
CertiQ: Contract-based Verification of a Realistic
Quantum Compiler

Yunong Shi∗
The University of Chicago

yunong@uchicago.edu

Xupeng Li∗
Columbia University

xupeng.li@columbia.edu

Runzhou Tao
Columbia University

runzhou.tao@columbia.edu

Ali Javadi-Abhari
IBM T.J. Watson Research center

Ali.Javadi@ibm.com

Andrew W. Cross
IBM T.J. Watson Research center

awcross@us.ibm.com

Frederic T. Chong
The University of Chicago

chong@cs.uchicago.edu

Ronghui Gu
Columbia University

ronghui.gu@columbia.edu

Abstract
In this paper, we present CertiQ, a mostly-automated
verification framework for the Qiskit quantum compiler.
CertiQ, to our knowledge, is the first effort enabling
the automated verification of a realistic quantum pro-
gram compiler. Qiskit is currently the most widely-used
open-source quantum software stack from low-level com-
pilation to high-level quantum algorithms. With growing
community contributions, the Qiskit compiler is in need
of code quality control and verification down to the com-
pilation level to guarantee reliability of scientific work
that uses it. CertiQ is deeply integrated into the Qiskit
compiler, providing abstract specifications for quantum
compiler data structures and offering verifiable contracts
that specify the behaviors of compilation phases with
heavy optimizations. CertiQ enables the verification of
the current implementation of the Qiskit compiler and
future code submissions in a mostly-automated manner
using invariant-guided contracts to scale the symbolic
reasoning. With these CertiQ techniques in place, devel-
opers need to provide limited inputs only where func-
tion contracts and loop invariants cannot be inferred
automatically. The CertiQ verification procedure discov-
ers several critical bugs, some of which are unique to
quantum software. Our extensive case studies on four
compiler phases of Qiskit demonstrate that CertiQ is
effective for verification of quantum compilers with a low
proof burden.

1 Introduction
The development of NISQ [32] (Noisy Intermediate-Scale
Quantum) devices has transformed quantum computing

∗Both authors contributed equally to this research.

2019.

from an academic pursuit to a realistic goal for the real-
ization of practical quantum applications. NISQ devices
like IBM’s quantum machine with 20 qubits and Rigetti’s
quantum machine with 19 qubits has led to the emer-
gence of cloud-based quantum services and associated
computing software stacks [1, 6, 34].

Qiskit [1] is currently the most complete and widely-
used open-source software stack. Qiskit lets users design
and run quantum programs on the IBM Q cloud [20], a
cloud based service for near-term quantum computing
applications and research. With more than 100K users
from 171 countries, Qiskit has accommodated over 5.3M
experimental runs on quantum devices and 12M virtual
simulations to date. Qiskit is also influential in the open-
source community: with 180k downloads, 1500 Github
forks (with 2nd place Cirq [6] < 500) and Github “usedby”
of 122 (with 2nd place Qutip [37] with 59). Over 190 aca-
demic articles are based on IBM’s cloud service, pushing
progress in many different scientific disciplines, including:
validation of properties of electron structure [45]; demon-
stration of error detection schemes [50]; demonstration
of quantum machine learning algorithms [41, 54].

The increasing numbers of quantum computations
have revealed numerous errors at all levels in the Qiskit
toolchain, which can corrupt the scientific results per-
formed with it. Specifically, the different nature of quan-
tum computations along with heavy optimizations per-
formed in the Qiskit compiler (called Qiskit Terra) makes
the compilation error-prone. The high number of bug
reports [48] related to the compilation process highlights
the crucial need for effective, reliable, and automated
methods to verify the correctness of quantum compilers
with heavy optimizations.

We introduce CertiQ, a mostly-automated framework
for verifying that a quantum compiler is correct, i.e.,
the compiled quantum circuits will always be equivalent
to the source circuits. To our knowledge, CertiQ is the

1

ar
X

iv
:1

90
8.

08
96

3v
3

 [
qu

an
t-

ph
]

 2
7

N
ov

 2
01

9

2

first effort enabling the automated verification of a real-
world quantum program compiler. The design philosophy
underpinning CertiQ is motivated by three practical
challenges that arise when verifying Qiskit Terra.

The first challenge is that checking the equivalence of
quantum circuits is generally intractable [21]. To mitigate
this problem, CertiQ introduces the calculus of quantum
circuit equivalence such that circuit equivalence and the
correctness of compiler transformation can be statically
and efficiently reasoned about. Our calculus is proven
to be sound and therefore faithful to the underlying
quantum computation. Based on the calculus, we design,
specify, and verify a library of functions that perform
primitive circuit transformations that are proved to be
semantics preserving. Compilation phases implemented
with this library can be easily verified using symbolic
reasoning [12].

The second challenge is that compiler implementations
in community code submission can be complicated, mak-
ing automated verification intractable due to state explo-
sion. In CertiQ, we developed a novel way of combining
symbolic execution and Design-by-Contract methodol-
ogy to achieve high level of automation and scalable
verification. CertiQ first re-direct the code to be verified
to the verification backend, built upon the push-button
verification framework [31, 44], then uses symbolic exe-
cution to generate verification conditions in the form of
satisfiability modulo theories (SMT) problems fed into a
SMT solver, e.g., Z3 [11]. For more efficient symbolic exe-
cution, CertiQ offers three Z3 predicates/functions (that
return the precondition, postcondition and invariants,
respectively) as a contract for each library function and
each transpiler pass. During the symbolic execution, invo-
cations of functions that have been verified are replaced
by their contracts. In this way, CertiQ is able to greatly
speed up the symbolic execution and reduce the size
of the generated SMT queries. This usage of contracts
can be viewed as predicate abstraction [8, 16], where our
domain knowledge of the quantum data structures is
used to simplify concrete predicates.

The third challenge is that the different nature of
quantum computation can cause unexpected behavior
of components when interacting with each other in a
large and rapidly growing quantum software. Specifically,
in Qiskit, there exist multiple quantum data structures
representing the same underlying quantum object, i.e.,
state vector representation and Bloch sphere representa-
tion of qubits. CertiQ verifies the equivalence of these
quantum data structures through specification refine-
ment and specifies the conditions under which each of
these data structures are valid.

For important types of compiler extensions (optimiza-
tions), if an implementation by developers cannot be

verified by the CertiQ verifier, CertiQ introduces a trans-
lation validator to validate the correctness of each com-
pilation output at runtime with reasonable overhead.

We verified four compiler phases and seven transpiler
pass implementations of Qiskit Terra in four case studies.
With these verified CertiQ implementations, we success-
fully identify three bugs of Qiskit Terra, two of which
are unique in quantum software.

This paper makes the following contributions:
∙ We introduce the calculus of quantum circuit equiv-

alence such that the semantics-preserving guaran-
tee of quantum circuit compilations can be stati-
cally and efficiently verified.

∙ We build a transformation library verified with
respect to its contract, which guarantees that the
provided circuit transformations preserve the cir-
cuit equivalence. This library can be used to build
verified quantum compilers.

∙ We introduce a contract-based design that specifies
the behavior of other functions, thereby facilitating
efficient symbolic execution and modular verifica-
tion of quantum compiler implementations.

∙ We used specification refinement to prove the equiv-
alence of quantum data structures and regulates
the transformation between them.

∙ We verify a series of Qiskit Terra compilation
phases and optimizations, and discover three criti-
cal bugs. Two of these bugs are unique to quantum
software.

The paper is organized as follows: §2 introduces back-
ground on quantum computing and Qiskit Terra; §3
provides an overview of the CertiQ framework; §4 dis-
cusses technical contributions of CertiQ; §5 presents case
studies demonstrating how CertiQ works in the realistic
settings; §6 evaluates the correctness and performance;
§7 discusses previous work; §8 concludes.

2 Background
2.1 Quantum Computing
Principle of quantum computation. The qubit (quantum
bit) is the basic element of a quantum computing system.
In contrast to classical bits, qubits are capable of living in
a superposition of the logical states |0⟩ = 1, 0𝑇 and |1⟩ =
0, 1𝑇 . The general quantum state of a qubit is represented
as |𝜓⟩ = 𝛼 |0⟩+ 𝛽 |1⟩ (or in its vector form 𝛼, 𝛽𝑇), where
𝛼, 𝛽 are complex coefficients with |𝛼|2 + |𝛽|2 = 1. When
measured in the 01 basis, the quantum state collapses to
|0⟩ or |1⟩ with probability of |𝛼|2 and |𝛽|2, respectively.

The number of quantum logical states grows exponen-
tially with the number of qubits in a quantum system.
For example, a system with 3 qubits lives in the super-
position of 8 logical states: |000⟩, |001⟩, |010⟩, ..., |111⟩.
This property sets the foundation of quantum speedup

3

× ∙
=

× ∙ ∙

|0⟩ 𝐻 ∙

|𝜓GHZ⟩= |0⟩ ∙
|0⟩

Fig. 1. Examples of circuit decomposition: SWAP gate de-
composition (left); A circuit for preparing the 3 qubit GHZ
state:|𝜓GHZ⟩ = 1√

2
(|000⟩ + |111⟩). (right).

over classical computation—an exponential number of
correlated logical states can be stored and processed si-
multaneously by a quantum system with a linear number
of qubits. However, this also brings great challenges for
simulating and verifying quantum computations.

Quantum gates. The basic quantum operations are called
quantum gates, which are unitary transformations on
the qubit space. Some of the quantum gates commonly
used in quantum algorithms include 𝑋 gate, 𝑌 gate, 𝑍
gate, 𝐻 gate, 𝑇 and CNOT gate.

2.2 Compilation of Quantum Programs
Quantum compilation is the process of translating high-
level description of quantum algorithms to a circuit con-
sisting of a series of quantum gates. Such a compilation
process can be divided into four stages: 1) circuit decom-
position; 2) system-independent optimization; 3) tech-
nology mapping; and 4) system-dependent optimization.

In the first stage, quantum algorithms are decom-
posed into quantum circuits. Figure 1 illustrates two
simple examples of circuit decomposition: decomposition
of a SWAP gate to 3 alternating CNOTs; decomposi-
tion of the circuit for preparing the 3-qubit GHZ state
|𝜓GHZ⟩ = 1√

2 (|000⟩ + |111⟩) with CNOT and Hadamard
gate, a quantum state used widely in quantum com-
putation and communication. The system-independent
optimization stage (stage 2) involves post-decomposition
optimizations like circuit rewriting[46], template match-
ing [27], commutativity detection [43].

Stage 3 technology mapping makes sure that the de-
composed quantum circuit conforms to the topological
constraints of the QIP platform. This process is usually
executed by introducing quantum SWAP gates into the
circuit.

The system-dependent optimization stage 4 further
decomposes the gate set used in quantum algorithms to
the gate set that can be executed on the QIP platform.
Stage 4 also performs optimizations like single qubit
rotation merge [9].

2.3 The Qiskit Terra Compiler
The Qiskit Terra compiler is the foundation of the Qiskit
framework, upon which other Qiskit components are
built. Qiskit Terra consists of a set of tools for compos-
ing quantum programs at the level of circuits, optimizing

Transpiler Basepass

Analysis pass

Instruction

Measure

Quantum Gate

swap CNOT h

Coupling Map

Layout

Register

Classical Register

Quantum Register

Bit

clbit qubit

Physical Device Description

Transformation pass

Instruction Set

OpenQASM
Pulse

Scheduler

Open Pulse

Quantum_info

Package

DAG Circuit

Quantum Circuit

DAGNode

Reset

unverified

verified

Fig. 2. Qiskit Terra components and call graph. Green boxes
are quantum data structures. Blue boxes are physical devices
related data structures. The red box is the transpiler. CertiQ
gives specifications to components in blue and green boxes
and verifies the transpiler in red box. White boxes under the
horizontal dotted-line are parts that are not verified or just
partly verified by CertiQ.

them for the constraints of a particular physical quantum
processor, and managing the batched execution of exper-
iments on remote-access backends. The optimizations
in Qiskit Terra are crucial for successful execution of
quantum programs since quantum resources are scarce
and qubit coherence time is very limited.

We describe the main components of the Terra com-
piler (Fig. 2), to which the CertiQ framework provides
abstract specifications and contracts.

Quantum register. A quantum register is a collection of
qubits that provides certain functionality in a quantum
algorithm. Every qubit lives in a quantum register.

Coupling map and layout. Coupling map is the descrip-
tion of the connectivity of qubits on the physical device.

Fig. 3. The DAGCircuit rep-
resentation of the circuit that
prepares the GHZ state(See
also Fig. 1 on the right).
Green nodes are input nodes,
blue nodes are operation
nodes and red nodes are out-
put nodes. Arrows represent
dependency and are specified
by qubit number. DAG rep-
resentation is equivalent to a
quantum circuit description,
thus, throughout the paper we
will use circuit diagram for vi-
sualization for readability.

4

It stores the edges of the qubits in a list. For exam-
ple, coup = [[0,1],[1,2],[2,3]] describes a device of
3 physical qubits with linear connectivity. A layout is a
Python dictionary from the virtual qubits in the quan-
tum register to the physical qubits on the device. For
example, the implementation in Terra is,

class Layout():
def __init__(self):
self._p2v = dict() # Physical to virtual qubit map
self._v2p = dict() # Virtual to physical qubit map

QuantumCircuit. QuantumCircuit is the class that stores
quantum circuits as a series of instructions on classical
and quantum registers. It provides an interface to input
quantum circuit description and for visualization.

DAGCircuit. The DAGCircuit class is another descrip-
tion of a quantum circuit and is equivalent to Quan-
tumCircuit. Compared to QuantumCircuit description,
DAGCircuit provides more flexible APIs for circuit trans-
formations and to explicitly express the dependence
between individual gates in circuits. For example, it
provides a method topological_op_nodes() that allows
users to traverse gates in the DAG in topological sort,
easing out lots of circuit optimization algorithms.

Transpiler. The transpiler is the circuit rewriting mod-
ule in Qiskit Terra responsible for stage 2, 3, and 4 in the
quantum compilation process. Because transpiler is the
critical part of the compiler and also the fastest iterating
component, the need for automated verification is thus
pressing. The design language of the transpiler is similar
to that of LLVM [23]. It consists of modular components
called transpiler passes that can be assembled by the
transpiler pass manager with respect to their dependency
constraints. Input and output of transpiler passes are
both DAGCircuit. There are two classes of passes: anal-
ysis passes and transformation passes. Analysis passes
compute useful quantities for the input DAGCircuit
while preserving the DAGCircuit. Transformation passes
performs circuit optimization or constraint resolving on
the DAGCircuit, either returning the modified DAGCir-
cuit or returning a new DAGCircuit.

3 The CertiQ Workflow
To give an overview of the CertiQ framework (Fig. 4),
we walk through the verification of a simple and less
“quantum” transpiler pass. The verification engine of
CertiQ consists of four parts: specifications for Qiskit
Terra quantum data structures/transformations, the ver-
ifier, the visualizer, and the translation validator. The
core part is the CertiQ verifier, which builds upon the
push-button verification framework in classical comput-
ing [31, 44]. We use a simple transpiler pass named

Qiskit Terra
Library

Qiskit Terra
Specification

Statically

Verified

User Implementation

Python Interpreter

Pass

Fail

Call Call

Execution Verification

Counter-

example

Program

Output

Undetermined
Translation
Validator

Verifier

Visualizer

Fail

Fig. 4. The workflow of CertiQ framework. Blue boxes indi-
cate CertiQ component. User code can be executed at two
different backends. The usual Python backend and the ver-
ification engine share the same unified interface. In most
cases, the user can be unaware of the verification engine
when writing code.

basic_swap as a running example to introduce each of
the parts.

3.1 The BasicSwap pass.
First, we look into the implementation of the BasicSwap

pass (see Fig. 5). This pass serves as the benchmark for
a large class of important transpiler passes that perform
swap gate insertion. Swap insertion passes bring the qubit
operands together for every 2-qubit gates in a circuit so
that the 2-qubit gate operations can be done physically
in two connected qubit locations on the coupling map.
BasicSwap pass first generates an initial mapping for
the qubits in the circuit (called layout), then it takes
a simple algorithm that iterates all the 2-qubit gates
in a circuit and move 2 operands of the 2-qubit gates
together along a shortest path on the coupling map.
When invoked, the __run__() method of BasicSwap class
takes a DAGCircuit as input and returns a mapped
DAGCircuit as output.

3.2 Specifications
As shown in Fig. 4, when the verification engine is tog-
gled on, the code of BasicSwap pass (or more generally,
user implementations) will not go through the Qiskit
backend, but the CertiQ backend instead. All the func-
tion calls and class invocations to the Qiskit library will
be directed to its Z3 implementations in CertiQ. These
alternative implementations in CertiQ can be viewed as

5

@swap
class BasicSwap(TranformationPass):
def __init__(self, layout=None, coupling_map):

self.layout = layout
self.coupling_map = coupling_map

def __run__(self, dag):
if self.layout == None:
self.layout = simple_layout(dag.qreg,

self.coupling_map)
Traverse the dag
for gate in dag.topological_op_nodes():
if gate.op_num == 2:
p1 = self.layout[gate.op1]
p2 = self.layout[gate.op2]
s_path =self.coupling_map.shortest_path(p1, p2)
for i in range(len(s_path)-1):
dag.swap_and_update_gate(i, i+1)

return dag

Fig. 5. Implementation of the BasicSwap pass.

specifications of quantum data structures and library
functions in Qiskit Terra. These specifications share the
same interface with the original implementation and are
statically verified against them (this is detailed in §4.3).
Importantly, specifications in CertiQ support symbolic
execution. There are two kinds of specifications: trusted
specifications and abstract specifications.

Trusted specifications. For example, the specification of
the Layout class called in BasicSwap is a trusted specifi-
cation. The specification of Layout class is,

class Layout(): # Layout specification
def __init__(self):
Physical to logical qubit map spec
self._p2v = Map(IntSort(), IntSort())
Logical to physical qubit map spec
self._v2p = Map(IntSort(), IntSort())

In this case, the specification in CertiQ is almost identical
to the Layout implementation in Terra (see §2.3) with
the only difference that Layout specification uses Z3 Map

rather than Python dict. Here, we include Map Z3 in
our Trusted Computing Base (TCB) and trust that it
correctly specifies dict in Python.

Abstract specifications. For more complicated data struc-
tures, for example, DAGCircuit, we need to use abstract
specifications for the ease of symbolic execution and ver-
ification. The abstract specification of the DAGCircuit
class is an array of gates,

class DAGCircuit: # dagcircuit specification
def __init__(self, gates=None, size=None):
self.dag = (Array(IntSort(), GateType)

if gates is None else gates)

The equivalence between all abstract specifications
and their implementations is verified using specification
refinement (see §4.3).

3.3 Contracts and verification goals
The concept of contract is deeply rooted in the design
of CertiQ. In CertiQ, a contract consists of three Z3
functions: the pre-condition function, the post-condition
function, and the invariant function. Each of these func-
tions takes Z3 variables as parameters and returns Z3
predicates. CertiQ offers a contract for all verified li-
brary functions and important types of potential user
implementations. For implementations in CertiQ library,
their contracts are statically verified; for user implemen-
tations like the BasicSwap pass, their contracts set the
verification goals and define what it means by saying that
the user code is verified. The purpose of contract-based
design is twofold: first, it is for specifying the behavior
of quantum data structures/operations that might be
unexpected to classical world developers; more impor-
tantly, contracts provide a means to speed up symbolic
execution through a mechanism that can be interpreted
as predicate abstraction (see §4.2).

Contracts for library functions. We give several simple
examples of contracts used in our BasicSwap pass. More
quantum-related contracts will be discussed in §4.3. For
example, the contract of the Layout object is:

class Layout():
... # omitted code
Contract of the Layout object
def precondition(self): return True
def invariant(self): return True
def postcondition(self):
i = fresh_int()
return ForAll([i], self.p2v(self.v2p(i))==i)

The non-trivial part of this contract is its post-condition,
which specifies that both the two maps in Layout must
be bijiections and the inverse of each other. For func-
tions, their contracts are encoded in separate contract
functions. For example, for the function simple_layout

that generates an initial mapping of a circuit onto the
coupling map of a physical device,

def simple_layout(qreg, coupling_map):
layout = Layout()
for i, qubit in enumerate(qreg):
layout[qubit] = i

return layout

its pre-condition function is,
def simple_layout_pre(qreg, coupling_map):
return And(coupling_map.postcondition,

qreg.postcondition,
coupling_map.size >= qreg.size)

which states that the inputs must comply with the
post-condition of their classes and the size of the cou-
pling map must be equal or larger than the size of the
quantum register. Its post-condition function simply
returns layout.postcondition. To prove the function

6

simple_layout complies with its contracts, in CertiQ we
verify the following,

evaluate pre-condition
pre = simple_layout_pre(qreg, coupling_map)
evaluate invariant before execution
inv_before = simple_layout_inv(qreg, coupling_map)
symbolic execution
layout = simple_layout(qreg, coupling_map)
evaluate post-condition
post = simple_layout_post(layout)
evaluate invariant after execution
inv_after = simple_layout_inv(qreg, coupling_map)

{pre-condition} Execution {post-condition}
certiq_prove(Implies(pre, post))
pre-condition => invariant
certiq_prove(Implies(pre, inv_before))
invariant before => invariant after
certiq_prove(Implies(inv_before, inv_after))

Another example is the function shortest_path in the
CouplingMap class in the BasicSwap pass to find the short-
est path of two physical qubits on the coupling map. Its
pre-condition function returns And(p1 < self.size, p2

< self.size, self.postcondition) (here self is the cou-
pling map). Its post-condition function returns:

And(ForAll([i],
Implies(And(i >=0, i < self.size - 1),

self.distance(
self.shortest_path[i],
self.shortest_path[i+1]) == 1)),

self.shortest_path[0] == p1,
self.shortest_path[1] == p2)

This states that the two neighboring physical qubits on
the path must have distance 1 and the two ends of the
path are the two input physical qubits.

Contracts for BasicSwap pass CertiQ predefined con-
tracts for all types of potential user implementations
of transpiler passes. As shown in Fig.5, the annotation
@swap in the first line informs CertiQ that this is a swap
insertion pass. For swap insertion passes, we require the
following three conditions are met:

∙ The pass must preserve semantics, 𝑖.𝑒., the input
DAGCircuit and output DAGCircuit must perform
the same functionality.

It must preserve the semantics
def basic_swap_post1:
return equiv(input_dag, output_dag)

where equiv (defined in §4) checks the equivalence
of the input and output DAGCircuit.

∙ The output DAGCircuit of the pass must conform
to the coupling map of the physical device.

All 2-qubit gates must have their
operands mapped next to each others
in the coupling map
def basic_swap_post2:
post_predicate = []
i = fresh_int() # symbolic index of gates
twoQgate = outputdag.twoQgates[i]
q1 = twoQgate.op1
q2 = twoQgate.op2
post_predicate.append(i <= output_dag.

twoQgate_count)
post_predicate.append(ForAll([i],

coupling_map.distance(q1, q2) ==1))
return post_predicate

∙ The pass must terminate for all input circuits. Since
termination is in general undecidable, we do not
provide a contract function for it but require users
to provide a variable to serve as a program mono-
tone. A detailed example is given in §5.1.

Then, the verification goal of the BasicSwap pass in
CertiQ is to symbolically prove that the above contracts
functions.

3.4 Static analysis and code transformations
Before we hand over the basic_swap pass to the Z3 SMT
solver, we statically analyze [33] its code and perform
transformations to assist and speed up the symbolic
execution. For example, the invocation of simple_layout
will be replaced by its contract,

Check pre-condition
certiq_prove(simple_layout_pre(dag.qreg,

self.coupling_map))
Impose post-condition
simple_layout_post(layout)

In this way, the symbolic execution does not need to
unfold the implementation of simple_layout every time
it is invoked. Then, the Z3 code and predicate generated
by verifying BasicSwap will be in a tractable size and
greatly reduce the burden of the SMT reasoning. As an
example, with the predicate provided by shortest_path’s
contract that shortest_path the distance of succinct
qubits are of distance 1, it is not hard for Z3 to prove
the second verification goal that BasicSwap does output
a DAGCircuit that conform to the coupling map of the
physical device.

3.5 The visualizer
If there is a bug in the user code, the verifier will invoke
the visualizer and generate a counter-example. If the
verification cannot finish in a certain amount of time
or there are unsupported external library calls in the
submitted code, we exit with “undetermined.”

7

3.6 The translation validator
If the BasicSwap pass cannot be verified automatically,
𝑖.𝑒., either the verification does not stop for a certain
period of time or exits with “undetermined,” CertiQ pro-
vides a translation validator at runtime. The algorithm
of the translation validator is illustrated in detail in §4.4.

4 The CertiQ Framework
In this section, we discuss the two main technical con-
tributions in CertiQ: the calculus of quantum circuit
equivalence with the subsequent contract designs and
specification refinement for quantum data structure ver-
ification. First, we define the equivalence of quantum
circuits and how we use the calculus of quantum circuit
equivalence to efficiently check the equivalence.

4.1 Equivalence checking for quantum circuits
The problem of equivalence checking of quantum circuits
falls into the complexity class of QMA (the quantum
version of NP) [21], thus it is intractable to verify the
equivalence of quantum circuits by its denotational se-
mantics. To enable the efficient equivalent checking for
a large set of quantum circuits, CertiQ introduces the
calculus of quantum circuits equivalence that is proven
to be sound with respect to our denotational semantics
of quantum circuits.

𝐶 := skip 𝑈 := 𝑢1(𝜆) | 𝑢2(𝜑, 𝜆)
| 𝑈(𝑞1, 𝑞2, ..., 𝑞𝑛) | 𝑢3(𝜃, 𝜑, 𝜆)
| 𝐶1; 𝐶2 | 𝑋 | 𝑌 | 𝑍 | 𝐻

| 𝐶𝑋 | 𝐶𝑌 | 𝐶𝑍
| SWAP | measx | measz

Fig. 6. Abstract syntax of quantum circuits in CertiQ. 𝐶 are
quantum circuits and 𝑈 are unitary/non-unitary quantum
operations. 𝑢1, 𝑢2, 𝑢3 are physical 1-qubit gates that can be
directly executed on IBM’s machine, their definitions are
given in Table 1 in §5.2.

Abstract syntax. Figure 6 shows the abstract syntax
of quantum circuits in CertiQ. It shows that quan-
tum circuits can be empty, unitary quantum gates, and
combined sequence of quantum circuits. The equiva-
lence of two quantum circuits 𝐶1 and 𝐶2 is then de-
fined using the equality of their denotational semantics,
∀nqreg : J𝐶1Knqreg = J𝐶2Knqreg.

Denotational semantics. Denotational semantics of quan-
tum circuits can be conveniently defined as their corre-
sponding unitary matrices (Fig. 7).

Proving equality using denotational semantics, how-
ever, is exponentially hard since the dimension of ma-
trices is 2nqreg × 2nqreg. To make the equality checking

JskipKnqreg = 𝐼2nqreg

J𝑈Knqreg = gate_def(𝑈, 𝑞1, ..., 𝑞𝑛, qreg)

J𝐶1 ;𝐶2Knqreg = J𝐶1Knqreg × J𝐶2Knqreg

Fig. 7. Denotational semantics of quantum circuits and uni-
tary operations in CertiQ. nqreg is the number of qubits
in the quantum registers used in the circuit. gate_def is a
function in CertiQ that can evaluate the unitary matrices
for quantum operations in the quantum register environment
of qreg.

𝐶 ≡ 𝐶
Symmetry

𝐶1 ≡ 𝐶2
𝐶2 ≡ 𝐶1

Reflexivity

𝐶1 ≡ 𝐶2 𝐶2 ≡ 𝐶3
𝐶1 ≡ 𝐶3

Transitivity

𝐶1 ≡ 𝐶2 𝐶′
1 ≡ 𝐶′

2
𝐶1;𝐶2 ≡ 𝐶′

1;𝐶′
2

Sequencing

equiv(𝐶1, 𝐶2)
𝐶1 ≡ 𝐶2

Primitive Patterns

Fig. 8. The calculus of quantum circuit equivalence.

tractable, we design a calculus of quantum circuits equiv-
alence by introducing a library of primitive patterns of
circuit equivalence.

The calculus of quantum circuits equivalence. Figure 8
shows the inference rules of our calculus of quantum
circuits equivalence, including the rules of symmetry,
reflexivity, transitivity, and sequencing. All the rules
are straightforward except for the rule of primitive pat-
terns. CertiQ introduces a predicate equiv specifying
a set of primitive patterns of circuit equivalence (see
Fig. 9). For example, equiv([CNOT(𝑞1, 𝑞2), Z(𝑞1)], [Z(𝑞1),
CNOT(𝑞1, 𝑞2)])gives us the commutativity rule between
the CNOT and the Z gate. These primitive patterns are
small enough to be verifiable by calculating their deno-
tational semantics in CertiQ. For example, the second
cancellation rule in Fig. 9 can be proven as follows,

JHK · JHK =
√

2
2

(︂
1 1
1 −1

)︂
·

√
2

2

(︂
1 1
1 −1

)︂
=

(︂
1 0
0 1

)︂
(Identity)

With proved primitive circuit patterns, we proved that
our calculus of quantum circuit equivalence is sound.

Theorem 4.1 (Soundness).

∀𝐶1 𝐶2 nqreg, 𝐶1 ≡ 𝐶2 ⇒ J𝐶1Knqreg = J𝐶2Knqreg

8

∙ ∙ ∙
∙ ∙ ≡

∙ ∙ ∙
|0⟩ ∙ ≡ |0⟩

∙ ∙ ≡ ≡
𝐻 𝐻

𝑍 ∙ ∙ 𝑍
≡

𝑋 𝑋
≡∙ ∙

∙ ∙ ≡ ∙ ∙
∙ ∙

≡
∙ ∙

× ×
≡ ≡

× ×

Fig. 9. Examples of certified primitive patterns implemented
by equiv in CertiQ. They are bridging rules (above), cancel-
lation rules (2nd line), commutativity rules (3rd, 4th line),
and swap rules (bottom).

Experiments (see §6) shows that this calculus of circuit
equivalence is able to decouple the underlying quantum
complexity from the verification and enables efficient
automated reasoning in the symbolic execution.

On the other hand, the certified primitive patterns
defined in Fig. 9 are also implemented as library func-
tions and served as atomic circuit transformations in
transpiler passes. Comparing to allowing developers ar-
bitrarily modify quantum circuits, this design is ad-
vantageous in terms of code quality management and
facilitation of symbolic reasoning. For example, the last
swap rule in Fig. 9 defines the swap_and_update_layout

primitive we used in BasicSwap pass, which first in-
serts a swap gate and then updates the layout. Since
the BasicSwap pass changes circuits only through this
atomic swap_and_update_layout primitive, which has
been proven to preserve semantics, BasicSwap can be
trivially verified. In contrast, before CertiQ, the imple-
mentation of BasicSwap pass in Qiskit performed swap
insertion and layout update in separate loops, breaking
the equivalence of intermediate circuits in the between
two loops, making the symbolic verification much harder:

Previous implementation of BasicSwap in Qiskit
for layer in dag.serial_layers():
subdag = layer['graph']
for gate in subdag.twoQ_gates():
... # Other codes
create the swap operation

for swap in range(len(path) -2):
swap_layer.apply_operation_back(SwapGate(),

args=[q1, q2],cargs=[])

layer insertion
edge_map = current_layout.combine_into_edge_map(

trivial_layout)
new_dag.compose_back(swap_layer, edge_map)
Update layout
for swap in range(len(path) -2):
current_layout.swap(path[swap], path[swap + 1])

As shown in the code above, the circuit transforma-
tions used do not preserve semantics all the time, thus
no well-behaved contract can be given to these functions.
More importantly, this original implementation cannot
be verified automatically since loop invariants cannot be
given for the variable-length loops in the code. Next, we
discuss the use of contracts in loop invariants search as
well as in general symbolic execution.

4.2 Contracts for scaling symbolic execution
Contracts enables the modular verification in CertiQ.
Consider the general case in a symbolic execution,

... # execution
qiskit_call(para)
... # continue execution

where qiskit_call is a Qiskit Terra library function,
with the call parameter para, pre-condition pre(para),
and post-condition post(para). CertiQ enables the predi-
cate abstraction, meaning that we can use the contract of
a function without symbolically executing that function.
Take the invocation of qiskit_call (that has been veri-
fied to satisfy its contracts) as an example. Suppose the
program state before the invocation is specified by the
Z3 predicate 𝑠. To invoke this primitive, the precondition
in the contract has to be satisfied, 𝑖.𝑒., 𝑠 ⇒ 𝑝𝑟𝑒 (𝑝𝑎𝑟𝑎).
With predicate abstraction, instead of performing the
symbolic execution of the function body, the predicate
after the invocation is:

𝑠 ∧ 𝑝𝑜𝑠𝑡 (𝑝𝑎𝑟𝑎)

This significantly reduces the burden of the symbolic
reasoning.

Contracts for user functions. CertiQ provides several
pre-defined contracts that users can apply to their func-
tions, some of which can be automatically inferred. For
example, if a function returns a layout, CertiQ will auto-
matically add the bijection requirement for the returned
layout. Some of the pre-defined contracts have to be
hinted at by users. For example, if users provide the
annotation “@coupling_map_path” at the beginning of
a function, the CertiQ verification engine will apply the
corresponding contract. Thus, the post-condition of a
coupling map is applied, which is that the distance be-
tween the 𝑖th element and 𝑖+1th element of the returned
path must be 1 on the input coupling map.

9

State vector
(𝛾, 𝜃, 𝜑)

Bloch sphere
(𝜃, 𝜑)

Unit Quaternion
(𝑟1, 𝑟2, 𝑟3)

� �

�

Unitary matrices
(𝛾, 𝜃, 𝜑)

3D rotation
(𝜃, 𝜑)

Quaternion rotation
(𝑟1, 𝑟2, 𝑟3)

�

�

�

Fig. 10. Quantum data structures of qubit states (top) and
quantum gates (bottom). These data structures are used for
optimizing 1-qubit gates. State vector and unitary matri-
ces representation serves as the specifications for these data
structures. After performing the refinement test, we show
that Bloch sphere is not equivalent to state vector repre-
sentation and unit Quaternion presentation in multi-qubit
cases, because they lost the global phase information. For
quantum gates, unit Quaternion representation and Bloch
sphere representation are not equivalent to unitary matrices.

Loop invariants. The SMT backend cannot handle variable-
length loops, thus loop invariants must be inferred or
provided in CertiQ for successful automated verification.
Fortunately, in this domain-specific environment (a quan-
tum compiler), practically, this problem can be more
easily solved than in the general case: loop invariants
might be found with heuristics leveraging the domain
knowledge provided by the contracts in the loop body.
In CertiQ, we use the simple heuristics that test if the
contracts of the library functions invoked in the loop
body are loop invariants. With the use of certified li-
brary functions (whose contracts usually provides the
loop invariants), this heuristics works well in practice
for verifying transpiler implementations.

If loop invariants for a loop cannot be found by Cer-
tiQ, the user can choose to provide the invariant using
annotations.

4.3 Specification refinement for equivalence of
quantum data structures

As a quantum software, Qiskit has a rich variety of
quantum data structures that represent the underlying
quantum objects. For example, as discussed in §2, there
are three data structures for quantum circuits: Quantum-
Circuit and DAGCircuits as well as the abstract circuit
in CertiQ. There are also three data structures for qubit
states, 𝑖.𝑒., state vector representation, Bloch sphere rep-
resentation and unit Quaternion representation (Fig. 10

𝐷𝑐 𝐷𝑎

𝐷′
𝑐 𝐷′

𝑎

𝑡 𝑡

�

�

Fig. 11. The simulation diagram for refinement saying that,
starting from a pair of equivalent concrete DAG 𝐷𝐶 and
abstract DAG 𝐷𝑎, for any transformation 𝑡, if 𝑡 transforms
𝐷𝐶 to 𝐷′

𝐶 , then 𝑡 must transform 𝐷𝑎 to an abstract DAG
𝐷′

𝑎 that is equivalent to 𝐷′
𝑐.

top) and quantum gates (Fig. 10 bottom). In CertiQ,
we statically verify the equivalence of these quantum
data structures. Take the DAGCircuit and QuantumCir-
cuit as an example, the refinement requirement can be
informally stated as: if we feed a pair of equivalent DAG-
Circuit and QuantumCircuit into a function performs
circuit transformation, it should yield another DAGCir-
cuit and another QuantumCircuit which are equivalent
to each other. Thus any transformations cannot break
the equivalence. More precisely, in CertiQ, for each pair
of equivalent quantum data structures, we define the
equivalence relation “�” between them. For example, for
a DAGCircuit 𝐷𝑐 and a QuantumCircuit 𝑄𝑐, CertiQ
defines � to be,
𝐷𝑐 � 𝑄𝑐 ⇐⇒ ∀𝑖, 𝐷𝑐.topological_op_node(𝑖) = 𝑄𝑐(𝑖)
where topological_op_node will return a list of gates in
the DAG sorted by their dependence. Then the refine-
ment property can be formally defined in a simulation
diagram [24] in Fig. 11. In CertiQ, we prove the refine-
ment property for equivalent data structures by symbolic
execution in Z3 solver and found that between several
important data structures that represents qubit space,
the refinement property breaks.

An example: Bloch sphere representation. The Bloch
sphere representation [4] is a commonly used data struc-
ture for qubit states, in which the logical state |0⟩ is
mapped to the north pole and |0⟩ is mapped to the

Fig. 12. The Bloch Sphere
represents a single qubit.
The |0⟩ state is on the
North Pole, the |1⟩ state
is on the South pole, and
superposition states are
in between. Single qubit
gates correspond to rota-
tions on the Bloch sphere.
For instance, the Z gate
rotates a qubit by angle 𝜋
about the 𝑍-axis.

10

south pole (see Fig. 12). Specifically, Bloch sphere repre-
sentation is a projection where the global phase of a qubit
state |𝜓⟩ is omitted and |𝜓⟩ and 𝑒𝑖𝛾 |𝜓⟩ are mapped to
the same qubit state. The main part of this projection
can be seen trivially in the following Python code,

def Bloch_rep(gamma, theta, phi):return (theta, phi)

where a general qubit state 𝜓,

|𝜓⟩ = 𝑒𝑖𝛾cos(𝜃2) |0⟩ + 𝑒𝑖(𝜑+𝛾)sin(𝜃2) |1⟩)

parameterized by (𝛾, 𝜃, 𝜑) is projected to the spherical
coordinate (𝜃, 𝜑) of a unit sphere. Between state vec-
tor representation (which we view as the specification)
and Bloch representation, the equivalence relation “�”
is defined by the above Bloch_rep function. However,
the refinement property does not hold for it, since there
is a transformation tensor_product together with other
multi-qubit operations that breaks the diagram in Fig. 11.
Refinement breaks because there is an untracked phase
difference between qubits beyond the 1-qubit case. The
relative phase change will induce non-trivial quantum
computation that is not revealed in this representation.
To address this issue, in CertiQ we explicitly exclude any
multi-qubit operations in the contract of any transfor-
mations conducted in the Bloch sphere representation.
This restriction also applies to the unit quarternion rep-
resentation which proved to be equivalent to the Bloch
sphere representation. We will use these conclusion in
the experiment in §5.2.

4.4 The translation validator

∙ ∙
∙ ∙

𝑅𝑧

(a) The un-mapped circuit

∙ ∙
× 𝑅𝑧

× ∙ ∙
(b) The mapped circuit

∙ ∙
× × 𝑅𝑧

× × ∙ ∙

(c) Validation phase 1

∙ ∙
×× ∙ ∙
×× 𝑅𝑧

(d) Validation phase 2
Fig. 13. Translation validation of swap insertion passes.
(a) and (b) show the input circuit and the output cir-
cuit of the swap pass. First, the validator performs a
swap_and_update_gate (the dashed-line box in (c)) behind
every swap in (b), which is a primitive circuit move. Then the
validator performs the primitive circuit move cancel_swap
(the dashed-line box in (d)). Then we recover the input cir-
cuit.

For two important types of transpiler passes, CNOT
optimization passes and swap insertion passes, that re-
ceives the most community contributions, CertiQ also

provides a translation validator if the symbolic verifi-
cation of a pass fails. The translation validator verifies
the equivalence between a specific input and its output
from the transpiler pass to be verified. This is done
by reverting the changes of the pass it validates. As
an example, we illustrate the validation algorithm of
swap insertion passes with an input circuit of 3 qubits
in Fig. 13. We assume the coupling map for the three
qubits is 𝑞1 −𝑞2 −𝑞3. For validating swap passes with the
intput in Fig. 13(a), the validator finds swap gates in the
mapped circuit and insert another swap gate right behind
each with the swap_and_update_gate method (which is
semantics preserving). After all swaps getting cancelled
out by applying the cancel_swap method, we recover
the input circuit. For validating the output of CNOT
cancellation pass, a similar algorithm is performed.

5 Case studies
Here we present case studies to show how CertiQ de-
tects bugs and safety issues in realistic settings. We
find a counter-example circuit that the lookahead_swap

pass does not terminate on, we point out a bug in the
optimize_1q_gate pass that can be addressed by specify-
ing correct contracts for the pass and the function calls in-
side, and we identify two bugs in the commutative_analysis
and commutative_cancellation passes when specifying
their contracts.

5.1 swap insertion passes
Swap insertion passes are a fundamental stage of com-
piling for NISQ machines, where qubits are not fully
connected and must be swapped on a chip to communi-
cate. Because swap gates are error-prone and can corrupt
the whole computation, these passes try to minimize the
number of swap operations.

In the case study described here, we show how CertiQ
identify a bug in the lookahead_swap pass.

As mentioned in §3, there are three verification goals
for swap passes: (1) the pass must be semantics pre-
serving; (2) The output DAGCircuit of the pass must
conform to the coupling map of the physical device; (3)
The pass must terminate. Proving the first two goals
is demonstrated in §3. For the third verification goal,
CertiQ does not try to solve it completely because it
is undecidable. Instead, CertiQ aims to provide sound
termination analysis for practical implementations. First,
CertiQ concretizes the problem to verify the termination
of passes with input circuit of bounded depth on a given
coupling map. Termination can be proved by construct-
ing strictly monotonic functions in a finite domain. For
program states that are not in a loop or a recursive
function, the program counter is a monotonic function
to provide termination guarantee. For variable-length

11

loops and while loops, CertiQ allows users to provide
the monotonic function, for example,

gates_remaining = dag.topological_op_node()
while gates_remaining != 0:
@mono: -gates_remaining.size
... # implementation code

Then in the backend SMT solver, the verifier solves
for the circuit input that keeps gates_remaining.size

unchanged and gives it as a counter example.
We verified three swap insertion passes: basic_swap,

lookahead_swap and noise_adaptive_swap. We report
that all three passes comply with the first two con-
tracts. However, we find a counter-example circuit on
coupling map of the IBM 16 qubit device, where the
lookahead_swap pass does not terminate on (see Fig. 14).
The lookahead_swap pass greedily finds the next best 4
swap gates to minimize the totl distance of the unmapped
2-qubit gates. However, the counter example we found
shows that the 4 swap gates can cancel each other out
with the swap rules in Fig. 9, thus gate_remaining.size

will not update.

5.2 The optimize_1q_gate pass
We next focus on the verification of the optimize_1q_gate
pass and show that, with contract-based design, we can
reveal bugs only arise in quantum software.

We verify the re-implemented optimize_1q_gate pass
using the merge_1q_gate method. This pass collapses a
chain of single-qubit gates into a single, more efficient
gate [42], to mitigate noise accumulation. It operates
on 𝑢1, 𝑢2, 𝑢3 gates, which are native gates in the IBM
devices. These gates can be naturally describe as linear
operations on the Bloch sphere, for example, 𝑢1 gates
are rotations with respect to the Z axis. For clarity, we
list their matrix representations in Table 1.

𝑢1(𝜆) =
(︂

1 0
0 𝑒𝑖𝜆

)︂
, 𝑢2(𝜑, 𝜆) =

√
2

2

(︂
1 −𝑒𝑖𝜆

𝑒𝑖𝜑 𝑒𝑖(𝜆+𝜑)

)︂

𝑢3(𝜃, 𝜑, 𝜆) =
√

2
2

(︂
cos(𝜃) −𝑒𝑖𝜆sin(𝜃)
𝑒𝑖𝜑sin(𝜃) 𝑒𝑖(𝜆+𝜑)cos(𝜃)

)︂
Tab. 1. Matrix representation of physical gates 𝑢1, 𝑢2 and
𝑢3. 𝑢1 is a Z rotation on the Bloch sphere.

𝑄0 ∙ ∙
𝑄8 ∙
𝑄7 ∙

𝑄14

Fig. 14. (left) A counter-example generated by CertiQ that
shows Qiskit’s lookahead_swap pass does not always termi-
nate on the IBM 16 qubit device. (right) The coupling map of
the IBM 16 qubits device. Arrows indicate available CNOT
directions (which does not affect the swap insertion step).

The optimize_1q_gate pass has two function calls.
First, it calls the collect_runs method to collect groups
of consecutive 𝑢1, 𝑢2, 𝑢3 gates. Then it calls merge_1q_gate
to merge the gates in each group. merge_1q_gate (Fig. 15)
first transforms the single qubit gates from the Bloch
sphere representation to the unit quaternion represen-
tation [18], then the rotation merges are performed in
that representation.

As described in §4.3, the contracts of these two repre-
sentations allow only single-qubit operations required by
the refinement property. However, every Qiskit gate can
be modified with a c_if or q_if method to condition
its execution on the state of other classical or quantum
bits. When the transpiler pass attempts to optimize
these conditional gates, it can lead to a wrong circuit.
For this reason, in the contract and implementation of
collect_runs, we have to include that gate1.q_if ==

False and gate1.c_if == False.
The bugs described above, which relate to how quan-

tum circuit instructions can be conditioned, have been
observed in Qiskit in the past [35, 36]. In the absence of
rigorous verification like this work, such bugs are hard
to discover. In practice, this is usually done via extensive
randomized testing of input/output circuits, which does
not provide any guarantee. The results demonstrate that
our contract for merge_1q_gate based on contextual re-
finement is effective for detecting quantum-related bugs.

𝑢1(𝜆1) 𝑢3(𝜃2, 𝜑2, 𝜆2) m1g
−−−→ 𝑢3(𝜃2, 𝜆1 + 𝜑2, 𝜆2)

∙

𝑢1(𝜆1) 𝑢3(𝜃2, 𝜑2, 𝜆2) m1g
−−−→ 𝑢3(𝜃2, 𝜆1 + 𝜑2, 𝜆2)

Fig. 15. Correct execution (top) and incorrect execution (bot-
tom) of merge_1q_gate.

5.3 commutation passes
commutation_analysis and commutative_cancellation

is a pair of Transpiler passes that optimizes DAGCircuits
using the quantum commutation rules and the cancella-
tion rules in Fig. 9. First, commutation_analysis trans-
forms the DAGCircuit to a representation called com-
mutation groups [43], where nearby gates that commute
with each other are grouped together. Then commutative
_cancellation performs cancellation inside groups. In
Fig. 16, we give a working example.

We find two bugs when verifying this pair of passes.
First, the commutation group can be viewed as an ab-
stract specification for the DAGCircuit. However, when
specifying the contract of commutation_analysis, we find

12

𝑍 ∙ 𝑍 ∙

∙ 𝑋 ∙

(a)

𝑍 ∙ 𝑍 ∙

∙ 𝑋 ∙

(b)

∙ 𝑋 ∙

(c)

Fig. 16. A working example of commutation_analysis and
commutative_cancellation. (a) the un-optimized circuit;
(b) commutation_analysis forms the commutation group (c)
commutative_cancellation cancels self-inverse gate inside
groups.

that the commutation group representation violates con-
textual refinement property defined in §4.3. This viola-
tion comes from the fact that the commutation relation
is in general not transitive. For example, if we denote
the commutation relation as ∼ and there are 3 quantum
gates, 𝐴,𝐵,𝐶, where 𝐴 ∼ 𝐵, 𝐵 ∼ 𝐶, then 𝐴 ∼ 𝐶 is
not guaranteed to be true. For this reason, gates with
pairwise commutation relation cannot be grouped to-
gether. We propose two solutions to this bug. First, we
can make sure the circuits that these passes operate on
have a limited gate set where ∼ is indeed transitive. For
example, in the gate set {CNOT, X, Z, H, T, 𝑢1, 𝑢2, 𝑢3},
∼ is transitive. Second, we can use a new algorithm
that does not assume transitivity but is potentially less
efficient.

The second bug we find is when specifying the contract
of commutative_cancellation. The bug is the same to
the bug in §5.2, where the pass cancels gates with a
classical control. This bug can be fixed by asserting that
gate.c_if==False and gate.q_if==False.

6 Evaluation
We performed verification of four transpiler phases with
seven implementations. The seven implementations are:
the collect_2q_block pass, the commutative_analysis

pass, the commutative_cancellation pass, the lookahead
_swap pass, the basic_swap pass, the noise_adaptive_swap
pass, the optimize_1q_gate pass. These passes are all
re implemented with invariant-guided contract design.
With seven successful verifications (none exit with “un-
determined”), we report three bugs. We evaluate CertiQ
based on the verification of these implementations.

Verification performance For implementations using
our certified circuit patterns, all transpiler passes can be
verified within seconds. However, most of the original
implementations cannot be verified or take long time to
verify.

Run-time performance. When executing, verified code
still calls functions from the Terra library, not from the
specifications in CertiQ, so its performance is not af-
fected. However, the interface of primitive circuit moves

indeed adds some constraints on the allowed operations.
For example, when using the swap_and_update_gate method
in a loop to swap along a path, the complexity is 𝑂(𝑛2),
where 𝑛 is the number of gates in the circuit. While
using the swap method in a loop to achieve the same is
of complexity 𝑂(𝑛). We mitigate this problem by ver-
ifying the efficient implementation and providing it as
a primitive move. For example, in CertiQ we verify the
above implementation with the swap and provide it as
the swap_along_path method.

Extensibility. The contract-based design provides a pow-
erful abstraction for complicated optimization algorithms,
thus we believe CertiQ is extensible to future transpiler
implementations. On the other hand, since CeritQ al-
ready provides abstract specifications and contracts for
important data structures in Qiskit, we expect CertiQ
to be very extensible for other components of the Qiskit
toolchain that rely on the same infrastructure.

7 Related work
Quantum programming environments with a verifier.
Several quantum programming environments support
the verification of quantum programs running on it. For
example, in the QWire quantum language [38, 40], pro-
grammers can use the embedded verifier based on the
Coq proof assistant [7] to perform mechanized proof
for their programs. The 𝑄 |𝑆𝐼⟩ programming environ-
ment [26] allows users to reason about their programs
written in the quantum while-language with quantum
Floyd-Hoare logic [51]. In contrast to CertiQ, these envi-
ronments require expertise both in quantum computing
and formal verification to construct proofs and these
proofs verify at the program level, not the compilation
level.

Verified quantum-related compilers. Previous studies on
compiler verification for reversible circuits [3], ancillae
uncomputation [38, 39] and compiler optimizations [19]
utilize interactive theorem provers such as F* [29] and
Coq [7] to conduct manual proofs, which do not provide
an extensible interface for developers to verify future
extensions with low proof burden. In contrast, CertiQ ver-
ification framework allows developers to plugin their im-
plementations that can be verified in a mostly-automated
manner.

Algorithms to perform efficient quantum circuits equiv-
alence checking have been discussed from the view of
quantum algorithms [49], quantum communication pro-
tocols [5], and verification of compilation [2]. However,
while powerful, these checking algorithms are too compli-
cated to automated verification like we use with CeritQ.

13

Model checking in quantum computation verification.
The early adoption of Model checking in quantum com-
putation focused on verifying quantum communication
protocols [10, 17, 47, 52]. Recently, model checking tech-
niques have been applied to more areas, including quan-
tum Markov chain analysis [13–15], checking physical
systems, program analysis [22, 25, 53]. However no au-
tomated verification tool based on model checking like
CertiQ exists for quantum computing until now.

Push-button verification in classical computing. Push-
button verification has been applied for building verified
file systems, OS kernels, and system monitors [30, 31, 44].
Our technical choice and many of the verification ideas
are heavily influenced by these previous work. However,
these systems cannot support variable-length loops, cal-
culus of quantum circuit equivalence, and our contract-
based reasoning.

8 Conclusion and Future Work
We presented CertiQ, a mostly-automated verification
framework for the Qiskit compiler that addresses the
key challenges of verifying a real-world quantum com-
piler. CeritQ introduces the calculus of quantum circuits
equivalence to statically and efficiently reason about
the correctness of compiler transformations. CertiQ in-
troduces a combination of proof techniques to reduce
verification complexity from the underlying quantum
computation as well as from the large user code space.
These proof techniques include SMT reasoning, contract-
based design, and invariant contract. With extensive case
studies, we demonstrate that CertiQ can detect critical
bugs, some of which are unique to quantum software.

To our knowledge, CertiQ is the first effort enabling the
automated verification of a real-world commercial quan-
tum compiler. The approach we establish with CertiQ
paves the way for end-to-end verification of a complete
quantum software toolchain, an important step towards
practical near-term quantum computing. Going forward,
we are working to use our contract-based approach to
incorporate verification of both higher and lower compo-
nents of Qiskit. These include Qiskit Aqua, the high-level
quantum algorithm library and the OpenPulse interface
[28], which implements quantum operations through mi-
crowave control pulses.

References
[1] Gadi Aleksandrowicz, Thomas Alexander, Panagiotis Bark-

outsos, Luciano Bello, Yael Ben-Haim, David Bucher, Fran-
cisco Jose Cabrera-Hernández, Jorge Carballo-Franquis,
Adrian Chen, Chun-Fu Chen, Jerry M. Chow, Antonio D.
Córcoles-Gonzales, Abigail J. Cross, Andrew Cross, Juan
Cruz-Benito, Chris Culver, Salvador De La Puente González,
Enrique De La Torre, Delton Ding, Eugene Dumitrescu, Ivan
Duran, Pieter Eendebak, Mark Everitt, Ismael Faro Sertage,

Albert Frisch, Andreas Fuhrer, Jay Gambetta, Borja Godoy
Gago, Juan Gomez-Mosquera, Donny Greenberg, Ikko Hama-
mura, Vojtech Havlicek, Joe Hellmers, Łukasz Herok, Hiroshi
Horii, Shaohan Hu, Takashi Imamichi, Toshinari Itoko, Ali
Javadi-Abhari, Naoki Kanazawa, Anton Karazeev, Kevin Kr-
sulich, Peng Liu, Yang Luh, Yunho Maeng, Manoel Mar-
ques, Francisco Jose Martín-Fernández, Douglas T. McClure,
David McKay, Srujan Meesala, Antonio Mezzacapo, Nikolaj
Moll, Diego Moreda Rodríguez, Giacomo Nannicini, Paul Na-
tion, Pauline Ollitrault, Lee James O’Riordan, Hanhee Paik,
Jesús Pérez, Anna Phan, Marco Pistoia, Viktor Prutyanov,
Max Reuter, Julia Rice, Abdón Rodríguez Davila, Raymond
Harry Putra Rudy, Mingi Ryu, Ninad Sathaye, Chris Schnabel,
Eddie Schoute, Kanav Setia, Yunong Shi, Adenilton Silva,
Yukio Siraichi, Seyon Sivarajah, John A. Smolin, Mathias
Soeken, Hitomi Takahashi, Ivano Tavernelli, Charles Taylor,
Pete Taylour, Kenso Trabing, Matthew Treinish, Wes Turner,
Desiree Vogt-Lee, Christophe Vuillot, Jonathan A. Wildstrom,
Jessica Wilson, Erick Winston, Christopher Wood, Stephen
Wood, Stefan Wörner, Ismail Yunus Akhalwaya, and Christa
Zoufal. 2019. Qiskit: An Open-source Framework for Quantum
Computing. https://doi.org/10.5281/zenodo.2562110

[2] Matthew Amy. 2019. Towards Large-scale Functional Veri-
fication of Universal Quantum Circuits. Electronic Proceed-
ings in Theoretical Computer Science 287 (jan 2019), 1–21.
https://doi.org/10.4204/EPTCS.287.1

[3] Matthew Amy, Martin Roetteler, and Krysta M. Svore. 2017.
Verified Compilation of Space-Efficient Reversible Circuits.
In Computer Aided Verification. International Conference on
Computer Aided Verification, 3–21. https://doi.org/10.1007/
978-3-319-63390-9_1

[4] F Bloch. 1946. Nuclear Induction. Phys. Rev. 70, 7-8 (oct
1946), 460–474. https://doi.org/10.1103/PhysRev.70.460

[5] Juan Carlos Garcia-Escartin and Pedro Chamorro-Posada.
2011. Equivalent Quantum Circuits. Technical Report.
Universidad de Valladolid, Dpto. Teoria de la Senal e Ing.
arXiv:1110.2998v1

[6] cirq 2016. Cirq. https://github.com/quantumlib/Cirq
[7] The Coq Development Team. 2012. The Coq Reference Man-

ual, version 8.4. Available electronically at http://coq.inria.
fr/doc.

[8] Patrick Cousot and Radhia Cousot. 1977. Abstract inter-
pretation: A unified latice model. POPL ’77 Proceedings
of the 4th ACM SIGACT-SIGPLAN symposium on Prin-
ciples of programming languages (1977), 238–252. https:
//doi.org/10.1145/512950.512973

[9] Andrew W. Cross, Lev S. Bishop, Sarah Sheldon, Paul D.
Nation, and Jay M. Gambetta. 2018. Validating quantum
computers using randomized model circuits. arXiv (nov 2018).
arXiv:1811.12926 http://arxiv.org/abs/1811.12926

[10] T. Davidson, S.J. Gay, H. Mlnarik, R. Nagarajan, and N.
Papanikolaou. 2012. Model checking for communicating quan-
tum processes. arXiv (2012).

[11] Leonardo De Moura and Nikolaj Bjørner. 2008. Z3: An ef-
ficient SMT Solver. In International Conference on Tools
and Algorithms for the Construction and Analysis of Sys-
tems, Vol. 4963 LNCS. 337–340. https://doi.org/10.1007/
978-3-540-78800-3_24

[12] Leonardo De Moura and Nikolaj Bjørner. 2010. Bugs, moles
and skeletons: Symbolic reasoning for software development.
In International Joint Conference on Automated Reasoning.
Springer, 400–411.

[13] Yuan Feng, Ernst Moritz Hahn, Andrea Turrini, and Sheng-
gang Ying. 2017. Model Checking Omega-regular Properties

https://doi.org/10.5281/zenodo.2562110
https://doi.org/10.4204/EPTCS.287.1
https://doi.org/10.1007/978-3-319-63390-9_1
https://doi.org/10.1007/978-3-319-63390-9_1
https://doi.org/10.1103/PhysRev.70.460
http://arxiv.org/abs/1110.2998v1
https://github.com/quantumlib/Cirq
http://coq.inria.fr/doc
http://coq.inria.fr/doc
https://doi.org/10.1145/512950.512973
https://doi.org/10.1145/512950.512973
http://arxiv.org/abs/1811.12926
http://arxiv.org/abs/1811.12926
https://doi.org/10.1007/978-3-540-78800-3_24
https://doi.org/10.1007/978-3-540-78800-3_24

14

for Quantum Markov Chains. DROPS-IDN/7781 (2017).
https://doi.org/10.4230/LIPICS.CONCUR.2017.35

[14] Yuan Feng, Ernst Moritz Hahn, Andrea Turrini, and Lijun
Zhang. 2015. QPMC: A model checker for quantum programs
and protocols. In Lecture Notes in Computer Science (in-
cluding subseries Lecture Notes in Artificial Intelligence and
Lecture Notes in Bioinformatics), Vol. 9109. Springer Verlag,
265–272. https://doi.org/10.1007/978-3-319-19249-9_17

[15] Yuan Feng, Nengkun Yu, and Mingsheng Ying. 2013. Model
checking quantum Markov chains. In Journal of Computer
and System Sciences, Vol. 79. 1181–1198. https://doi.org/10.
1016/j.jcss.2013.04.002

[16] Cormac Flanagan, Shaz Qadeer, Cormac Flanagan, and Shaz
Qadeer. 2002. Predicate abstraction for software verification.
ACM SIGPLAN Notices 37, 1 (2002), 191–202. https://doi.
org/10.1145/503272.503291

[17] Simon J. Gay, Rajagopal Nagarajan, and Nikolaos Papaniko-
laou. 2008. QMC: A model checker for quantum systems
- Tool paper. In Lecture Notes in Computer Science (in-
cluding subseries Lecture Notes in Artificial Intelligence and
Lecture Notes in Bioinformatics), Vol. 5123 LNCS. 543–547.
https://doi.org/10.1007/978-3-540-70545-1_51

[18] Philippe Gille and Tamas Szamuely. 2009. Central Simple
Algebras and Galois Cohomology. Cambridge University Press.
https://doi.org/10.1017/cbo9780511607219

[19] Kesha Hietala, Robert Rand, Shih-Han Hung, Xiaodi Wu,
and Michael Hicks. 2019. Verified Optimization in a
Quantum Intermediate Representation. arxiv (apr 2019).
arXiv:1904.06319 http://arxiv.org/abs/1904.06319

[20] IBMQ 2016. IBM-Q Experience. https://www.research.ibm.
com/ibm-q/

[21] D Janzing, P Wocjan, and T Beth. 2003. Identity check is
QMA-complete. eprint arXiv:quant-ph/0305050 (may 2003).

[22] Ali Javadi-Abhari, Shruti Patil, Daniel Kudrow, Jeff Heckey,
Alexey Lvov, Frederic T Chong, and Margaret Martonosi.
2014. ScaffCC: A Framework for Compilation and Analysis
of Quantum Computing Programs. In Proceedings of the 11th
ACM Conference on Computing Frontiers (CF ’14). ACM,
New York, NY, USA, 1:1—-1:10. https://doi.org/10.1145/
2597917.2597939

[23] Chris Lattner and Vikram Adve. 2003. LLVM: A Compilation
Framework for Lifelong Program Analysis & Transformation.
Technical Report. UIUC. http://llvm.cs.uiuc.edu/

[24] Xavier Leroy. 2009. Formal verification of a realistic compiler.
Commun. ACM (2009). https://doi.org/10.1145/1538788.
1538814

[25] Yangjia Li and Mingsheng Ying. 2017. Algorithmic analysis
of termination problems for quantum programs. Proceedings
of the ACM on Programming Languages 2, POPL (dec 2017),
1–29. https://doi.org/10.1145/3158123

[26] Shusen Liu, Xin Wang, Li Zhou, Ji Guan, Yinan Li, Yang
He, Runyao Duan, and Mingsheng Ying. 2018. Q| SI?:
A quantum programming environment. In Lecture Notes
in Computer Science (including subseries Lecture Notes in
Artificial Intelligence and Lecture Notes in Bioinformat-
ics). Vol. 11180 LNCS. Springer Verlag, 133–164. https:
//doi.org/10.1007/978-3-030-01461-2_8

[27] D Maslov, G W Dueck, D M Miller, and C Negrevergne.
2008. Quantum Circuit Simplification and Level Compaction.
IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems 27, 3 (mar 2008), 436–444. https:
//doi.org/10.1109/TCAD.2007.911334

[28] David C. McKay, Thomas Alexander, Luciano Bello,
Michael J. Biercuk, Lev Bishop, Jiayin Chen, Jerry M. Chow,

Antonio D. Córcoles, Daniel Egger, Stefan Filipp, Juan Gomez,
Michael Hush, Ali Javadi-Abhari, Diego Moreda, Paul Nation,
Brent Paulovicks, Erick Winston, Christopher J. Wood, James
Wootton, and Jay M. Gambetta. 2018. Qiskit Backend Speci-
fications for OpenQASM and OpenPulse Experiments. arXiv
(sep 2018). arXiv:1809.03452 http://arxiv.org/abs/1809.03452

[29] Microsoft. 2016. F*. https://github.com/FStarLang/FStar/
[30] Luke Nelson, James Bornholt, Ronghui Gu, Andrew Bau-

mann, Emina Torlak, and Xi Wang. 2019. Scaling Symbolic
Evaluation for Automated Verification of Systems Code with
Serval. In Proceedings of the 27th ACM Symposium on Oper-
ating Systems Principles (SOSP ’19). ACM, New York, NY,
USA, 225–242. https://doi.org/10.1145/3341301.3359641

[31] Luke Nelson, Helgi Sigurbjarnarson, Kaiyuan Zhang, Dylan
Johnson, James Bornholt, Emina Torlak, and Xi Wang. 2017.
Hyperkernel: Push-Button Verification of an OS Kernel. In
Proceedings of the 26th Symposium on Operating Systems
Principles (SOSP ’17). ACM, New York, NY, USA, 252–269.
https://doi.org/10.1145/3132747.3132748

[32] John Preskill. 2018. Quantum Computing in the NISQ era
and beyond. ArXiv e-prints (jan 2018). https://doi.org/10.
22331/q-2018-08-06-79 arXiv:1801.00862

[33] PyCQA. 2013. Astroid. https://github.com/PyCQA/astroid
[34] pyquil 2016. Pyquil. https://github.com/rigetti/pyquil
[35] qiskitbug1 2018. Qiskit Bug Report. https://github.com/

Qiskit/qiskit-terra/issues/1871
[36] qiskitbug2 2018. Qiskit Bug Report. https://github.com/

Qiskit/qiskit-terra/issues/2667
[37] qutip 2012. Qutip. https://github.com/qutip
[38] Robert Rand, Jennifer Paykin, Dong-Ho Lee, and Steve

Zdancewic. 2019. ReQWIRE: Reasoning about Reversible
Quantum Circuits. arXiv e-prints, Article arXiv:1901.10118
(Jan 2019), arXiv:1901.10118 pages. arXiv:cs.LO/1901.10118

[39] Robert Rand, Jennifer Paykin, Dong-Ho Lee, and Steve
Zdancewic. 2019. ReQWIRE: Reasoning about Reversible
Quantum Circuits. Technical Report. University of Pennsyl-
vania. https://github.com/jpaykin/QWIRE.

[40] Robert Rand, Jennifer Paykin, and Steve Zdancewic. 2018.
QWIRE Practice: Formal Verification of Quantum Circuits in
Coq. Electronic Proceedings in Theoretical Computer Science
(2018). https://doi.org/10.4204/eptcs.266.8

[41] M. Schuld, M. Fingerhuth, and F. Petruccione. 2017. Im-
plementing a distance-based classifier with a quantum inter-
ference circuit. EPL (Europhysics Letters) (2017). https:
//doi.org/10.1209/0295-5075/119/60002

[42] Sarah Sheldon, Jay M. Gambetta, David C. McKay, Christo-
pher J. Wood, and Jerry M. Chow. 2017. Efficient Z gates
for quantum computing . Physical Review A 96, 2 (2017),
1–8. https://doi.org/10.1103/physreva.96.022330

[43] Yunong Shi, Nelson Leung, Pranav Gokhale, Zane Rossi,
David I. Schuster, Henry Hoffmann, and Frederic T. Chong.
2019. Optimized Compilation of Aggregated Instructions
for Realistic Quantum Computers. In ASPLOS. Providence,
Rhode Island. https://doi.org/10.1145/3297858.3304018

[44] Helgi Sigurbjarnarson, James Bornholt, Emina Torlak, and
Xi Wang. 2016. Push-button Verification of File Systems
via Crash Refinement. In Proceedings of the 12th USENIX
Conference on Operating Systems Design and Implementation
(OSDI’16). USENIX Association, Berkeley, CA, USA, 1–16.
http://dl.acm.org/citation.cfm?id=3026877.3026879

[45] Scott E. Smart, David I. Schuster, and David A. Mazziotti.
2019. Experimental data from a quantum computer verifies
the generalized Pauli exclusion principle. Communications
Physics (2019). https://doi.org/10.1038/s42005-019-0110-3

https://doi.org/10.4230/LIPICS.CONCUR.2017.35
https://doi.org/10.1007/978-3-319-19249-9_17
https://doi.org/10.1016/j.jcss.2013.04.002
https://doi.org/10.1016/j.jcss.2013.04.002
https://doi.org/10.1145/503272.503291
https://doi.org/10.1145/503272.503291
https://doi.org/10.1007/978-3-540-70545-1_51
https://doi.org/10.1017/cbo9780511607219
http://arxiv.org/abs/1904.06319
http://arxiv.org/abs/1904.06319
https://www.research.ibm.com/ibm-q/
https://www.research.ibm.com/ibm-q/
https://doi.org/10.1145/2597917.2597939
https://doi.org/10.1145/2597917.2597939
http://llvm.cs.uiuc.edu/
https://doi.org/10.1145/1538788.1538814
https://doi.org/10.1145/1538788.1538814
https://doi.org/10.1145/3158123
https://doi.org/10.1007/978-3-030-01461-2_8
https://doi.org/10.1007/978-3-030-01461-2_8
https://doi.org/10.1109/TCAD.2007.911334
https://doi.org/10.1109/TCAD.2007.911334
http://arxiv.org/abs/1809.03452
http://arxiv.org/abs/1809.03452
https://github.com/FStarLang/FStar/
https://doi.org/10.1145/3341301.3359641
https://doi.org/10.1145/3132747.3132748
https://doi.org/10.22331/q-2018-08-06-79
https://doi.org/10.22331/q-2018-08-06-79
http://arxiv.org/abs/1801.00862
https://github.com/PyCQA/astroid
https://github.com/rigetti/pyquil
https://github.com/Qiskit/qiskit-terra/issues/1871
https://github.com/Qiskit/qiskit-terra/issues/1871
https://github.com/Qiskit/qiskit-terra/issues/2667
https://github.com/Qiskit/qiskit-terra/issues/2667
https://github.com/qutip
http://arxiv.org/abs/cs.LO/1901.10118
https://github.com/jpaykin/QWIRE.
https://doi.org/10.4204/eptcs.266.8
https://doi.org/10.1209/0295-5075/119/60002
https://doi.org/10.1209/0295-5075/119/60002
https://doi.org/10.1103/physreva.96.022330
https://doi.org/10.1145/3297858.3304018
http://dl.acm.org/citation.cfm?id=3026877.3026879
https://doi.org/10.1038/s42005-019-0110-3

15

[46] Mathias Soeken and Michael Kirkedal Thomsen. 2013. White
Dots do Matter: Rewriting Reversible Logic Circuits. In Re-
versible Computation, Gerhard W Dueck and D Michael Miller
(Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg, 196–
208.

[47] Amir M. Tavala, Soroosh Nazem, and Ali A. Babaei-Brojeny.
2011. Verification of quantum protocols with a probabilistic
model-checker. In Electronic Notes in Theoretical Computer
Science, Vol. 270. 175–182. https://doi.org/10.1016/j.entcs.
2011.01.016

[48] terraissue 2018. Qiskit Terra Github issue page. https:
//github.com/Qiskit/qiskit-terra/issues

[49] George F. Viamontes, Igor L. Markov, and John P. Hayes.
2007. Checking equivalence of quantum circuits and states.
In ICCAD, Georges G E Gielen (Ed.). IEEE.

[50] Christophe Vuillot. 2017. Is error detection helpful on IBM 5Q
chips ? arXiv (2017). https://doi.org/10.26421/QIC18.11-12
arXiv:1705.08957

[51] Mingsheng Ying. 2011. Floyd–hoare logic for quantum pro-
grams. ACM Transactions on Programming Languages and
Systems 33, 6 (dec 2011), 1–49. https://doi.org/10.1145/
2049706.2049708

[52] Mingsheng Ying and Yuan Feng. 2018. Model Checking Quan-
tum Systems — A Survey. arXiv (jul 2018). arXiv:1807.09466
http://arxiv.org/abs/1807.09466

[53] Mingsheng Ying, Yangjia Li, Nengkun Yu, and Yuan Feng.
2014. Model-Checking Linear-Time Properties of Quantum
Systems. ACM Transactions on Computational Logic 15, 3
(aug 2014), 1–31. https://doi.org/10.1145/2629680

[54] Zhikuan Zhao, Alejandro Pozas-Kerstjens, Patrick Rebentrost,
and Peter Wittek. 2019. Bayesian deep learning on a quantum
computer. Quantum Machine Intelligence (2019). https:
//doi.org/10.1007/s42484-019-00004-7

https://doi.org/10.1016/j.entcs.2011.01.016
https://doi.org/10.1016/j.entcs.2011.01.016
https://github.com/Qiskit/qiskit-terra/issues
https://github.com/Qiskit/qiskit-terra/issues
https://doi.org/10.26421/QIC18.11-12
http://arxiv.org/abs/1705.08957
https://doi.org/10.1145/2049706.2049708
https://doi.org/10.1145/2049706.2049708
http://arxiv.org/abs/1807.09466
http://arxiv.org/abs/1807.09466
https://doi.org/10.1145/2629680
https://doi.org/10.1007/s42484-019-00004-7
https://doi.org/10.1007/s42484-019-00004-7

	Abstract
	1 Introduction
	2 Background
	2.1 Quantum Computing
	2.2 Compilation of Quantum Programs
	2.3 The Qiskit Terra Compiler

	3 The CertiQ Workflow
	3.1 The BasicSwap pass.
	3.2 Specifications
	3.3 Contracts and verification goals
	3.4 Static analysis and code transformations
	3.5 The visualizer
	3.6 The translation validator

	4 The CertiQ Framework
	4.1 Equivalence checking for quantum circuits
	4.2 Contracts for scaling symbolic execution
	4.3 Specification refinement for equivalence of quantum data structures
	4.4 The translation validator

	5 Case studies
	5.1 swap insertion passes
	5.2 The optimize_1q_gate pass
	5.3 commutation passes

	6 Evaluation
	7 Related work
	8 Conclusion and Future Work
	References

