
which is fundamentally at odds with Realms. The behavior of
each instruction could be redefined in the context of Realms,
but this would be an enormous undertaking with unclear
compatibility implications, given that the Arm instruction set
was designed over multiple decades.

Another issue is how to provide memory protection and
isolation for Realms. The way this works for VMs is that
hypervisors manage nested page tables (NPTs) [9] to isolate
physical memory between VMs and protect hypervisor
memory from VMs. The physical addresses perceived by a
VM are intermediate physical addresses (IPAs), which are
translated by an NPT to physical addresses for the hardware.
Physical memory not mapped to the NPT is not accessible to
the VM. However, NPTs are under full control of the untrusted
hypervisor, providing no protection against hypervisor access
to VM data. While it would be possible to introduce an addi-
tional data structure to track memory ownership for each frame
of physical memory [3], this approach comes with several
problems. First, the amount of information required for each
frame of memory would be substantial and significantly impact
TLB design and performance. Second, this data structure
would have to be managed either via a separate more privileged
software entity than the hypervisor or via complex instructions
capable of capturing measurements of data assigned to a
Realm. Such complex CISC-like instructions would almost
certainly require introducing extensive microcode into an
architecture, which does not currently use any.

CCA avoids these problems by only introducing simple hard-
ware mechanisms orthogonal to existing privilege levels and
then relies on firmware to manage the use of those mechanisms.
This reduces hardware complexity at the cost of depending
on the firmware for the security guarantees of the architecture.
As a result, verifying CCA firmware is of crucial importance.

Figure 1 shows how CCA extends the Arm architecture.
Armv8-A provided two statically partitioned worlds, NS
world used by most software stacks and Secure world to host

Security State PAS
NS Secure Realm Root

NS Allow Block Block Block
Secure Allow Allow Block Block
Realm Allow Block Allow Block
Root Allow Allow Allow Allow

Table 1: CCA access control policy. The entity accessing a granule
belongs to a security state, while the PAS is a property only of the
granule being accessed.

platform security services [4]. CCA introduces Realm world,
which is fully compatible with NS world so that existing
software stacks that run in NS world can also run in Realm
world. CCA provides three privilege levels in each of the NS,
Realm and Secure worlds: EL0 for user, EL1 for kernel, and
EL2 for hypervisor. Because Realm and Secure worlds are
mutually distrusting, CCA introduces a fourth, more privileged
Root world to manage switching between the other worlds.

Each world has its own Physical Address Space (PAS). Each
4 KB frame of physical memory, which we refer to as a memory
granule, belongs to one PAS at any given time. Individual mem-
ory granules can be dynamically transitioned from NS PAS to
Realm PAS; there is no static partitioning of resources between
NS and Realm worlds. Hardware performs a PAS check on
each memory access against a Granule Protection Table (GPT)
that tracks the PAS of each memory granule and enforces the
access control policy shown in Table 1, forbidding invalid
accesses. NS world can only access its own memory. Realm
and Secure worlds can access their own respective memory
and NS memory, but cannot access each other’s memory. CCA
hardware requires all DMA accesses be subject to GPT checks,
protecting the Realm PAS against DMA-based attacks. We fo-
cus on the interactions between NS and Realm worlds and omit
further discussion of Secure world due to space constraints.

CCA relies on two trusted firmware components: RMM and
the EL3 Monitor (EL3M). RMM runs at EL2 in Realm world.
It controls the execution of Realms and provides services to
untrusted system software running in NS world. It isolates
Realms from each other using existing virtualization technolo-
gies such as NPTs and CPU register save/restore sequences.
Because RMM only enforces the security guarantees of CCA,
it can be orders of magnitude smaller than bare-metal hypervi-
sors which must also provide virtualization functionality. For
example, to run Realm VMs, RMM protects the confidentiality
and integrity of Realms while relying on existing hypervisors
for everything else, including resource allocation and schedul-
ing, physical hardware support, and complex device emulation.

EL3M runs in Root world at EL3, the highest level of priv-
ilege. It is responsible for context switching CPU execution
among the three other worlds and managing the GPT. EL3M
can access memory in any PAS. Only EL3M can change the
PAS of a granule, which involves updating its entry in the GPT.
Software running in the three other worlds can issue a Secure
Monitor Call (SMC) to EL3M to request a PAS change.

In the current version of CCA, the Realm isolation boundary

Command Description
Version Query RMI ABI version.
Granule.Delegate Change granule (from NS) to Delegated.
Granule.Undelegate Change granule (from Delegated) to NS.
Realm.Create Create Realm Descriptor (RD).
Realm.Destroy Destroy Realm identified by RD.
Realm.Activate Change Realm (from New) to Active.
REC.Create Create Realm Execution Context (REC).
REC.Destroy Destroy REC.
REC.Run Enter REC (i.e. run VCPU).
Data.CreateUnknown Change granule to Data with unknown content.
Data.Create Change granule to Data, copy NS content.
Data.Destroy Change Data granule to Delegated, zeroed.
RTT.Create Create Realm Translation Table (RTT).
RTT.Destroy Destroy RTT.
RTT.MapProtected Map Data granule in RTT.
RTT.UnmapProtected Remove mapping from RTT.
RTT.MapUnprotected Map NS granule in RTT.
RTT.UnmapUnprotected Remove NS mapping from RTT.
RTT.ReadEntry Return content of an RTT entry.

Table 2: RMM Realm Management Interface (RMI).

is at the level of entire VMs; applying Realms to secure other
entities such as containers [59] is future work. Similar to nor-
mal VMs, a Realm VM can concurrently run multiple virtual
CPUs (VCPUs) and the number of Realm VMs on a system is
only limited by the amount of physical memory available, not
by any arbitrary limits. The untrusted hypervisor always has
the ability to stop scheduling a Realm and can always reclaim
memory assigned to a Realm, but in no circumstances does
it have access to Realm CPU or memory state.

This split of responsibility between an untrusted hypervisor
and RMM, where the untrusted hypervisor allocates memory,
and RMM provides integrity and confidentiality guarantees
for the data and code stored in that memory, is accomplished
through a simple but powerful delegation concept. The hy-
pervisor delegates memory to Realm world, and undelegates
memory back to NS world. All memory used by Realms
must first be delegated by the hypervisor; RMM does not
itself manage a pool of memory for Realms. Once memory
is delegated to Realm world, the hypervisor can request RMM
to use it for various purposes, such as storing metadata or
data for a Realm. Whenever a memory granule is delegated
to Realm world but not used by RMM, RMM ensures that the
granule contains only zeros, reducing the risk of accidental
information flow when a granule is reused or undelegated.

RMM provides a Realm Management Interface (RMI) for
the hypervisor to request RMM to delegate memory, create
Realms, execute Realms, and allocate memory to Realms.
Each RMI command is implemented as an SMC, so when the
hypervisor invokes the command, it traps to EL3M, which in
turn switches execution to RMM in Realm world to handle
the command. Upon completion of the RMI command, RMM
issues an SMC to EL3M, which switches execution back to
the hypervisor in NS world. Table 2 lists the RMI commands.

RMM must know the state of each memory granule on the
system to uphold the security guarantees of Realms, which it
accomplishes by maintaining its own Granule Status Table

(GST) to track the delegation status and current use of each
granule. RMM uses the GST to ensure that a granule is in a
valid state to perform the requested action. For example, when
the hypervisor delegates a memory granule, RMM checks its
GST to confirm the granule has not already been delegated,
then issues an SMC to EL3M to request a change to Realm
PAS. EL3M checks that the granule is currently in NS PAS,
then updates the GPT to move it to Realm PAS. Finally, RMM
updates its GST to record that the granule has been delegated.
If the hypervisor attempts to delegate a granule which is al-
ready delegated, or undelegate a granule which is in active
use by RMM, RMM returns an error code to the untrusted
hypervisor. This pattern of checking valid states and either
performing a discrete action or returning an error is used for all
RMI commands, allowing RMM to remain in overall control of
the consistency of the system, while complex logic for policy
and resource allocation remains in the hypervisor. Unlike the
GPT, the GST is not checked by hardware and is only a soft-
ware bookkeeping mechanism. By maintaining a separate GST
from the GPT, the GPT can be kept simple so that it only needs
to contain information required for hardware-enforced checks.

The hypervisor creates Realms, Realm Execution Contexts
(RECs), and Realm Translation Tables (RTTs) using the
respective commands in Table 2. RECs correspond to VCPUs
and RTTs correspond to NPTs for normal VMs. RTTs are Arm
stage 2 page tables that translate from an IPA to a physical
address. RTTs use the same format and topological layout
in Realm world as NS stage 2 page tables, but also provide
a bit which allows Realms to access NS granules under the
control of RMM, for example, for virtual I/O between a Realm
and the hypervisor. On each of the Realm, REC, and RTT
create commands, RMM checks the GST entry for the address
provided to confirm the granule is already delegated, and
updates the GST entry to track that it is being used for Realm,
REC, and RTT metadata, respectively. We refer to a Realm’s
metadata as its Realm Descriptor (RD).

A Realm provides a Protected Address Range (PAR) within
its IPA space, which RMM ensures can only be mapped to
Realm PAS granules. For accesses within the PAR, RMM guar-
antees confidentiality and integrity to the Realm; outside the
PAR, the hypervisor is free to map NS PAS granules or emulate
accesses. This provides an OS running inside a Realm VM
with a reliable mechanism to determine whether it is accessing
its own private memory, or memory which can be shared with
untrusted agents, for example, buffers used for untrusted DMA
with virtual or physical network and block devices.

During Realm creation, the hypervisor can assign a granule
to the Realm at a specific IPA and copy data to it from an NS
granule. The IPA and data are cryptographically hashed and
the hash is included in the attestation token of the Realm. The
attestation token allows a Realm owner to reason about its
initial state and content. Once a Realm has been activated,
the measurement is fixed, and memory can only be added
to otherwise unused IPAs with unknown content. We refer

to delegated granules used to store data for a Realm as Data
granules. The hypervisor can request that RMM maps NS
granules outside the PAR at any time. Physically contiguous
delegated memory can be mapped to a Realm in blocks larger
than 4 KB granules to optimize TLB usage.

The hypervisor can reclaim memory from a Realm at any
time. RMM zeros a granule before undelegating it and return-
ing it to the hypervisor. Subsequent accesses from a Realm
to the IPA where the memory was reclaimed result in a stage 2
abort to RMM which prevents further execution of the Realm
and preserves the CCA integrity guarantee. The hypervisor
cannot subsequently map a granule to a previously-backed
IPA within a PAR without Realm permission.

As a system designed to scale to many cores, RMM makes
extensive use of fine-grained locking to support a high degree
of concurrent operation. For example, each memory granule
has its own lock so many granule operations can be done
in parallel. Similarly, an RTT is a multi-level page table, for
which each level has its own lock, and hand-over-hand locking
is used to support concurrent operations on RTTs, as discussed
in Section 4.1. For example, two Realm VCPUs can each
cause a stage 2 page fault at the same time but at different
IPAs, which can be resolved by the hypervisor in parallel on
two CPUs to improve performance. This is a key requirement
to support large Realms. Although most of RMM is written
in C, Arm assembly code is also used to implement memory
accesses with acquire/release semantics where lockless
concurrent accesses are used for performance reasons, and
to implement the locking primitives themselves.

CCA firmware is designed for security following best prac-
tices. Systems such as Linux map all physical memory to the
kernel page table. RMM and EL3M do not. RMM’s own page
table statically maps code and metadata exclusively accessed
by RMM, such as the GST and locks for each granule. Addi-
tional entries in RMM’s page table are used to statically assign
a virtual address range to each physical CPU in the system, re-
sulting in a fixed number of virtual address slots per CPU. Mem-
ory is then mapped on demand when needed. RMM maps Data
granules and metadata granules, such as RD and REC, on de-
mand, and unmaps them once the respective operation is com-
pleted. EL3M’s own page table only statically maps the EL3M
code, a small fixed size stack, and the GPT; no other memory
is mapped to its page table. Furthermore, SMC parameters are
only interpreted as values in EL3M, never as pointers used to
access memory. Even if a bug is introduced in some future
version of CCA firmware that is not completely verified, these
defense-in-depth measures make it much harder for a return-
oriented or jump-oriented programming attack to succeed.

4 VIA Framework

Because CCA relies on firmware to guarantee the security
of Realms, we verify that firmware, namely RMM and
EL3M. We prove the CCA firmware implementation refines

its layered specification in Coq, then use the top-level
specification to prove the system’s security properties hold
for the implementation. To accomplish this, we developed
the VIA verification framework, which supports layered
verification of CCA firmware. VIA introduces four key
verification techniques: mover oracle queries, relaxed memory
support via permutation conditions, register accounting for C
and assembly code integration, and a new ideal secure system
model for proving security properties that cannot be verified
using traditional noninterference-based approaches.

4.1 Mover Oracle Queries

To verify RMM, it is essential to simplify reasoning about pos-
sible interleavings of executions of concurrent software across
multiple CPUs. For example, RMM uses hand-over-hand lock-
ing to synchronize access to RTTs, which are 4-level page
tables, allowing multiple CPUs to manipulate the same page
table concurrently. Figure 2 shows the steps to allocate dele-
gated granules as new level T1, T2, and T3 tables of a Realm’s
RTT using RTT.Create and then, in step 4, allocate a delegated
granule to the Realm for its data and map its physical address to
the leaf-level T3 table using RTT.MapProtected, which would
typically occur on a page fault. Figure 2 also shows how step 4
uses hand-over-hand locking, in which RMM first acquiresT0’s
lock so it can lookup and acquire T1’s lock and release T0’s lock.
It can then lookup and acquire T2’s lock and release T1’s lock,
so it can lookup and acquire T3’s lock and release T2’s lock,
and finally update T3’s page entry. At the same time, RMM
running on other CPUs can do other page table operations,
such as acquiring T0’s lock to work on a different level 1 table.

To verify the page table operations with hand-over-hand
locking, we need to reason about the correctness of all
possible interleavings of operations. However, reasoning
about all possible interleavings of all operations all at once
is too difficult to do for a system as complex as RMM. To
address this problem, VIA introduces mover oracle queries,
a new mechanism that combines the power of local CPU
reasoning with mover types [44], building on previous work
on CertiKOS [24–27] and CSPEC [10].

To explain how mover oracle queries work, consider first
an explicit multiprocessor machine model, whose machine
state consists of per-physical CPU private state (e.g., CPU
registers) and a global logical log, a serial list of events
generated by all CPUs throughout their execution. Instead
of explicitly modeling shared objects, events incrementally
convey interactions with shared objects, whose state may be
calculated by replaying the logical log. An event is emitted
by a CPU and appended to the log whenever that CPU invokes
a primitive that interacts with a shared object. Our abstract
machine is formalized as a transition system, where each
step models some atomic computation taking place on a
single CPU; concurrency is realized by the nondeterministic
interleaving of steps across all CPUs. However, reasoning

T0 T1 T2 T3 Physical
Memory

Create Create Create Map1 2 3 4

Map:
4 Acq

T0
LD
T0

Acq
T1

Rel
T0

LD
T1

Acq
T2

Rel
T1

LD
T2

Acq
T3

Rel
T2

ST
T3

Rel
T3

Step

Figure 2: Page table creation and hand-over-hand locking execution.

about interleavings directly with multiple CPUs is difficult.
To simplify reasoning about all possible interleavings, we

instead lift multiprocessor execution to a local CPU model,
which distinguishes execution taking place on a particular
CPU from its concurrent environment [27, 36, 42]. All effects
coming from the environment are encapsulated by and
conveyed through an event oracle, which yields events emitted
by other CPUs when queried. Querying the event oracle can be
thought of in the context of the explicit multiprocessor machine
model as returning events from the global log generated
by all other CPUs; only new events since the last query are
returned. How the event oracle synchronizes these events is
left abstract, its behavior constrained only by rely-guarantee
conditions [35]. Since the interleaving of events is left abstract,
our proofs do not rely on any particular interleaving of events
and therefore hold for all possible concurrent interleavings.

A CPU captures the effects of its concurrent environment
by querying the event oracle between local CPU steps. A CPU
only needs to query the event oracle when interacting with
shared objects, since its private state is not affected by these
events. In other words, the CPU repeatedly performs two steps
when interacting with shared objects: querying the event oracle
to obtain events from other CPUs, then generating a local CPU
event. The result is a composite log of events from other CPUs
interleaved with events from the local CPU. This is equivalent
to the logical log in the explicit multiprocessor model, but with-
out the complexity of directly reasoning about multiple CPUs.

If possible, we would like to move the interleaved event
oracle queries out of the way of the local CPU events so we can
use sequential reasoning regarding the local execution of any
given CPU. By using mover types, we can identify how we can
reorder event oracle queries with respect to local CPU events
without changing the machine’s behavior. Thus, these queries
are mover oracle queries. We classify all local CPU events in
the composite log as RightMover, LeftMover, or NoneMover.
Mover oracle queries can be reordered before a RightMover
and after a LeftMover. For example, acquiring a lock is a Right-
Mover because if other CPUs do something after acquiring the
lock on the local CPU, they must be able to do the same thing
before acquiring the lock. The oracle queries which capture the
other CPUs’ events can be reordered before acquiring the lock.
Mover oracle queries cannot be reordered with a NoneMover.
For example, an oracle query followed by a NoneMover then
a LeftMover cannot be reordered after the LeftMover.

VIA can then reduce the interleaving of events in the log that
need to be considered in two ways, which we refer to as log
refinement. First, we can reorder oracle queries with local CPU

Right0
Reorder

Oracle0 Right1Oracle1 None2Oracle2 Left3Oracle3

Right0Oracle0 Right1Oracle1 None2Oracle2 Left3 Oracle3

Right0 Right1 None2Oracle’0 Left3 Oracle’1
Merge Oracle

Event RefineEVENT0Oracle’’0 Oracle’’1

Figure 3: Log refinement with mover oracle queries.

events based on the local events’ mover types. By reordering,
consecutive oracle queries will be merged to one. Second, we
can prove local sequences of events generated by the machine
refine an aggregate local event generated by a higher-level
machine. This refinement can be applied to any arbitrary CPU,
therefore, it applies to all CPUs, so that the entire log of events
refines the log of the higher-level aggregate events.

Figure 3 shows an example of log refinement to reduce in-
terleavings of events across CPUs into an atomic event. We
identify the mover type of each local event, i.e. [Right 0,Right
1, None 2, Left 3], and initially query the oracle before each
event. Based on the mover types, we can reorder all oracle
queries before the NoneMover to the beginning, and all re-
maining queries to the end, such that the log before and after
reordering have the same machine behavior. We then define a
new oracle that can be queried to return the consecutive events
from the previous oracle queries [Oracle 0,Oracle 1,Oracle
2], allowing those events to be merged into a single oracle
query [Oracle’ 0]. We then refine the local sequence of events
[Right 0, Right 1, None 2, Left 3] into a single higher-level
aggregate local event EVENT 0. This can be done for all CPUs
so we can reason further only using the higher-level aggregate
event EVENT 0 with oracle queries Oracle” 0 and Oracle” 1

that also return higher-level aggregate events, instead of the
many Left/Right/None events of lower-level machine.

4.2 Permutation Conditions
To verify RMM, we must account for the relaxed memory
behavior of the Arm architecture on code that is not data race
free (DRF). For example, Figure 4 shows how a Realm’s
list of RECs is updated in REC.Create, REC.Destroy, and
Realm.Destroy without holding a common lock. Each
Realm’s RD has a RECLIST (rd->rec_list), an array that
stores the pointers to all its RECs. The RECLIST can be
referenced from both the Realm’s RD and each of the Realm’s
RECs (rec->rec_list). Each REC records its index in the
RECLIST (rec->id). RD’s counter keeps tracking of how
many RECs are in a Realm. The hypervisor must destroy all
RECs of a Realm before destroying its RD because once RD is
destroyed, the Realm can no longer be referenced. Access
to the RECLIST is not synchronized by its own lock, to avoid
potential deadlock issues due to needing to hold multiple locks.
Instead, in REC.Create, the RD’s lock must be held to insert
a new REC in RECLIST to ensure mutual exclusion. However,
in REC.Destroy, the REC’s lock is held instead of the RD’s

Rec.Create(rd, id) {

acq(rd->lock)

…

(a) if (rd->rec_list[id] == NULL) {

(b) rd->rec_list[id] = NEW_REC;
(c) atomic_inc(rd->counter);

…

rel(rd->lock);

}

Realm.Destroy(rd) {

acq(rd->lock);

…

(f) if (rd->counter == 0) {

// rec_list should be EMPTY

(g) destroy(rd->rec_list);
…

rel(rd->lock);

}

Rec.Destroy(rec) {

acq(rec->lock);

…

(d) rec->rec_list[rec->id] = NULL;

(e) atomic_dec(rec->rd->counter);
rel(rec->lock);

}

Figure 4: Pseudo code of RECLIST data races, marked in bold blue.

locks when clearing the REC’s entry from the RECLIST so that
multiple CPUs can destroy different RECs of the same Realm
concurrently. Furthermore, the RD’s counter is increased or
checked in REC.Create and Realm.Destroy while holding
RD’s lock, but it is decreased in REC.Destroy without holding
any lock. As a result, data races can occur when concurrently
executing REC.Destroy with REC.Create or Realm.Destroy.

To address this problem, VIA builds on VRM [57]. VRM
verifies programs on Arm relaxed memory hardware that
are DRF except for synchronization methods and virtual
memory hardware. VRM verifies a program on a sequentially
consistent (SC) multiprocessor hardware model, defines and
proves that a fixed set of conditions hold for the program
running on relaxed memory hardware, and proves that the
conditions guarantee that the program has the same behavior
on SC and relaxed memory hardware so that its SC proofs also
hold for relaxed memory hardware.

VIA generalizes this approach for programs that are not
DRF. It ensures that such a program will have the same
behavior on SC and relaxed memory hardware by first decom-
posing the program into components that are DRF and not
DRF. Previous work already shows that the DRF components
will have the same behavior on SC and relaxed memory
hardware [57]. VIA then introduces permutation conditions
P on the non-DRF components such that P can be verified
to hold for the program on relaxed memory hardware, and
P can be proven to guarantee that the non-DRF components
will have the same behavior on SC and relaxed memory
hardware. Our experience suggests that even for programs
that are not DRF, only a small percentage of the code in these
programs is not DRF, so non-DRF programs can be verified
on relaxed memory hardware by only proving a small number
of permutation conditions in practice. This observation holds
for RMM, in which almost all of the code is DRF.

VIA uses VRM’s extended Promising Arm model [57] to
model Arm’s relaxed memory hardware, such that P needs to
be verified against all instruction permutations of the program
allowed by VRM’s Promising Arm model. Unlike VRM which
defines a fixed set of conditions that do not all hold for RMM,
VIA allows any condition P to be specified for non-DRF com-
ponents that will result in their behavior being in the same on
SC and relaxed memory hardware and that can be proven to
hold for the program on relaxed memory hardware. The condi-
tion is essentially a constraint based on the program’s seman-
tics that restricts the possible instruction reorderings that can
occur on relaxed memory hardware so that resulting program
behavior is the same on SC and relaxed memory hardware.

For example, to handle the non-DRF code in Figure 4, we
identify P to be when Realm.Destroy finds rd->counter

equals 0, rd->rec_list must be empty. This is necessary
because rd->rec_list must be empty when destroying it
in (g), otherwise the system may crash due to reclaiming
non-empty memory. Since REC.Create and Realm.Destroy

use the same lock, data races can only occur when either
runs concurrently with REC.Destroy. We prove each function
always behaves the same on SC and relaxed memory. For
REC.Create, since (b) and (c) cannot be reordered with (a)

due to the branch dependency, as required by Promising Arm,
its possible executions are (a)(b)(c) or (a)(c)(b). Since
(a) confirms that rec_list[id] is empty, all concurrent
REC.Destroy on other CPUs must destroy slots other than
id because REC.Destroy will only work if the rec exists,
which must be a non-empty slot in the rec_list. Therefore,
swapping (b) and (c) will never change any CPU’s behavior
and (a)(c)(b) is equivalent to (a)(b)(c), which is the order
on SC. For REC.Destroy, if (e) executes before (d), P will
be broken because when Realm.Destroy checks counter

concurrently on other CPUs, it may find counter is 0 but
rec_list is not empty, as shown below:

counter-- list[id]=NULLcounter==0 destroy(list)(e) (f) (g) (d)
(list is not empty)

This was actually a real bug in the prototype implementation
of RMM. Therefore, we must enforce that (d) always executes
before (e) by adding a barrier between them so it must follow
program order as on SC. For Realm.Destroy, the proof is
trivial because the branch dependency between (f) and
(g) guarantees that they execute in program order as on SC.
Therefore, this non-DRF code will not generate more behavior
on relaxed memory hardware than on SC.

4.3 Register Accounting
To verify CCA firmware with both C and assembly code, we
must account for the interactions of C and assembly code
primitives that call one another across language boundaries.
However, C code hides the details of how it uses CPU registers,
as the use of registers during C code execution is decided by the
implementation of specific C compiler used. Although register
behavior is not expressed by C language semantics, ignoring it
causes problems when attempting to verify programs in which
C and assembly code call one another, as shown in Figure 5,
which illustrates a real bug in the original prototype RMM
implementation detected during our verification. Existing
verification approaches cannot support bidirectional calls
between C and assembly code, such that the example in
Figure 5 would be erroneously verified without detecting the
information leakage [10, 11, 23, 26, 37, 42, 43, 46].

To address this problem, VIA introduces a novel register
accounting mechanism to correctly verify integrated C and
Arm assembly code while making minimal assumptions

ENTRY(store_outer):
mov x5, #0
bl store_c
ret

ENDPROC(store_outer)

void store_c() {
int s = secret;
// s stored in x5
store_inner();

}

ENTRY(store_inner):
str x5, [x1]
ret

ENDPROC(store_inner)

Spec: mem[%x1] = %x5; Spec: mem[%x1] = %x5; WRONG Spec: mem[%x1] = 0;

Figure 5: An example of incorrectly combining C and assembly
specifications. Assembly function store_outer clears register
x5 to 0, then calls C function store_c. store_c calls assembly
function store_inner, which stores register x5 into memory.
The intended behavior is that the value 0 will be stored to memory.
The actual behavior is that x5 stores C temporary variable s which
contains secret data, resulting in undetected information leakage.

regarding compiler behavior. VIA leverages the Arm64 Pro-
cedure Call Standard (AAPCS64) [7] to specify how registers
are potentially used when assembly code calls a C function
or is called by a C function. It then conservatively marks all
registers used by C code whose values cannot be determined
based on AAPCS64 as of Unknown value, and requires
assembly code to not depend on registers with Unknown values.

AAPCS64 constrains how some Arm registers are used. In
CCA firmware, C functions pass no more than eight integer
or pointer parameters and return an integer or pointer. For such
functions, AAPCS64 specifies that a C compiler will only pass
parameters through registers r0-r7 and save the return value
in r0. It also specifies registers that must have their values
preserved through a function call, namely all callee-saved
registers r19-r29 and the stack register sp. The use of other
general-purpose registers (GPRs) may depend on the specific
C compiler implementation.

For an assembly function that calls a C function, VIA checks
that the assembly code does not read any Unknown registers.
Legal assembly code can either keep such Unknown registers
untouched or overwrite them before using them. VIA uses
AAPCS64 to model the register behavior of the C function
by identifying register r0 as containing the return value, and
registers r19-r29 and sp as preserving the values. It marks the
values of other registers after the C function call as Unknown,
including caller-saved registers r1-r18 and the link register lr.

For an assembly function that can be called from a C
function, VIA checks that its behavior does not depend on
Unknown registers, and that it obeys AAPCS64 C calling
conventions so that it will not cause unexpected behavior in its
caller. VIA checks that (1) callee-saved registers r19-r29 and
sp preserve the values; (2) the program counter pc after the call
is equal to lr before the call so the assembly primitive returns
like a function call; (3) if the caller expects a return value, r0’s
value is never Unknown; and (4) the assembly code behavior
remains the same if we initialize all GPRs to Unknown except
for those carrying parameters. The last condition implies that
the assembly code does not read any Unknown registers, except
for saving and restoring callee-saved registers.

VIA also supports GNU Compiler Collection (GCC) inline
assembly extensions within a C function. This is used in
inline assembly memory accessors in RMM which guarantee

u64 sca_read64(u64 *ptr) {
u64 val;
asm volatile(

“ldr %[val], %[ptr]\n”
: [val] "=r" (val)
: [ptr] "m" (*ptr)

);
return val; }

u64 sca_read64(u64 *ptr) {
u64 val;
init_pr();
set_pr(I0, ptr);
asm volatile(

“ldr %O0, [%I0]\n”
)

val = get_pr(O0);
return val; }:

Bind:
ptr -> I0
val -> O0

ENTRY(sca_read64_inline):
ldr O0, [I0]
ret

ENDPROC(sca_read64_inline)

To asm prim

u64 sca_read64(u64 *ptr) {
u64 val;
init_pr();
set_pr(I0, ptr);
sca_read64_inline();
val = get_pr(O0);
return val; }

Figure 6: Translation of parameterized inline assembly.

atomicity or memory order semantics, as shown in the sca_-
read64 example in Figure 6. sca_read64 implements a 64-bit
single-copy-atomic read in one line of assembly code plus an
interface, which can specify a list of input registers, output reg-
isters and clobbered registers. VIA translates inline assembly
code into an assembly function according to the interface con-
straints; "r", "Q", and "m" constraints are currently supported.
It then checks its correctness like any other assembly function.

Translation is done using a set of logical registers I0-In
for inputs and O0-On for outputs so that verification does not
depend on the specifics of GCC register assignment. Input
registers are defined read only. VIA also defines abstract
accessors init_pr, which initializes all logical registers to
UNKNOWN, set_pr, which writes to a register, and get_pr,
which reads from a register. As shown in Figure 6, the trans-
lated sca_read64 function first calls init_pr for initialization,
saves parameters to input registers by calling set_pr, uses the
input and output registers in the assembly code, and gets the
return value from the output register by calling set_pr.

For simplicity, VIA imposes additional requirements
to guarantee GCC generates correct machine code whose
behavior is the same as VIA’s translated code. VIA forbids
inline assembly code from explicitly using any GPRs or goto
labels. For inline assembly with multiple instructions, VIA
enforces that all output registers are constrained by "&" or
"+". Thus, an output-only register never doubles as an input
register, and the same register is used for input and output
of an operand. This avoids any unexpected overlap in the
assignment of input and output registers [53].

Finally, because assembly code functions may be at the
interface to outside programs that are untrusted, VIA enforces
that all register values are not Unknown when returning from
those assembly functions. This ensures that there is no unin-
tentional information leakage from assembly code functions
to untrusted programs through registers with Unknown values.

4.4 Ideal Secure System Model
CCA protects the confidentiality and integrity of Realms’
private data during their lifetime. Confidentiality means any

Real System

Realm HypervisorRMM

Ideal System

Realm HypervisorRMM

Exclusive
Regs & Mem

data copy

RegsOther memoryNS granules RegsOther memoryNS granules

Figure 7: The real and ideal secure system model.

change a Realm makes to its private data is only observable
by that Realm. Integrity means a Realm will not observe any
changes to its private data that it did not make, but does not
imply availability; data access should either fail or return
the data previously stored. The confidentiality definition is
standard, but the integrity definition allows untrusted software
to modify a Realm’s private data as long as the Realm does
not observe the change. For example, to reclaim memory
from Realms, a hypervisor can unmap a Realm’s private data
without the Realm’s permission. This is allowed because the
Realm’s access to the unmapped data will trigger a page fault
so the Realm cannot observe future changes to the data content.
However, this breaks noninterference, which therefore cannot
be used to to prove security as is done for other verified
systems [16, 23, 29, 34, 42, 49, 55].

To address this problem, VIA introduces an ideal/real
paradigm, shown in Figure 7, inspired by the idea from formal
verification of separation kernels [22, 30]. The real system
is defined by the RMM top-layer specification, which builds
on and incorporates EL3M, in which all memory and CPU
registers are shared by Realms, RMM, and the hypervisor. The
ideal system is defined by an ideal system model specification,
in which each Realm has its own exclusive memory, and
each REC of the Realm has its own exclusive CPU registers,
while other software can only access the same non-exclusive
memory and registers as in the real system.

If each Realm only accesses its exclusive memory and
registers in the ideal system, we could then show that RMM
guarantees confidentiality and integrity by proving that the
real system simulates the ideal system. This would mean that
each Realm only accesses its exclusive memory and registers
in the real system as well, so nothing other than a Realm can
access its own data. However, such a simplistic model does not
work in practice. For CCA, we need a model that allows declas-
sification so Realms can access NS granules for initialization
and I/O, and CPU registers can be used to pass parameters
between Realms and RMM, or Realms and the hypervisor.

VIA introduces a new ideal system model for Armv9-A that
supports declassification of memory and registers based on
a set of well-designed rules that define when declassification
is allowed. The model has six declassification rules, listed in
Table 3. In this model, Realm exclusive memory consists of all
memory in its PAR and exclusive CPU registers consists of all
registers accessible by a Realm or that can affect its execution,
such as system registers. A Realm will only access its exclusive
memory and registers, unless it accesses a granule outside

Type Rule
Mem When a Realm accesses an IPA within its PAR but it is Unknown, the

Realm will copy the data from a special initialization buffer in memory
to exclusive memory before accessing the IPA. This can only be done
once per granule. The buffer is populated before the Realm is activated,
and cannot be changed once it has been activated.

Mem When a Realm accesses an IPA outside of its PAR, it will directly access
memory, not exclusive memory.

Reg On any trap from a Realm to the RMM, a Realm exposes the contents
of various exclusive system registers, marking them Unknown, and
marks various timer-related exclusive registers Unknown.

Reg If a trap is due to system register emulation, a Realm will mark a
specified exclusive GPR as Unknown.

Reg If a trap is due to a hypercall, a Realm will expose and mark the seven
exclusive GPRs r0-r6 used for parameter passing as Unknown.

Reg If a trap is due to an RMM call, a Realm will expose and mark the four
exclusive GPRs r0-r3 used for parameter passing as Unknown.

Table 3: Declassification rules.

its PAR or it accesses a granule or register that is Unknown.
If it accesses memory outside its PAR, the Realm will access
non-exclusive memory directly. If it accesses a granule or
register that is Unknown, the data will be copied from a special
initialization buffer or non-exclusive register, respectively, be-
fore accessing it. A granule is Unknown if it is not yet initialized.
A register is Unknown if it is used by the Realm to communicate
with RMM or the hypervisor. For example, when a Realm
invokes a hypercall, it exposes the arguments in registers
r0-r6, which RMM will provide to the hypervisor, then return
the results back in those registers. Marking a granule or register
as Unknown is used to represent declassification in the model.

We can then use this ideal system model with declassifica-
tion to verify that RMM guarantees Realm confidentiality and
integrity. The key is to establish a simulation relation in which
all machine states are equivalent between the ideal and real
systems and show that, at any step in the two systems satisfying
the simulation relation, the same data is obtained when access-
ing memory or registers. This involves proving a one-to-one
mapping of data between the two systems. With declassifica-
tion, the mapping will change such that a different mapping
will be used depending on whether the data is declassified or
not. For example, if a granule within a Realm’s PAR is not de-
classified, we will want to show that accessing that granule in
non-exclusive memory in the real system correponds to access-
ing it in exclusive memory in the ideal system to get the same
data. On the other hand, if a granule within a Realm’s PAR is
declassified, because its contents were initialized from an NS
granule, we will want to show that first accessing that granule
in non-exclusive memory in the real system correponds to ac-
cessing it in non-exclusive memory in the ideal system since
the respective exclusive memory is initially Unknown so the
data is first copied from non-exclusive to exclusive memory.

5 CCA Implementation and Verification

We used VIA to verify an early prototype implementation
of CCA firmware, which includes both RMM and EL3M as

Description LOC Description LOC
Machine model 1.4K RMM refinement proofs 6.1K
Lock proof 1.7K Top-level specification 1.1K
EL3M layer specifications .2K Ideal secure system model .2K
EL3M refinement proofs .9K Security simulation proofs 3.4K
RMM layer specifications 4.4K Permutation condition proofs 1.2K
Total 20.6K

Table 4: Lines of Coq code for verifying CCA firmware.

described in Section 3. The verification outcomes, including
the discovery of several latent bugs, were confirmed by Arm’s
development team and used to further improve the firmware
implementation. RMM contains 3.2K lines of code (LOC)
in C and .3K LOC in assembly. The runtime critical parts of
EL3M contain .1K LOC in C and .7K LOC in assembly; all
of the C code is for updating the GPT. All RMM and EL3M
code is verified, except for the portion of assembly code for
initialization (.1K LOC in RMM and .5K LOC in EL3M). For
remote attestation, RMM also uses functions provided by a
crypto library, which was not verified, though a verified crypto
library could be ported and used instead [42, 61].

Table 4 shows our proof effort, measured in LOC in Coq.
45 abstraction layers were used. The bottom layer machine
model is based on VRM’s Promising Arm model [57] to model
Arm’s relaxed memory. Another layer was used to verified the
spinlock implementation on the relaxed memory model and
lift it to an SC model. We verify the EL3M implementation
refines its layered specification through three layers. On top
of that, we verify the RMM implementation refines its layered
specification through 39 layers. The top-level specification
reflects RMM’s interface, combining both RMM and EL3M
functionality. Another layer defines the ideal secure system
model. We verify that the top-level specification simulates the
ideal secure system model.

5.1 Concurrent Multi-level Page Tables

The most challenging refinement proofs were for verifying
RMM’s RTT implementation. RTT primitives use hand-
over-hand locking to synchronize access to dynamically
allocated 4-level page tables, allowing fine-grain concurrent
operation on different page table levels. This required nine
layers. We leverage mover oracle queries and log refinement,
discussed in Section 4.1, to refine all of RMM’s page table
operations to atomic operations, verifying the correctness of
hand-over-hand locking in a real system for the first time.

Figure 8 visualizes the proof. Since acquiring a lock is
a RightMover, releasing a lock is a LeftMover, and reading
the page table entry is both a LeftMover and RightMover,
we can reorder mover oracle queries to refine the procedure
of walking the page table until acquiring the lock of T1 into
an atomic step. We group the local CPU events into a single
higher-level aggregate “walk until level 1” event. Similarly,
we can group events together from creating a level 1 table into
a “create level 1 table’ event, and destroying a level 1 table

Walk until level 1:

AcqT0 LDT0 AcqT1 RelT0Oracle0 Oracle1 Oracle2

Reorder

Oracle’0 Walk until level 1 T0 T1 Refine Events

Reorder

Refine Events

AcqT0 LDT0 AcqT1Oracle0 Oracle1 Oracle2 RelT0

Walk until level 1 T0 T1 Oracle’0 LDT1 Oracle’1 AcqT2 Oracle’2 RelT1

Walk until level 1 T0 T1Oracle’0 LDT1 AcqT2 RelT1Oracle’1 Oracle’2

Oracle’’0 Walk until level 2 T0 T1 T2Walk until level 2:

Figure 8: Proving atomicity for page table operations.

into a “destroy level 1 table” event.
We then refine the procedure of walking the page table until

acquiring the lock of T2 into an atomic step. We first prove that
“walk until level 1” is a RightMover because any subsequent
events at this layer from other CPUs can be reordered with it,
i.e., “create level 1 table”, “destroy level 1 table”, “walk until
level 1”, and acq/rel/LD/ST events for T2 and T3 level tables. A
“create level 1 table” from other CPUs is irrelevant to the local
“walk until level 1” because it can only create other level 1 ta-
bles and cannot overwrite T1 since RMM only allows creating
a table that does not exist yet. Events “destroy level 1 table” and
“walk until level 1” from other CPUs are irrelevant because they
cannot hold T1’s lock so can only access other level 1 tables,
not T1. Other events are also irrelevant because they do not
manipulate T0 and T1 tables. Therefore, “walk until level 1” is
a RightMover and all subsequent mover oracle queries can be
reordered before it. Thus, we refine “walk until level 2” into
an atomic step, as shown in the bottom of Figure 8. In a similar
fashion, we prove “walk until level 2” to be a RightMover and
refine the steps of “walk until level 3.” Continuing in this man-
ner, we eventually refine all RTT operations into atomic steps.

Proving RTT operations to be atomic allows us to prove de-
sired properties about RMM’s RTT management. The key prop-
erty to prove is that each non-empty entry in the RTTs, includ-
ing both intermediate entries pointing to lower-level RTTs and
leaf mappings, uses a unique delegated granule. This prevents
page remapping attacks while still allowing fine-grained access
to the RTTs for improved performance. The proof is straightfor-
ward because every operation on an RTT entry is proved to be
atomic, only the PA of a delegated granule is used to populate a
previously empty RTT entry, and each such granule is guaran-
teed to be unused and zeroed. Once a granule is used for an RTT
entry, its state changes from delegated to RTT or Data, prevent-
ing it from being used for other RTT entries. By using mover
oracle queries and log refinement,we complete the first proof of
hand-over-hand locking in a real system, and the first proof of
a system with fully dynamically allocated shared page tables.

5.2 Relaxed Memory
We prove permutation conditions as discussed in Section 4.2 to
verify the proofs hold on Arm relaxed memory hardware. Veri-

fying CCA firmware only requires six permutation conditions,
the RECLIST empty condition discussed in Section 4.2, and five
conditions previously introduced by VRM, namely (1) NO-
BARRIER-MISUSE, (2) TRANSACTIONAL-PAGE-TABLE,
(3) SEQUENTIAL-TLB-INVALIDATION, (4) WRITE-ONCE-
KERNEL-MAPPING, and (5) MEMORY-ISOLATION. NO-
BARRIER-MISUSE requires that barriers are correctly placed.
We verified that all lock acquisitions have acquirememory se-
mantics and all lock releases have releasememory semantics.
We also proved that memory accesses to shared objects outside
critical sections have release semantics so that they cannot
be reordered, preserving program ordering and SC behavior.

TRANSACTIONAL-PAGE-TABLE requires that shared page
table writes within a critical section are transactional. This
ensures that page table writes will not result in any behavior on
relaxed memory hardware that cannot be produced on an SC
model. In RMM and EL3M, each critical section contains at
most one page table write, so they are obviously transactional.

SEQUENTIAL-TLB-INVALIDATION requires that a page
table unmap or remap be followed by a TLB invalidation,
with a barrier between them. This precludes relaxed memory
behavior in TLB management code. There are no remaps in
RMM or EL3M. We verified that all page table unmaps are
followed by a TLB invalidation with a barrier between them.

WRITE-ONCE-KERNEL-MAPPING requires that if RMM
or EL3M’s own page tables are shared, they can only be written
once—only empty page table entries can be modified. This
precludes relaxed memory behavior due to out-of-order reads
of these page tables. For EL3M, this holds as it uses a statically
reserved hardcoded page table shared across all CPUs that is
never changed after booting. For RMM, although its kernel
page table is shared across all CPUs and can be changed, we
prove that it is logically partitioned into two tables, as discussed
in Section 3. We prove one table is shared but never changed
once initialized, and the other table is not shared because it
is statically divided into per-CPU ranges private to each CPU.

MEMORY-ISOLATION requires that the memory space ac-
cessible by RMM and EL3M is partially isolated with Realms
and NS hypervisors. This ensures that any relaxed memory
behavior of Realms or NS hypervisors cannot be propagated to
RMM or EL3M. We verify that Realms and the hypervisor will
only access Data and NS granules. Realms’ memory accesses
are managed by RTTs, We prove RTTs will only map Data

granules and NS granules. A hypervisor’s memory accesses are
controlled by the GPT. We prove all delegated granules are in
the Realm PAS state in the GPT so the hypervisor cannot access
them. We further prove that RMM and EL3M behavior do not
rely on what Realms or the hypervisor may do with Data or NS
granules. We prove EL3M never accesses memory other than
its own, RMM will not access the contents of Data granules,
and whenever RMM accesses NS granules, it may obtain arbi-
trary data because the hypervisor can make arbitrary changes
to the data. Thus, we show RMM’s proof on SC does not rely
on the concrete implementation of Realms or NS hypervisors.

GPT Update

EL3M handler EL3M exit

invoke SMC return

L0: EL3M C primitive

L1: EL3M Asm primitive

L2: RMM C primitive

Figure 9: Verify RMM and EL3M GPT update operations. Solid
arrows represent C code and dashed arrows represent assembly code.

Rec.Run

run

Realm enter Realm Realm steps Realm trap exit Realm

Hyp to Realm run Realm handle Realm exit Realm to Hyp

Figure 10: Verify REC.Run and its inner run_realm loop. Solid
arrows represent C code and dashed arrows represent assembly code.

RMM

handler Hyp to EL3M handle_ns_smc EL3M to HypEL3M to RMM RMM to EL3M

Figure 11: Verify rmm_handler in the top layer. Solid arrows
represent C code and dashed arrows represent assembly code.

5.3 C and Assembly Code Integration

Another key aspect of the refinement proofs was verifying the
interactions between RMM and EL3M, RMM and Realms, and
RMM and the hypervisor, which required the C and assembly
code integration techniques discussed in Section 4.3. For
RMM and EL3M, we verified the correctness of GPT updates.
Figure 9 shows how to verify a C primitive in RMM which is-
sues an SMC to EL3M to update the GPT. Layer L0 verifies the
C code for EL3M’s GPT operations. Layer L1 verifies EL3M’s
assembly code handler, which handles traps from RMM and
calls the GPT operations in C. Finally, layer L2 verifies the
C code in RMM that traps to EL3M’s assembly code handler.

For RMM and Realms, we verified REC.Run, which runs
a VCPU of a Realm and required five layers. Figure 10 shows
this C primitive, which calls the run_realm assembly code
primitive, which restores the Realm’s VCPU contexts and
enters the Realm. We proved that all GPRs are correctly
restored such that there is no information leakage from RMM
to the Realm through registers with Unknown values.

For RMM and the hypervisor, we verified the RMM
handling of RMI calls from the hypervisor. Figure 11 shows
when the hypervisor invokes an RMI call, it traps to EL3M first,
then jumps to RMM and calls the C function handle_ns_smc

to execute the RMI call. Eventually, RMM returns to EL3M
and then the hypervisor. We proved that when returning to the
hypervisor, there is no information leakage to the hypervisor
through GPRs with Unknown values.

5.4 Security

We prove that the real system specified by the RMM top-level
specification simulates the ideal system model with declassi-
fication, as discussed in Section 4.4. We discuss the simulation
relation in three parts: all machine states except for Data

granules, CPU registers, and VCPU contexts stored in REC

granules (Rel 1), Data granules (Rel 2), and CPU registers and
VCPU contexts (Rel 3). Each relation is proved by induction,
in which we assume the relation is initial true at machine
boot and prove that it is preserved during RMM, hypervisor,
and Realm execution so that the same data is obtained when
accessing memory or registers in both real and ideal systems.

We prove that Rel 1 is preserved during execution and
all data accessed from memory is the same. Rel 1 concerns
NS granules, delegated granules, and granules containing
Realm metadata including RTTs, none of which involve
declassification. We prove two invariants: (1) all RTTs only
map IPAs within the respective Realm’s PAR to Data granules
and IPAs outside its PAR to NS granules; and (2) the GPT only
labels NS granules in the NS PAS while all delegated granules
are labeled in the Realm PAS. The first invariant ensures that
Realms will only access Data and NS granules, and the former
will not affect Rel 1. The second invariant ensures that the
hypervisor can only access NS granules. Since Realms and
the hypervisor access NS granules in the same non-exclusive
memory in both real and ideal systems, they will obtain the
same data. All other granules for Rel 1 can only be accessed
by RMM. Since RMM accesses NS and other granules in the
same non-exclusive memory in both real and ideal systems,
it will obtain the same data; the VCPU contexts that are part
of REC granules are excluded here and considered in Rel 3.

We prove that Rel 2 is preserved during execution. The
invariant above ensures that the hypervisor cannot access Data
granules, and we prove that RMM does not access Data gran-
ules, so Rel 2 is preserved for both the hypervisor and RMM.
Data granules are only accessed by Realms. From Rel 1, the
RTTs must be the same in both real and ideal systems. If an
RTT maps an ipa within a Realm’s PAR to a Data granule at
host physical address hpa, the Realm will access the same data
at exclusive memory ipa in the ideal system as at hpa in the
real system, so Rel 2 is preserved. To ensure that an hpa cannot
be mapped to ipas in different Realms, we prove an invariant
that if an RTT maps ipa to hpa, then the Data granule at hpa
inversely maps to (Realm, ipa). Because there is a one-to-one
mapping for each Data granule to (Realm, ipa), any changes at
hpa can only be observed by the specific Realm at the specific
ipa as is the case in the ideal system, so Rel 2 is preserved for
all other data. If an an ipa within a Realm’s PAR is Unknown,
the Realm will access the same data at non-exclusive memory
hpa in the ideal and real system, so Rel 2 is preserved.

We prove that Rel 3 is preserved during execution. We prove
if a Realm’s VCPU V is running, its register r in the real system
equals the corresponding exclusive register r if not Unknown or
the non-exclusive register r if Unknown in the ideal system. We
prove if a Realm’s VCPU V is not running, V’s REC context of r
in the real system equals the corresponding exclusive register
r if not Unknown or the V’s REC context of r if Unknown in the
ideal system. In the ideal system, Realm’s register data is
always stored in the exclusive registers except for those being

declassified. Exclusive registers are not involved in context
switches. We then prove that RMM indeed correctly saves and
restores Realms’ VCPU contexts, so that Rel 3 is preserved.

Finally, we note that our simulation proofs between the
real system and ideal secure system model verify Realm
confidentiality and integrity without even trusting the
correctness of the RMM or EL3M specifications. The proofs
only need to trust the specification of the ideal secure system
model, which encodes the declassification rules and consists
of only .2K LOC in Coq. Furthermore, as shown in Table 3,
the declassification rules only allow a Realm to disclose its
data in two ways, by writing NS granules outside of its PAR
or via the eight GPRs used for hypercalls, making the security
policy formalization easy to understand.

5.5 Bugs Found

We identified several bugs in the CCA firmware prototype
implementation during verification. Through refinement
proofs, we detected common bugs such as incorrect boundary
checking for some variables and misuse of locks; some
locks were released without previously holding them. More
importantly, verification of C and assembly code integration
identified a serious security bug that neither EL3M nor RMM
clear the caller-saved registers when returning to the hypervi-
sor. These registers may carry RMM’s private execution states
and leak information. For example, RMM saves and restores
Realms’ VCPU contexts, and some contexts may remain in
caller-saved registers and leak to the untrusted hypervisor.
Another bug identified was in the REC execution handler. The
hypervisor provides an NS granule to communicate entry
and exit information with RMM. RMM locks and checks
that the given granule is indeed an NS granule, accesses its
contents, unlocks the granule, and enters the Realm. However,
when exiting from the Realm, RMM did not lock and check
the granule state before accessing it. This may lead to RMM
unexpectedly receiving a Granule Protection Fault (GPF) from
the hardware when accessing the granule using the NS PAS,
if the granule was delegated by another CPU. This could lead
to a denial of service of RMM or have worse consequences
if GPF handling was not properly implemented in RMM.

Through permutation condition proofs, we identified
an RMM bug that REC.Destroy does not implement
“counter−−” with the release semantics (instruction (e) in
Figure 4) such that it can be reordered with (d) on Arm’s relax
hardware. This may cause Realm.Destroy to wrongly set the
RECLIST to be reusable before REC.Destroy clears it because
when counter is zero, all RECs in the list should have been
destroyed, which was not true due to this relaxed memory bug.

Through security proofs, we identified an RMM bug that
allows the hypervisor to create two Data granules for the same
memory address of a Realm. Thus, RMM can unmap one Data
granule from an IPA of a Realm and map another Data granule
to the same IPA, violating the Realm integrity guarantee,

because the Realm could observe a change in Realm data not
caused by a Realm memory access.

5.6 CCA KVM
CCA provides a standard application binary interface (ABI)
to allow hypervisors to communicate their intents to RMM via
RMI commands, which is suitable for adoption by commodity
hypervisors. However, existing hypervisors do require some
modifications to use CCA to support Realm VMs. Regardless
of whether a hypervisor is modified to use CCA, it cannot
compromise the confidentiality and integrity of Realms.
Without modifications, existing hypervisors cannot run Realm
VMs, but can still run non-Realm VMs.

We modified the Linux KVM hypervisor to use CCA,
which we refer to as CCA KVM. The modifications involved
roughly 3K LOC in C to KVM, including .5K LOC for RMI
commands, .4K LOC for handling exits from Realms, .8K
LOC for creating and destroying Realms, and 1.1K LOC for
stage 2 page table management using RMI commands. The
modifications also required roughly .5K LOC in C to QEMU,
mostly related to VM boot, initialization, and exit handling.
Finally, roughly 40 LOC in C of modifications to the virtio
driver in the Linux guest kernel were required so that it uses
a bounce buffer to communicate I/O data with the hypervisor.
This is needed because the ring buffer normally used by the
virtio driver in the VM is in memory not accessible to the
hypervisor when using Realms. Our experience with KVM
indicates that the modifications required for a commodity
hypervisor to use CCA are quite modest and involve changes
to a very small percentage of its existing codebase.

6 Performance Evaluation

We have run the CCA software stack, including RMM,
EL3M, and modifications to the Linux KVM hypervisor to
use Realms, on an Arm Fast Model which implements the
Realm Management Extensions (RME) CPU architecture.
The Fast Model is a valid software emulation of the CPU
architecture, allowing us to demonstrate that the CCA software
stack provides the desired security guarantees and system
functionality. However, Fast Models do not provide any cycle
accurate measure of real performance and are too slow to run
real application workloads. While CCA will be available in
Armv9-A, Armv9-A hardware is not yet available.

To provide a preliminary measure of CCA performance, we
have ported the CCA software prototype to run on currently
available Arm hardware, an Arm N1 System Development
Platform (N1SDP) [5] with an Armv8.2-A Neoverse N1 SoC.
This version of EL3M is based on the the Trusted Firmware-A
(TFA) codebase. The N1SDP does not provide GPT or Realm
world hardware, so it cannot enforce the security guarantees
of Realms, but we can use it to mimic the performance costs
of Realms by modifying the EL3M code. Context switching

between NS and Realm worlds is mimicked by modifying
EL3M to switch between two separate contexts within NS
world. EL3M is further modified to support the RMI as well as
handle GPT update requests from RMM. We did not include
EL3M code that controls GPT registers as they do not exist
on the N1SDP, but all data written to the GPT memory can
be done, although without any effect.

This setup necessarily will have some performance differ-
ences from real CCA hardware, but it provides a useful approx-
imation of actual Realm performance. The cost of GPT checks
by CCA hardware are not included since no GPT hardware is
available, but are expected to exhibit good caching behavior
and will not affect the relative performance of VMs versus
Realm VMs since they apply equally in NS and Realm worlds.
The cost of some hypervisor operations, such as those that
require exiting to userspace, will be overly conservative as
controlling timer interrupt behavior requires those operations
to write to the Arm Generic Interrupt Controller (GIC) on the
N1SDP which is slow, whereas real CCA hardware will have
system registers that can be used by RMM to achieve the same
functionality. Finally, the current prototype lacks support for
directly injecting virtual interrupts without hypervisor interven-
tion, which is expected to be available in future CCA hardware.

We ran both microbenchmark and application workloads in
VMs on unmodified KVM and CCA KVM in Linux 5.12 on the
N1SDP, which has two dual-core 2.6 GHz Neoverse N1 CPUs,
6 GB RAM, a 240 GB SATA3 SSD and a Intel 82574L 1 Gbps
NIC. We used QEMU 4.2.0 [8] to run VMs, with the modi-
fications discussed in Section 5.6 to support CCA KVM. VMs
were run using KVM or CCA KVM with 4 cores and 1 GB
RAM with the VM capped at 2 VCPUs and 512 MB RAM;
VCPUs were pinned to individual cores. VHOST networking
was used and virtual block storage devices were configured
with cache=none [28, 38, 56]. Arm VHE [6, 17, 18] was used
for all measurements. For client-server workloads, clients
ran on an x86 machine with a 16-core Intel Xeon E5-2690
2.9 GHz CPU, 378 GB RAM and an Intel I350 1 Gbps NIC,
connected to the N1SDP via a Linksys LGS108 1 Gbps switch.

6.1 Microbenchmarks

We ran KVM unit tests [39], which execute common
micro-level hypervisor operations, plus an additional system
register access microbenchmark, as listed in Table 5. For each
test, we ran it 216 times and report the average latency. Table
6 shows the microbenchmark measurements in nanoseconds
for unmodified KVM and CCA KVM. The measurements
show that the security benefits of CCA design do come with
a performance cost on most micro-level hypervisor operations,
because the cost of transitioning between a VM and the
hypervisor is much more expensive on CCA KVM than
unmodified KVM, which is most clearly shown for Hypercall.

Hypercall simply traps from the VM to the hypervisor in
EL2 and returns for KVM, but involves additional operations

Name Description
Hypercall Trap from a VM to the hypervisor and return to the VM imme-

diately. Measures base transition cost of hypervisor operations.
I/O Kernel Trap from a VM to the emulated interrupt controller in the host

OS kernel and return to the VM. Measures cost of accessing I/O
devices supported in kernel space.

I/O User Trap from a VM to read the device ID of virtio mmio device then
return to the VM. Measures base cost of operations that access
I/O devices emulated in user space.

Virtual IPI Issue virtual IPI to another VCPU on a different CPU. Measures
time from sending virtual IPI until receiving VCPU handles it.

Sysreg Trap from a VM to emulate access to system register ID_-
AA64PFR0_EL1 in the hypervisor and return to the VM. Measures
system register access cost.

Table 5: Microbenchmarks.

for CCA KVM: (1) trap from VM in EL1 to RMM in EL2;
(2) map NS granule to copy exit info to NS world, unmap
granule; (3) trap from RMM to EL3M in EL3; (4) save Realm
context, restore NS context; (5) exception return from EL3M to
hypervisor in EL2; (6) trap from hypervisor to EL3M in EL3;
(7) save NS context, restore Realm context; (8) exception return
from EL3M to RMM in EL2; (9) map NS granule to copy entry
info from NS world, unmap granule; (10) map and read data in
REC and RD granules, unmap granules; (11) exception return
from RMM to VM in EL1. The additional operations result
in Hypercall costing an additional 1.5 µs on CCA KVM than
vanilla KVM. Roundtrip transitions between RMM and the hy-
pervisor take roughly 700 ns, and roundtrip transitions between
the VM and RMM take roughly 60 ns. Saving and restoring sys-
tem registers when transitioning between the VM and RMM
takes roughly 200 ns per transition, or 400 ns total. The four
map/unmap operations take roughly 100 ns each, 400 ns total.
The remaining roughly 250 ns is due to other bookkeeping
code, including saving and restoring GPRs and error checking.

I/O Kernel and I/O User include the same transition from
the VM to the hypervisor and back as the Hypercall, so they
also require more than 1.5 µs to execute on CCA KVM
than vanilla KVM. Although the difference between CCA
KVM and vanilla KVM is roughly 1.5 µs for I/O Kernel, the
difference for I/O User is roughly 2.3 µs. This is because on
the N1SDP, CCA KVM must write to the GIC when going
to userspace, which is quite slow and takes an extra 800 ns.

Virtual IPI is more expensive on CCA KVM versus vanilla
KVM because it involves multiple transitions between a VM
and the hypervisor. Sending the virtual IPI involves the source
vCPU writing to a system register, causing a trap to the RMM,
which forwards the operation to the hypervisor (1). The hyper-
visor issues a physical IPI to the CPU running the destination
vCPU, then returns to the source vCPU (2). The physical
IPI causes an exit from the destination vCPU (3). On taking
this exit, the hypervisor detects that there is a pending virtual
IPI, and returns to the destination vCPU (4). Of these four
transitions, approximately two occur in parallel, so the cost is
roughly twice that of a Hypercall on CCA KVM for the transi-
tions, plus the cost of the actual operation. Because Hypercall
is much faster for unmodified KVM, its Virtual IPI cost is not

Benchmark Hypercall I/O Kernel I/O User Virtual IPI Sysreg
KVM 362 549 1,761 1,806 437
CCA KVM 1,865 2,060 4,049 4,324 70

Table 6: Microbenchmark performance (ns).

dominated by the transition cost between VM and hypervisor.
The one microbenchmark that is much faster on CCA KVM

than KVM is Sysreg. Accessing system registers is roughly
5 times as expensive on KVM versus CCA KVM. On CCA
KVM, RMM handles this register access directly without
returning to the hypervisor. RMM’s system register trap han-
dling mechanism is simpler than KVM’s because it does not
need to support KVM’s more general hypervisor functionality
that requires synchronizing accesses to hypervisor-related
data structures and additional conditional checks.

6.2 Application Benchmarks
We next ran the application benchmarks listed in Table 7 to
measure performance on more realistic workloads. We also ran
the workloads on native hardware running the same kernel to
provide a baseline for comparison, restricting the system to use
2 CPUs and 512 MB RAM to provide a comparable configura-
tion to the VMs. For each platform, we ran each workload 50
times and measured the average, worst, and best performance.

Figure 12 shows the average performance for each
benchmark for unmodified KVM versus CCA KVM, with
error bars indicating worst and best performance. Performance
was normalized to average native execution on the N1SDP
hardware; lower is better. Unlike microbenchmark perfor-
mance, the application benchmark performance shows that
CCA KVM and KVM have much more modest performance
differences on more realistic workloads.

CCA KVM has less than 8% overhead versus unmodified
KVM for most workloads, but in the worst case, overhead
was 18% for MongoDB, an I/O intensive workload. The I/O
intensive workloads have higher overhead for a couple reasons.
The main reason is because the VM exits more frequently, so
the cost of exits has a more significant impact on performance.
Exits are more expensive on CCA KVM as shown by the
Hypercall microbenchmark results in Table 6, in which an exit
to the hypervisor costs an extra 1.5 µs. If there are many exits
as will be case for I/O intensive workloads, this additional
cost can become significant. For example, Memcached incurs
roughly a million VM exits to the hypervisor. This results in
roughly 1.5 s of additional overhead, or .75 s of overhead per
core if the exits are split evenly across cores for a VM with
2 VCPUs. Memcached takes 9 s to run on vanilla KVM, so
this is 8% overhead due to the extra latency for exits on CCA
KVM, which roughly matches the actual overhead measured
for Memcached on CCA KVM versus vanilla KVM.

A secondary reason is because CCA KVM needs to use a
bounce buffer while vanilla KVM does not. CCA KVM needs
a bounce buffer to support virtio because Realm memory is
protected from the hypervisor. KVM uses the default virtio

Name Description
Apache Apache server v2.4.41 handling 100 concurrent requests via

TLS/SSL from remote ApacheBench [1] v2.3 client, serving
the index.html of the GCC 7.5.0 manual.

Hackbench Hackbench [54] using Unix domain sockets and 20 process
groups running in 500 loops.

Kernbench Compilation of the Linux kernel v4.18 using allnoconfig for
Arm with GCC 9.3.0.

Memcached Memcached v1.5.22 handling requests from a remote
memtier [51] v1.2.11 client with default parameters.

MongoDB MongoDB server v3.6.8 handling requests from a remote
YCSB [14] v0.17.0 client running workload A with 16
concurrent threads and operationcount=500000.

MySQL MySQL v8.0.27 running sysbench v1.0.11 with 32 concurrent
threads and TLS encryption.

Redis Redis v4.0.9 server handling requests from a remote redis-
benchmark client (redis-tools v5.0.7) [52] running GET/SET
with 50 parallel connections and 12 pipelined requests.

Table 7: Application benchmarks.

mechanism to directly access VM memory, so it does not
require bounce buffers and does not need to perform the addi-
tional data copying. Since KVM can also be configured to use a
bounce buffer, we also measured KVM with this configuration
to isolate the impact of using a bounce buffer on performance.
The overhead with versus without a bounce buffer was negligi-
ble in most cases, but in the worst case as high as 3-4% for the
more disk I/O intensive workloads, MongoDB and MySQL.

We expect the overheads for I/O intensive workloads on
real CCA hardware to be less than what we measured on the
N1SDP hardware. Exits are expected to occur less frequently
on real CCA hardware when support for direct virtual interrupt
injection is added. Exits that go to userspace are expected to
cost less on real CCA hardware as the expensive GIC writes
required for N1SDP hardware will be eliminated, though this
was not a dominant factor in our results with the use of VHOST
networking. This cost can be further mitigated by using device
passthrough instead of paravirtual I/O, which will largely
avoid these exits and their associated performance overhead.
Support for Realm device passthrough will be added to future
CCA hardware. Overall, our measurements indicate that
CCA’s security guarantees can be delivered with acceptable
performance overheads for real application workloads.

7 Related Work

Hardware-enforced trusted execution environments have
become an important feature of major computer architectures.
Arm TrustZone [4] can be used to statically partition and isolate
a memory region in Secure world, but most implementations
only support a small number of such memory regions, limiting
its scalability. Intel Software Guard Extensions (SGX) [33] can
be used by application developers to protect userspace memory
from other programs, including a potentially malicious OS
or hypervisor. SGX is not suitable for securing VMs.

AMD Secure Encrypted Virtualization (SEV) [2] and Intel
Trust Domain Extensions (TDX) [32] provide protection at the

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

Apach
e
Hackb

enchKernbe
nch
Memc

achedMongo
DB MySQ

L Redis

KVM CCA KVM

Figure 12: Application benchmark performance.

level of VMs with similar threat models to CCA. The initial ver-
sion of SEV ensured confidentiality by encrypting VM memory
at runtime, but did not ensure memory data integrity, which has
been utilized as an attack vector such that a compromised hy-
pervisor can tamper with or steal private VM data [31,40,47,48,
60]. Secure Nested Paging (SNP) [3] now provides the previ-
ously missing integrity protection capability. SEV-SNP allows
an untrusted hypervisor to directly manage NPTs, but checks
accesses against a reverse map table, an additional data struc-
ture managed by a security co-processor. In contrast, Intel TDX
runs a TDX module in a privileged SEAM (Secure-Arbitration
Mode) root CPU mode. The firmware manages NPTs used by
protected VMs in response to requests issued by the untrusted
hypervisor. Unlike CCA, the security of SGX, SEV, SEV-SNP
and TDX relies on complex implementations in unverified
microcode and firmware [12, 15]. They are difficult to update,
either to patch security flaws or introduce new features.

Komodo [23] draws on ideas from SGX, but is implemented
as a software monitor in verified Arm assembly code on
top of TrustZone instead of requiring hardware to support
complex enclave-manipulation instructions. This avoids
hardware complexity and enables deployment of new enclave
features independently of CPU upgrades. Komodo does not
support multiprocessor execution, largely due to the challenge
of verifying low-level concurrent code. CCA retains the
advantages of Komodo’s approach by relying on a verified
software monitor to implement Realms, but supports verified
VM protection and multiprocessor execution.

The idea of retrofitting a commodity hypervisor so that
its security guarantees are enforced by a small trusted core
was first explored by SeKVM [41–43, 57]. SeKVM was
the first to show how this retrofitting approach, known as
microverification, makes it possible to verify that a commodity
hypervisor guarantees the confidentiality and integrity of VMs.
CCA allows hypervisors to be modified to support Realm
VMs, whose confidentiality and integrity are protected by
a verified monitor, reminscient of SeKVM. While SeKVM
uses existing Arm hardware, CCA introduces new hardware
mechanisms that protect VMs from untrusted software running
in both NS and Secure world, and allow hypervisors to make
full use of Arm virtualization features such as VHE for better

performance. Furthermore, CCA firmware is designed to
support a higher degree of scalability and concurrent operation
by allowing data races, leveraging fine-grain synchronization,
and enabling the hypervisor to provide fully dynamic memory
allocation for all VM-related metadata.

While verifying CCA firmware required new VIA veri-
fication techniques, many of them build on previous work.
Various concurrent systems have been verified, including Cer-
tiKOS [26, 27, 45], SeKVM, and CMAIL using CSPEC [10].
CertiKOS and SeKVM support sequential reasoning with
a local CPU model and encapsulate other CPUs’ behavior
by rely/guarantee conditions, but do not support reordering
using mover types, making proving hand-over-hand locking
infeasible. Although hand-over-hand locking can theoretically
be proved using rely/guarantee reasoning [58], the approach
is not machine-checkable or scalable to a real system like
RMM. CSPEC provides proof patterns with mover types,
but lacks a local CPU model and does not verify C code;
it offers little help for RMM code not reducible by movers
(e.g. REC.Destroy in Figure 4) that still need rely/guarantee
reasoning to verify. VIA builds on CertiKOS, SeKVM, and
CSPEC to combine a local CPU model with mover types.

Some programs have been previously verified on relaxed
memory hardware. Armada [46] supports verifying programs
on the x86-TSO memory model, but their approach of verifying
the entire program on a relaxed memory model has not been
shown to scale to real systems such as RMM. VRM [57] in-
stead allows proofs on an SC model to hold on relaxed memory
hardware by ensuring certain conditions hold, making possible
the verification of SeKVM, the first machine-checked proof
for concurrent systems software on Arm relaxed memory hard-
ware. VIA generalizes VRM to arbitrary non-DRF programs.

Verifying programs with both C and assembly code has been
done to varying degrees, but none support bidirectional calls
between them. seL4 [37] verifies C code, but its assembly code
is unverified. CertiKOS relies on a verified x86 C compiler to
verify assembly primitives invoking C primitives by compiling
the invoked C primitives into assembly primitives, but cannot
verify C primitives that invoke assembly primitives. Since
no verified Arm C compiler exists, this approach cannot be
used for CCA. SeKVM verifies C and Arm assembly code
separately, but does not link the proofs, in part because no
verified Arm C compiler exists. Komodo is written entirely
in assembly code which is then verified, but this is difficult to
scale to a large system as it is hard to write and maintain a large
codebase in assembly. Ironclad [29] conducts verification
at the assembly level by compiling programs in a high-level
language down to assembly. This is also difficult to scale as
it is harder to verify the much larger generated assembly code
than the original high-level language implementation. VIA
allows most proofs to be done at the C level while verifying
interactions between C and assembly code are safe.

Noninterference has been frequently used to prove
information-flow security [16,23,29,34,42,49,55], but cannot

be applied to RMM given the definition of data integrity and
confidentiality supported by Realms. While most of these
approaches rely on some static partitioning of memory to
simplify their noninterference proofs, RMM imposes no such
scalability limitations. The ideal/real simulation paradigm
has been used to verify information-flow security of a simple
750 LOC two-user uniprocessor separation kernel without
page tables [22], but we show for the first time how it can
be applied in the presence of declassification to verify data
confidentiality and integrity of a real system that supports
modern multiprocessor and MMU hardware with page tables.

8 Conclusions

Arm CCA is the first confidential compute architecture backed
by verified firmware that is correct and secure. CCA introduces
Realms, secure execution environments that protect the
confidentiality and integrity of VMs against untrusted system
software such as hypervisors. Realms are made possible by
hardware support for Realm world, a new physical address
space for Realms inaccessible to untrusted system software,
and a firmware monitor that runs in Realm world to control
CCA hardware to secure and manage Realms, including
handling requests from untrusted hypervisors to create Realms,
run Realms, and allocate memory to Realms. This design
maintains compatibility with the Arm architecture without
introducing complex hardware mechanisms by relying on
firmware, and avoids complexity in the firmware by relying
on existing hypervisors to provide virtualization functionality.

We formally verified CCA firmware, demonstrating
the feasibility of relying on trustworthy firmware for the
security guarantees of the architecture. We introduced various
verification techniques to make it possible to verify for the first
time concurrent firmware with data races running on relaxed
memory hardware, fine-grain synchronization such as hand-
over-hand locking, dynamically allocated shared multi-level
page tables, and integrated C and assembly code. We also
prove the security guarantees despite untrusted software being
in full control of resource allocation decisions. The proof only
needs to trust roughly two hundred lines of Coq specification,
making the formal security guarantees easy to read and
understand. CCA provides its security guarantees with only
modest performance overhead compared to running VMs with
the Linux KVM hypervisor without verified VM protection.

9 Acknowledgments

Andrew Baumann and Charles Garcia-Tobin provided helpful
comments on earlier drafts. This work was supported in part by
Arm, OPPO, an Amazon Research Award, a Guggenheim Fel-
lowship, DARPA contract N66001-21-C-4018, and NSF grants
CCF-1918400, CNS-2052947, and CCF-2124080. Ronghui
Gu is the Founder of and has an equity interest in CertiK.

References

[1] ab, The Apache Software Foundation. http://
httpd.apache.org/docs/2.4/programs/ab.html,
April 2015.

[2] Advanced Micro Devices. Secure Encrypted Virtualiza-
tion API Version 0.16. https://support.amd.com/
TechDocs/55766_SEV-KM%20API_Spec.pdf,
February 2018.

[3] Advanced Micro Devices. AMD SEV-SNP:
Strengthening VM Isolation with Integrity Protec-
tion and More. https://www.amd.com/system/
files/TechDocs/SEV-SNP-strengthening-vm-
isolation-with-integrity-protection-and-
more.pdf, January 2020.

[4] ARM Ltd. ARM Security Technology Build-
ing a Secure System using TrustZone Technol-
ogy. https://documentation-service.arm.com/
static/5f212796500e883ab8e74531, April 2009.

[5] ARM Ltd. Arm Neoverse N1 Core Technical Ref-
erence Manual. https://developer.arm.com/
documentation/100616/0400/, April 2019.

[6] ARM Ltd. Virtualization Host Extensions. https:
//developer.arm.com/documentation/102142/
0100/Virtualization-Host-Extensions,
January 2019.

[7] ARM Ltd. Procedure Call Standard for
the Arm R© 64-bit Architecture (AArch64).
https://github.com/ARM-software/abi-
aa/releases/download/2022Q1/aapcs64.pdf,
April 2022.

[8] Fabrice Bellard. QEMU, a Fast and Portable Dynamic
Translator. In Proceedings of the USENIX 2005 Annual
Technical Conference, FREENIX Track (FREENIX
2005), pages 41–46, Anaheim, CA, April 2005.

[9] Edouard Bugnion, Jason Nieh, and Dan Tsafrir. Hard-
ware and Software Support for Virtualization. Synthesis
Lectures on Computer Architecture. Morgan and
Claypool Publishers, February 2017.

[10] Tej Chajed, M. Frans Kaashoek, Butler Lampson, and
Nickolai Zeldovich. Verifying concurrent software using
movers in CSPEC. In Proceedings of the 13th Symposium
on Operating Systems Design and Implementation (OSDI
2018), pages 306–322, Carlsbad, CA, October 2018.

[11] Tej Chajed, Joseph Tassarotti, M. Frans Kaashoek, and
Nickolai Zeldovich. Verifying concurrent, crash-safe
systems with Perennial. In Proceedings of the 27th ACM
Symposium on Operating Systems Principles (SOSP

2019), pages 243–258, Huntsville, ON Canada, October
2019.

[12] Anrin Chakrabortid, Reza Curtmola, Jonathan Katz,
Jason Nieh, Ahmad-Reza Sadeghi, Radu Sion, and
Yinqian Zhang. Cloud Computing Security: Foundations
and Research Directions. Foundations and Trends in
Privacy and Security, 3(2):103–213, February 2022.

[13] Hao Chen, Xiongnan (Newman) Wu, Zhong Shao,
Joshua Lockerman, and Ronghui Gu. Toward Compo-
sitional Verification of Interruptible OS Kernels and
Device Drivers. In Proceedings of the 37th ACM SIG-
PLAN Conference on Programming Language Design
and Implementation (PLDI 2016), pages 431–447, Santa
Barbara, CA, June 2016.

[14] Brian F. Cooper, Adam Silberstein, Erwin Tam, Raghu
Ramakrishnan, and Russell Sears. Benchmarking Cloud
Serving Systems with YCSB. In Proceedings of the 1st
ACM Symposium on Cloud Computing (SoCC 2010),
pages 143–154, Indianapolis, IN, June 2010.

[15] Victor Costan and Srinivas Devadas. Intel SGX
Explained. Cryptology ePrint Archive, Report 2016/086,
January 2016. https://ia.cr/2016/086.

[16] David Costanzo, Zhong Shao, and Ronghui Gu. End-
to-End Verification of Information-Flow Security for
C and Assembly Programs. In Proceedings of the 37th
ACM Conference on Programming Language Design
and Implementation (PLDI 2016), pages 648–664, Santa
Barbara, CA, June 2016.

[17] Christoffer Dall, Shih-Wei Li, Jin Tack Lim, Jason
Nieh, and Georgios Koloventzos. ARM Virtualization:
Performance and Architectural Implications. In
Proceedings of the 43rd International Symposium on
Computer Architecture (ISCA 2016), pages 304–316,
Seoul, South Korea, June 2016.

[18] Christoffer Dall, Shih-Wei Li, and Jason Nieh. Opti-
mizing the Design and Implementation of the Linux
ARM Hypervisor. In Proceedings of the 2017 USENIX
Annual Technical Conference (USENIX ATC 2017),
pages 221–234, Santa Clara, CA, July 2017.

[19] Christoffer Dall and Jason Nieh. KVM/ARM: Experi-
ences Building the Linux ARM Hypervisor. Technical
Report CUCS-010-13, Department of Computer Science,
Columbia University, June 2013.

[20] Christoffer Dall and Jason Nieh. Supporting KVM on
the ARM Architecture. LWN Weekly Edition, pages
18–22, July 2013.

http://httpd.apache.org/docs/2.4/programs/ab.html
http://httpd.apache.org/docs/2.4/programs/ab.html
https://support.amd.com/TechDocs/55766_SEV-KM%20API_Spec.pdf
https://support.amd.com/TechDocs/55766_SEV-KM%20API_Spec.pdf
https://www.amd.com/system/files/TechDocs/SEV-SNP-strengthening-vm-isolation-with-integrity-protection-and-more.pdf
https://www.amd.com/system/files/TechDocs/SEV-SNP-strengthening-vm-isolation-with-integrity-protection-and-more.pdf
https://www.amd.com/system/files/TechDocs/SEV-SNP-strengthening-vm-isolation-with-integrity-protection-and-more.pdf
https://www.amd.com/system/files/TechDocs/SEV-SNP-strengthening-vm-isolation-with-integrity-protection-and-more.pdf
https://documentation-service.arm.com/static/5f212796500e883ab8e74531
https://documentation-service.arm.com/static/5f212796500e883ab8e74531
https://developer.arm.com/documentation/100616/0400/
https://developer.arm.com/documentation/100616/0400/
https://developer.arm.com/documentation/102142/0100/Virtualization-Host-Extensions
https://developer.arm.com/documentation/102142/0100/Virtualization-Host-Extensions
https://developer.arm.com/documentation/102142/0100/Virtualization-Host-Extensions
https://github.com/ARM-software/abi-aa/releases/download/2022Q1/aapcs64.pdf
https://github.com/ARM-software/abi-aa/releases/download/2022Q1/aapcs64.pdf
https://ia.cr/2016/086

[21] Christoffer Dall and Jason Nieh. KVM/ARM: The De-
sign and Implementation of the Linux ARM Hypervisor.
In Proceedings of the 19th International Conference on
Architectural Support for Programming Languages and
Operating Systems (ASPLOS 2014), pages 333–347, Salt
Lake City, UT, March 2014.

[22] Mads Dam, Roberto Guanciale, Narges Khakpour,
Hamed Nemati, and Oliver Schwarz. Formal Verification
of Information Flow Security for a Simple ARM-Based
Separation Kernel. In Proceedings of the 2013 ACM
SIGSAC Conference on Computer & Communications
Security (CCS 2013), pages 223–234, Berlin, Germany,
November 2013.

[23] Andrew Ferraiuolo, Andrew Baumann, Chris Hawblitzel,
and Bryan Parno. Komodo: Using verification to
disentangle secure-enclave hardware from software.
In Proceedings of the 26th Symposium on Operating
Systems Principles (SOSP 2017), pages 287–305,
Shanghai, China, October 2017.

[24] Ronghui Gu, Jérémie Koenig, Tahina Ramananandro,
Zhong Shao, Xiongnan Newman Wu, Shu-Chun Weng,
and Haozhong Zhang. Deep Specifications and Certified
Abstraction Layers. In Proceedings of the 42nd ACM
Symposium on Principles of Programming Languages
(POPL 2015), pages 595–608, Mumbai, India, January
2015.

[25] Ronghui Gu, Zhong Shao, Hao Chen, Jieung Kim,
Jérémie Koenig, Xiongnan Wu, Vilhelm Sjöberg, and
David Costanzo. Building Certified Concurrent OS
Kernels. Communications of the ACM, 62(10):89–99,
September 2019.

[26] Ronghui Gu, Zhong Shao, Hao Chen, Xiongnan Newman
Wu, Jieung Kim, Vilhelm Sjöberg, and David Costanzo.
CertiKOS: An Extensible Architecture for Building
Certified Concurrent OS Kernels. In Proceedings of the
12th USENIX Symposium on Operating Systems Design
and Implementation (OSDI 2016), pages 653–669,
Savannah, GA, November 2016.

[27] Ronghui Gu, Zhong Shao, Jieung Kim, Xiongnan New-
man Wu, Jérémie Koenig, Vilhelm Sjöberg, Hao Chen,
David Costanzo, and Tahina Ramananandro. Certified
Concurrent Abstraction Layers. In Proceedings of
the 39th ACM SIGPLAN Conference on Programming
Language Design and Implementation (PLDI 2018),
pages 646–661, Philadelphia, PA, June 2018.

[28] Stefan Hajnoczi. An Updated Overview of the QEMU
Storage Stack. In LinuxCon Japan 2011, Yokohama,
Japan, June 2011.

[29] Chris Hawblitzel, Jon Howell, Jacob R. Lorch, Arjun
Narayan, Bryan Parno, Danfeng Zhang, and Brian Zill.
Ironclad Apps: End-to-End Security via Automated
Full-System Verification. In Proceedings of the 11th
USENIX Symposium on Operating Systems Design
and Implementation (OSDI 2014), pages 165–181,
Broomfield, CO, October 2014.

[30] Constance L. Heitmeyer, Myla Archer, Elizabeth I.
Leonard, and John McLean. Formal Specification and
Verification of Data Separation in a Separation Kernel
for an Embedded System. In Proceedings of the 13th
ACM Conference on Computer and Communications
Security (CCS 2006), pages 346–355, Alexandria,
Virginia, October 2006.

[31] Felicitas Hetzelt and Robert Buhren. Security Analysis
of Encrypted Virtual Machines. In Proceedings of the
13th ACM SIGPLAN/SIGOPS International Conference
on Virtual Execution Environments (VEE 2017), pages
129–142, Xi’an, China, April 2017.

[32] Intel Corporation. Intel Trust Domain Extensions.
https://www.intel.com/content/www/us/
en/developer/articles/technical/intel-
trust-domain-extensions.html, October 2014.

[33] Intel Corporation. Intel Software Guard Ex-
tensions Programming Reference. https:
//software.intel.com/sites/default/files/
managed/48/88/329298-002.pdf, May 2021.

[34] Dongseok Jang, Zachary Tatlock, and Sorin Lerner.
Establishing Browser Security Guarantees through
Formal Shim Verification. In Proceedings of the 21st
USENIX Security Symposium (USENIX Security 2012),
pages 113–128, Bellevue, WA, August 2012.

[35] C. B. Jones. Tentative Steps toward a Development
Method for Interfering Programs. ACM Transactions
on Programming Languages and Systems (TOPLAS),
5(4):596–619, October 1983.

[36] Jieung Kim, Vilhelm Sjöberg, Ronghui Gu, and Zhong
Shao. Safety and Liveness of MCS Lock—Layer by
Layer. In Proceedings of the Asian Symposium on
Programming Languages and Systems (APLAS 2017),
pages 273–297, Suzhou, China, November 2017.

[37] Gerwin Klein, Kevin Elphinstone, Gernot Heiser, June
Andronick, David Cock, Philip Derrin, Dhammika
Elkaduwe, Kai Engelhardt, Rafal Kolanski, Michael
Norrish, Thomas Sewell, Harvey Tuch, and Simon
Winwood. seL4: Formal Verification of an OS Kernel.
In Proceedings of the ACM SIGOPS 22nd Symposium
on Operating Systems Principles (SOSP 2009), pages
207–220, Big Sky, MT, October 2009.

https://www.intel.com/content/www/us/en/developer/articles/technical/intel-trust-domain-extensions.html
https://www.intel.com/content/www/us/en/developer/articles/technical/intel-trust-domain-extensions.html
https://www.intel.com/content/www/us/en/developer/articles/technical/intel-trust-domain-extensions.html
https://software.intel.com/sites/default/files/managed/48/88/329298-002.pdf
https://software.intel.com/sites/default/files/managed/48/88/329298-002.pdf
https://software.intel.com/sites/default/files/managed/48/88/329298-002.pdf

[38] KVM contributors. Tuning KVM. http://
www.linux-kvm.org/page/Tuning_KVM, May 2015.

[39] KVM contributors. KVM Unit Tests. http:
//www.linux-kvm.org/page/KVM-unit-tests,
August 2020.

[40] Mengyuan Li, Yinqian Zhang, Zhiqiang Lin, and Yan
Solihin. Exploiting Unprotected I/O Operations in
AMD’s Secure Encrypted Virtualization. In Proceedings
of the 28th USENIX Security Symposium (USENIX
Security 2019), pages 1257–1272, Santa Clara, CA,
August 2019.

[41] Shih-Wei Li, John S. Koh, and Jason Nieh. Protecting
Cloud Virtual Machines from Commodity Hypervisor
and Host Operating System Exploits. In Proceedings of
the 28th USENIX Security Symposium (USENIX Security
2019), pages 1357–1374, Santa Clara, CA, August 2019.

[42] Shih-Wei Li, Xupeng Li, Ronghui Gu, Jason Nieh, and
John Zhuang Hui. A Secure and Formally Verified Linux
KVM Hypervisor. In Proceedings of the 2021 IEEE
Symposium on Security and Privacy (IEEE S&P 2021),
pages 1782–1799, San Francisco, CA, May 2021.

[43] Shih-Wei Li, Xupeng Li, Ronghui Gu, Jason Nieh,
and John Zhuang Hui. Formally Verified Memory
Protection for a Commodity Multiprocessor Hypervisor.
In Proceedings of the 30th USENIX Security Symposium
(USENIX Security 2021), pages 3953–3970, Vancouver,
BC Canada, August 2021.

[44] Richard J. Lipton. Reduction: A Method of Proving
Properties of Parallel Programs. Communications of the
ACM, 18(12):717–721, December 1975.

[45] Mengqi Liu, Lionel Rieg, Zhong Shao, Ronghui Gu,
David Costanzo, Jung-Eun Kim, and Man-Ki Yoon.
Virtual Timeline: A Formal Abstraction for Verifying
Preemptive Schedulers with Temporal Isolation. Pro-
ceedings of the ACM on Programming Languages,
4(POPL):1–31, December 2019.

[46] Jacob R. Lorch, Yixuan Chen, Manos Kapritsos, Bryan
Parno, Shaz Qadeer, Upamanyu Sharma, James R.
Wilcox, and Xueyuan Zhao. Armada: Low-Effort
Verification of High-Performance Concurrent Programs.
In Proceedings of the 41st ACM SIGPLAN Conference
on Programming Language Design and Implementation
(PLDI 2020), pages 197–210, London, UK, June 2020.

[47] Mathias Morbitzer, Manuel Huber, and Julian Horsch.
Extracting Secrets from Encrypted Virtual Machines. In
Proceedings of the 9th ACM Conference on Data and
Application Security and Privacy (CODASPY 2019),
pages 221–230, Dallas, TX, March 2019.

[48] Mathias Morbitzer, Manuel Huber, Julian Horsch, and
Sascha Wessel. SEVered: Subverting AMD’s Virtual
Machine Encryption. In Proceedings of the 11th
European Workshop on Systems Security (EuroSec
2018), pages 1–6, Porto, Portugal, April 2018.

[49] Toby Murray, Daniel Matichuk, Matthew Brassil, Peter
Gammie, Timothy Bourke, Sean Seefried, Corey Lewis,
Xin Gao, and Gerwin Klein. seL4: from General
Purpose to a Proof of Information Flow Enforcement.
In Proceedings of the 2013 IEEE Symposium on Security
and Privacy (IEEE S&P 2013), pages 415–429, San
Francisco, CA, May 2013.

[50] Luke Nelson, James Bornholt, Ronghui Gu, Andrew Bau-
mann, Emina Torlak, and Xi Wang. Scaling Symbolic
Evaluation for Automated Verification of Systems Code
with Serval. In Proceedings of the 27th ACM Symposium
on Operating Systems Principles (SOSP 2019), pages
225–242, Huntsville, ON Canada, October 2019.

[51] Redis Labs. Memtier Benchmark. https:
//github.com/RedisLabs/memtier_benchmark,
January 2018.

[52] Redis Labs. Redis Benchmark. https://redis.io/
docs/reference/optimization/benchmarks/,
March 2022.

[53] Richard M. Stallman and the GCC Developer Com-
munity. Using the GNU Compiler Collection (GCC).
https://gcc.gnu.org/onlinedocs/gcc-12.1.0/
gcc.pdf, May 2022.

[54] Rusty Russell. Hackbench. http://
people.redhat.com/mingo/cfs-scheduler/
tools/hackbench.c, January 2008.

[55] Helgi Sigurbjarnarson, Luke Nelson, Bruno Castro-
Karney, James Bornholt, Emina Torlak, and Xi Wang.
Nickel: A Framework for Design and Verification of
Information Flow Control Systems. In Proceedings of
the 13th USENIX Symposium on Operating Systems
Design and Implementation (OSDI 2018), pages
287–305, Carlsbad, CA, October 2018.

[56] SUSE. Performance Implications of Cache Modes.
https://www.suse.com/documentation/
sles11/book_kvm/data/sect1_3_chapter_

book_kvm.html, September 2016.

[57] Runzhou Tao, Jianan Yao, Xupeng Li, Shih-Wei Li,
Jason Nieh, and Ronghui Gu. Formal Verification of a
Multiprocessor Hypervisor on Arm Relaxed Memory
Hardware. In Proceedings of the 28th ACM Symposium
on Operating Systems Principles (SOSP 2021), pages
866–881, Virtual Event, Germany, October 2021.

http://www.linux-kvm.org/page/Tuning_KVM
http://www.linux-kvm.org/page/Tuning_KVM
http://www.linux-kvm.org/page/KVM-unit-tests
http://www.linux-kvm.org/page/KVM-unit-tests
https://github.com/RedisLabs/memtier_benchmark
https://github.com/RedisLabs/memtier_benchmark
https://redis.io/docs/reference/optimization/benchmarks/
https://redis.io/docs/reference/optimization/benchmarks/
https://gcc.gnu.org/onlinedocs/gcc-12.1.0/gcc.pdf
https://gcc.gnu.org/onlinedocs/gcc-12.1.0/gcc.pdf
http://people.redhat.com/mingo/cfs-scheduler/tools/hackbench.c
http://people.redhat.com/mingo/cfs-scheduler/tools/hackbench.c
http://people.redhat.com/mingo/cfs-scheduler/tools/hackbench.c
https://www.suse.com/documentation/sles11/book_kvm/data/sect1_3_chapter _book_kvm.html
https://www.suse.com/documentation/sles11/book_kvm/data/sect1_3_chapter _book_kvm.html
https://www.suse.com/documentation/sles11/book_kvm/data/sect1_3_chapter _book_kvm.html

[58] Viktor Vafeiadis, Maurice Herlihy, Tony Hoare, and Marc
Shapiro. Proving Correctness of Highly-Concurrent
Linearisable Objects. In Proceedings of the 11th ACM
SIGPLAN Symposium on Principles and Practice of
Parallel Programming (PPoPP 2006), pages 129–136,
New York, NY, March 2006.

[59] Alexander Van’t Hof and Jason Nieh. BlackBox: A
Container Security Monitor for Protecting Containers on
Untrusted Operating Systems. In Proceedings of the 16th
USENIX Symposium on Operating Systems Design and
Implementation (OSDI 2022), Carlsbad, CA, July 2022.

[60] Luca Wilke, Jan Wichelmann, Mathias Morbitzer, and
Thomas Eisenbarth. SEVurity: No Security Without
Integrity Breaking Integrity-Free Memory Encryption
with Minimal Assumptions. In Proceedings of the 2020
IEEE Symposium on Security and Privacy (IEEE S&P
2020), pages 1483–1496, San Francisco, CA, May 2020.

[61] Jean-Karim Zinzindohoué, Karthikeyan Bhargavan,
Jonathan Protzenko, and Benjamin Beurdouche.
HACL*: A Verified Modern Cryptographic Library. In
Proceedings of the 2017 ACM SIGSAC Conference on
Computer and Communications Security (CCS 2017),
pages 1789–1806, Dallas, TX, October 2017.

[62] Mo Zou, Haoran Ding, Dong Du, Ming Fu, Ronghui
Gu, and Haibo Chen. Using Concurrent Relational
Logic with Helpers for Verifying the AtomFS File
System. In Proceedings of the 27th ACM Symposium
on Operating Systems Principles (SOSP 2019), pages
259–274, Huntsville, ON Canada, October 2019.

	Introduction
	Threat Model
	CCA Design
	VIA Framework
	Mover Oracle Queries
	Permutation Conditions
	Register Accounting
	Ideal Secure System Model

	CCA Implementation and Verification
	Concurrent Multi-level Page Tables
	Relaxed Memory
	C and Assembly Code Integration
	Security
	Bugs Found
	CCA KVM

	Performance Evaluation
	Microbenchmarks
	Application Benchmarks

	Related Work
	Conclusions
	Acknowledgments

