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• High-performance	embedded	systems	are	heterogeneous:
• they	include	multiple	general-purpose	processor	cores
• they	include	special-function	hardware	accelerators
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Why	Hardware	Accelerators?



Embedded	Scalable	Platforms	(ESP)
• To	balance	the	demand	for	hardware	specialization	with	
the	need	of	maintaining	helpful	degrees	of	regularity	and	
modularity	we	proposed:	Embedded	Scalable	Platforms
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[L.	Carloni,	“The	Case	for	Embedded	Scalable	Platforms”,	DAC	2016]
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Hardware	Accelerators	with	HLS
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Knob Settings and	Effects

Loop	manipulations Unrolls, pipelines	or	breaks	the	body	of	loops

Array	mappings Maps arrays	to	registers	or	on-chip	memories

Clock period Sets	the	target	clock	period	for	synthesis

Standard knobs	provided	by	the	current	HLS	tools

• These	knobs	enable	already	a	rich	design-space	exploration
• However,	they	are	not	sufficient	for	exploring	accelerators
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Standard	HLS	Knobs

We	need	other	knobs	to	broaden	the	exploration	
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• Limiting	factor: limited	bandwidth	to	the	on-chip	memory
• We	need knobs	to	tailor	the	PLM	to	the	accelerator	needs
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Motivational	Example	#1
synthesized with the standard knobs
synthesized with the proposed knobs



• Limiting	factor:	limited	bandwidth	to	the	off-chip	memory
• We need knobs	to	operate	on	the	communication	interfaces
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Motivational	Example	#2
synthesized with the standard knobs
synthesized with the proposed knobs



Contributions:	Xknobs

XKnob Settings and	Effects

PLM	PORTS Sets	the	on-chip	memory	bandwidth

DMAWIDTH Sets the	off-chip	memory	bandwidth

DMA	CHUNK Sets	the	size	of	the	input and	output	PLM

eXtended	Knobs for	High-Level	Synthesis
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PLM PORTS = 1 PLM PORTS = 2 PLM PORTS = 4

• Sets	the	number	of	read/write	ports	of	input/output	PLMs
• Higher	values	of	PLM	PORTS	→	more	read/write	accesses
• Higher	values	of	PLM	PORTS	→	higher	area	(more	banks)
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Xknob	#1:	PLM	PORTS
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• Set	the	size	in	bits	of	the	DMA	communication	channels
• Higher	values	of	DMA	WIDTH	→	higher	mem.	throughput
• Higher	values	of	DMA	WIDTH	→	higher	area	(more	banks)

(higher	number	of	write/read	ports	of	input/output	PLMs)
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Xknob	#2:	DMA	WIDTH
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with	contentionwithout	contention

• Set	the	size	of	the	PLM	in	multiple	of	the	stored	data	type
• Higher	values	of	DMA	CHUNK	→	optimized	communication
• Higher	values	of	DMA	CHUNK	→	higher	area	(for	the	PLM)
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DMA CHUNK = 256 DMA CHUNK = 512 DMA CHUNK = 1024 DMA CHUNK = 2048

Xknob	#3:	DMA	CHUNK



Experimental	Results	
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• We	evaluate	the	combined	effects	of	the	XKnobs by	using:
• GRAYSCALE→	accelerator	limited	by	communication
• DEBAYER→	accelerator	limited	by	computation

• The	other	WAMI	accelerators	behave	similarly	to	either				
the	GRAYSCALE	accelerator	or	the	DEBAYER	accelerator



Experiment	#1
• We	consider	two	XKnobs:	PLM	PORTS	and	DMA	WIDTH
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DMA WIDTH = 32 DMA WIDTH = 64 DMA WIDTH = 128 DMA WIDTH = 256

• GRAYSCALE→	accelerator	limited	by	communication
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Experiment	#2
• We	consider	two	XKnobs:	PLM	PORTS	and	DMA	CHUNK

• GRAYSCALE	→	accelerator	limited	by	communication
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•We	presented	the	XKnobs
• a	set	of	knobs	that	aims	at	extending	the	
standard	knobs	used	in	current	HLS	tools	

• The	XKnobs	can	be	integrated	in	any	HLS	tools	and								
design-space	exploration	methodologies	to	enrich						
the	set	of	Pareto-optimal	implementations	of			
hardware	accelerators		

• For	WAMI,	the	Xknobs	broaden	the	design	space																					
by	up	to	8.5x for	performance	and	3.5x for	cost

Concluding	Remarks



Thank	you	for	the	attention!

Speaker:	Luca	Piccolboni
Columbia	University,	NY
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